author | wenzelm |
Tue, 03 Jan 2023 17:21:24 +0100 | |
changeset 76887 | d8cdddf7b9a5 |
parent 76121 | f58ad163bb75 |
child 80084 | 173548e4d5d0 |
permissions | -rw-r--r-- |
65435 | 1 |
(* Title: HOL/Computational_Algebra/Polynomial_Factorial.thy |
63764 | 2 |
Author: Manuel Eberl |
3 |
*) |
|
4 |
||
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
5 |
section \<open>Polynomials, fractions and rings\<close> |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
6 |
|
63498 | 7 |
theory Polynomial_Factorial |
8 |
imports |
|
9 |
Complex_Main |
|
65366 | 10 |
Polynomial |
11 |
Normalized_Fraction |
|
63498 | 12 |
begin |
13 |
||
14 |
subsection \<open>Lifting elements into the field of fractions\<close> |
|
15 |
||
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
16 |
definition to_fract :: "'a :: idom \<Rightarrow> 'a fract" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
17 |
where "to_fract x = Fract x 1" |
66808
1907167b6038
elementary definition of division on natural numbers
haftmann
parents:
66806
diff
changeset
|
18 |
\<comment> \<open>FIXME: more idiomatic name, abbreviation\<close> |
63498 | 19 |
|
20 |
lemma to_fract_0 [simp]: "to_fract 0 = 0" |
|
21 |
by (simp add: to_fract_def eq_fract Zero_fract_def) |
|
22 |
||
23 |
lemma to_fract_1 [simp]: "to_fract 1 = 1" |
|
24 |
by (simp add: to_fract_def eq_fract One_fract_def) |
|
25 |
||
26 |
lemma to_fract_add [simp]: "to_fract (x + y) = to_fract x + to_fract y" |
|
27 |
by (simp add: to_fract_def) |
|
28 |
||
29 |
lemma to_fract_diff [simp]: "to_fract (x - y) = to_fract x - to_fract y" |
|
30 |
by (simp add: to_fract_def) |
|
31 |
||
32 |
lemma to_fract_uminus [simp]: "to_fract (-x) = -to_fract x" |
|
33 |
by (simp add: to_fract_def) |
|
34 |
||
35 |
lemma to_fract_mult [simp]: "to_fract (x * y) = to_fract x * to_fract y" |
|
36 |
by (simp add: to_fract_def) |
|
37 |
||
38 |
lemma to_fract_eq_iff [simp]: "to_fract x = to_fract y \<longleftrightarrow> x = y" |
|
39 |
by (simp add: to_fract_def eq_fract) |
|
40 |
||
41 |
lemma to_fract_eq_0_iff [simp]: "to_fract x = 0 \<longleftrightarrow> x = 0" |
|
42 |
by (simp add: to_fract_def Zero_fract_def eq_fract) |
|
43 |
||
44 |
lemma to_fract_quot_of_fract: |
|
45 |
assumes "snd (quot_of_fract x) = 1" |
|
46 |
shows "to_fract (fst (quot_of_fract x)) = x" |
|
47 |
proof - |
|
48 |
have "x = Fract (fst (quot_of_fract x)) (snd (quot_of_fract x))" by simp |
|
49 |
also note assms |
|
50 |
finally show ?thesis by (simp add: to_fract_def) |
|
51 |
qed |
|
52 |
||
53 |
lemma Fract_conv_to_fract: "Fract a b = to_fract a / to_fract b" |
|
54 |
by (simp add: to_fract_def) |
|
55 |
||
56 |
lemma quot_of_fract_to_fract [simp]: "quot_of_fract (to_fract x) = (x, 1)" |
|
57 |
unfolding to_fract_def by transfer (simp add: normalize_quot_def) |
|
58 |
||
59 |
lemma snd_quot_of_fract_to_fract [simp]: "snd (quot_of_fract (to_fract x)) = 1" |
|
60 |
unfolding to_fract_def by (rule snd_quot_of_fract_Fract_whole) simp_all |
|
61 |
||
62 |
||
63 |
subsection \<open>Lifting polynomial coefficients to the field of fractions\<close> |
|
64 |
||
76121 | 65 |
abbreviation (input) fract_poly :: \<open>'a::idom poly \<Rightarrow> 'a fract poly\<close> |
63498 | 66 |
where "fract_poly \<equiv> map_poly to_fract" |
67 |
||
76121 | 68 |
abbreviation (input) unfract_poly :: \<open>'a::{ring_gcd,semiring_gcd_mult_normalize,idom_divide} fract poly \<Rightarrow> 'a poly\<close> |
63498 | 69 |
where "unfract_poly \<equiv> map_poly (fst \<circ> quot_of_fract)" |
76121 | 70 |
|
63498 | 71 |
lemma fract_poly_smult [simp]: "fract_poly (smult c p) = smult (to_fract c) (fract_poly p)" |
72 |
by (simp add: smult_conv_map_poly map_poly_map_poly o_def) |
|
73 |
||
74 |
lemma fract_poly_0 [simp]: "fract_poly 0 = 0" |
|
75 |
by (simp add: poly_eqI coeff_map_poly) |
|
76 |
||
77 |
lemma fract_poly_1 [simp]: "fract_poly 1 = 1" |
|
65486 | 78 |
by (simp add: map_poly_pCons) |
63498 | 79 |
|
80 |
lemma fract_poly_add [simp]: |
|
81 |
"fract_poly (p + q) = fract_poly p + fract_poly q" |
|
82 |
by (intro poly_eqI) (simp_all add: coeff_map_poly) |
|
83 |
||
84 |
lemma fract_poly_diff [simp]: |
|
85 |
"fract_poly (p - q) = fract_poly p - fract_poly q" |
|
86 |
by (intro poly_eqI) (simp_all add: coeff_map_poly) |
|
87 |
||
64267 | 88 |
lemma to_fract_sum [simp]: "to_fract (sum f A) = sum (\<lambda>x. to_fract (f x)) A" |
63498 | 89 |
by (cases "finite A", induction A rule: finite_induct) simp_all |
90 |
||
91 |
lemma fract_poly_mult [simp]: |
|
92 |
"fract_poly (p * q) = fract_poly p * fract_poly q" |
|
93 |
by (intro poly_eqI) (simp_all add: coeff_map_poly coeff_mult) |
|
94 |
||
95 |
lemma fract_poly_eq_iff [simp]: "fract_poly p = fract_poly q \<longleftrightarrow> p = q" |
|
96 |
by (auto simp: poly_eq_iff coeff_map_poly) |
|
97 |
||
98 |
lemma fract_poly_eq_0_iff [simp]: "fract_poly p = 0 \<longleftrightarrow> p = 0" |
|
99 |
using fract_poly_eq_iff[of p 0] by (simp del: fract_poly_eq_iff) |
|
100 |
||
101 |
lemma fract_poly_dvd: "p dvd q \<Longrightarrow> fract_poly p dvd fract_poly q" |
|
76121 | 102 |
by auto |
63498 | 103 |
|
63830 | 104 |
lemma prod_mset_fract_poly: |
65390 | 105 |
"(\<Prod>x\<in>#A. map_poly to_fract (f x)) = fract_poly (prod_mset (image_mset f A))" |
106 |
by (induct A) (simp_all add: ac_simps) |
|
63498 | 107 |
|
108 |
lemma is_unit_fract_poly_iff: |
|
109 |
"p dvd 1 \<longleftrightarrow> fract_poly p dvd 1 \<and> content p = 1" |
|
110 |
proof safe |
|
111 |
assume A: "p dvd 1" |
|
65389 | 112 |
with fract_poly_dvd [of p 1] show "is_unit (fract_poly p)" |
113 |
by simp |
|
63498 | 114 |
from A show "content p = 1" |
115 |
by (auto simp: is_unit_poly_iff normalize_1_iff) |
|
116 |
next |
|
117 |
assume A: "fract_poly p dvd 1" and B: "content p = 1" |
|
118 |
from A obtain c where c: "fract_poly p = [:c:]" by (auto simp: is_unit_poly_iff) |
|
119 |
{ |
|
120 |
fix n :: nat assume "n > 0" |
|
121 |
have "to_fract (coeff p n) = coeff (fract_poly p) n" by (simp add: coeff_map_poly) |
|
122 |
also note c |
|
123 |
also from \<open>n > 0\<close> have "coeff [:c:] n = 0" by (simp add: coeff_pCons split: nat.splits) |
|
124 |
finally have "coeff p n = 0" by simp |
|
125 |
} |
|
126 |
hence "degree p \<le> 0" by (intro degree_le) simp_all |
|
127 |
with B show "p dvd 1" by (auto simp: is_unit_poly_iff normalize_1_iff elim!: degree_eq_zeroE) |
|
128 |
qed |
|
129 |
||
130 |
lemma fract_poly_is_unit: "p dvd 1 \<Longrightarrow> fract_poly p dvd 1" |
|
131 |
using fract_poly_dvd[of p 1] by simp |
|
132 |
||
133 |
lemma fract_poly_smult_eqE: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
134 |
fixes c :: "'a :: {idom_divide,ring_gcd,semiring_gcd_mult_normalize} fract" |
63498 | 135 |
assumes "fract_poly p = smult c (fract_poly q)" |
136 |
obtains a b |
|
137 |
where "c = to_fract b / to_fract a" "smult a p = smult b q" "coprime a b" "normalize a = a" |
|
138 |
proof - |
|
139 |
define a b where "a = fst (quot_of_fract c)" and "b = snd (quot_of_fract c)" |
|
140 |
have "smult (to_fract a) (fract_poly q) = smult (to_fract b) (fract_poly p)" |
|
141 |
by (subst smult_eq_iff) (simp_all add: a_def b_def Fract_conv_to_fract [symmetric] assms) |
|
142 |
hence "fract_poly (smult a q) = fract_poly (smult b p)" by (simp del: fract_poly_eq_iff) |
|
143 |
hence "smult b p = smult a q" by (simp only: fract_poly_eq_iff) |
|
144 |
moreover have "c = to_fract a / to_fract b" "coprime b a" "normalize b = b" |
|
67051 | 145 |
by (simp_all add: a_def b_def coprime_quot_of_fract [of c] ac_simps |
63498 | 146 |
normalize_snd_quot_of_fract Fract_conv_to_fract [symmetric]) |
147 |
ultimately show ?thesis by (intro that[of a b]) |
|
148 |
qed |
|
149 |
||
150 |
||
151 |
subsection \<open>Fractional content\<close> |
|
152 |
||
153 |
abbreviation (input) Lcm_coeff_denoms |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
154 |
:: "'a :: {semiring_Gcd,idom_divide,ring_gcd,semiring_gcd_mult_normalize} fract poly \<Rightarrow> 'a" |
63498 | 155 |
where "Lcm_coeff_denoms p \<equiv> Lcm (snd ` quot_of_fract ` set (coeffs p))" |
156 |
||
157 |
definition fract_content :: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
158 |
"'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} fract poly \<Rightarrow> 'a fract" where |
63498 | 159 |
"fract_content p = |
160 |
(let d = Lcm_coeff_denoms p in Fract (content (unfract_poly (smult (to_fract d) p))) d)" |
|
161 |
||
162 |
definition primitive_part_fract :: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
163 |
"'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} fract poly \<Rightarrow> 'a poly" where |
63498 | 164 |
"primitive_part_fract p = |
165 |
primitive_part (unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p))" |
|
166 |
||
167 |
lemma primitive_part_fract_0 [simp]: "primitive_part_fract 0 = 0" |
|
168 |
by (simp add: primitive_part_fract_def) |
|
169 |
||
170 |
lemma fract_content_eq_0_iff [simp]: |
|
171 |
"fract_content p = 0 \<longleftrightarrow> p = 0" |
|
172 |
unfolding fract_content_def Let_def Zero_fract_def |
|
173 |
by (subst eq_fract) (auto simp: Lcm_0_iff map_poly_eq_0_iff) |
|
174 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
175 |
lemma content_primitive_part_fract [simp]: |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
176 |
fixes p :: "'a :: {semiring_gcd_mult_normalize, |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
177 |
factorial_semiring, ring_gcd, semiring_Gcd,idom_divide} fract poly" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
178 |
shows "p \<noteq> 0 \<Longrightarrow> content (primitive_part_fract p) = 1" |
63498 | 179 |
unfolding primitive_part_fract_def |
180 |
by (rule content_primitive_part) |
|
181 |
(auto simp: primitive_part_fract_def map_poly_eq_0_iff Lcm_0_iff) |
|
182 |
||
183 |
lemma content_times_primitive_part_fract: |
|
184 |
"smult (fract_content p) (fract_poly (primitive_part_fract p)) = p" |
|
185 |
proof - |
|
186 |
define p' where "p' = unfract_poly (smult (to_fract (Lcm_coeff_denoms p)) p)" |
|
187 |
have "fract_poly p' = |
|
188 |
map_poly (to_fract \<circ> fst \<circ> quot_of_fract) (smult (to_fract (Lcm_coeff_denoms p)) p)" |
|
189 |
unfolding primitive_part_fract_def p'_def |
|
190 |
by (subst map_poly_map_poly) (simp_all add: o_assoc) |
|
191 |
also have "\<dots> = smult (to_fract (Lcm_coeff_denoms p)) p" |
|
192 |
proof (intro map_poly_idI, unfold o_apply) |
|
193 |
fix c assume "c \<in> set (coeffs (smult (to_fract (Lcm_coeff_denoms p)) p))" |
|
194 |
then obtain c' where c: "c' \<in> set (coeffs p)" "c = to_fract (Lcm_coeff_denoms p) * c'" |
|
195 |
by (auto simp add: Lcm_0_iff coeffs_smult split: if_splits) |
|
196 |
note c(2) |
|
197 |
also have "c' = Fract (fst (quot_of_fract c')) (snd (quot_of_fract c'))" |
|
198 |
by simp |
|
199 |
also have "to_fract (Lcm_coeff_denoms p) * \<dots> = |
|
200 |
Fract (Lcm_coeff_denoms p * fst (quot_of_fract c')) (snd (quot_of_fract c'))" |
|
201 |
unfolding to_fract_def by (subst mult_fract) simp_all |
|
202 |
also have "snd (quot_of_fract \<dots>) = 1" |
|
203 |
by (intro snd_quot_of_fract_Fract_whole dvd_mult2 dvd_Lcm) (insert c(1), auto) |
|
204 |
finally show "to_fract (fst (quot_of_fract c)) = c" |
|
205 |
by (rule to_fract_quot_of_fract) |
|
206 |
qed |
|
207 |
also have "p' = smult (content p') (primitive_part p')" |
|
208 |
by (rule content_times_primitive_part [symmetric]) |
|
209 |
also have "primitive_part p' = primitive_part_fract p" |
|
210 |
by (simp add: primitive_part_fract_def p'_def) |
|
211 |
also have "fract_poly (smult (content p') (primitive_part_fract p)) = |
|
212 |
smult (to_fract (content p')) (fract_poly (primitive_part_fract p))" by simp |
|
213 |
finally have "smult (to_fract (content p')) (fract_poly (primitive_part_fract p)) = |
|
214 |
smult (to_fract (Lcm_coeff_denoms p)) p" . |
|
215 |
thus ?thesis |
|
216 |
by (subst (asm) smult_eq_iff) |
|
217 |
(auto simp add: Let_def p'_def Fract_conv_to_fract field_simps Lcm_0_iff fract_content_def) |
|
218 |
qed |
|
219 |
||
220 |
lemma fract_content_fract_poly [simp]: "fract_content (fract_poly p) = to_fract (content p)" |
|
221 |
proof - |
|
222 |
have "Lcm_coeff_denoms (fract_poly p) = 1" |
|
63905 | 223 |
by (auto simp: set_coeffs_map_poly) |
63498 | 224 |
hence "fract_content (fract_poly p) = |
225 |
to_fract (content (map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p))" |
|
226 |
by (simp add: fract_content_def to_fract_def fract_collapse map_poly_map_poly del: Lcm_1_iff) |
|
227 |
also have "map_poly (fst \<circ> quot_of_fract \<circ> to_fract) p = p" |
|
228 |
by (intro map_poly_idI) simp_all |
|
229 |
finally show ?thesis . |
|
230 |
qed |
|
231 |
||
232 |
lemma content_decompose_fract: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
233 |
fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide, |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
234 |
semiring_gcd_mult_normalize} fract poly" |
63498 | 235 |
obtains c p' where "p = smult c (map_poly to_fract p')" "content p' = 1" |
236 |
proof (cases "p = 0") |
|
237 |
case True |
|
238 |
hence "p = smult 0 (map_poly to_fract 1)" "content 1 = 1" by simp_all |
|
239 |
thus ?thesis .. |
|
240 |
next |
|
241 |
case False |
|
242 |
thus ?thesis |
|
243 |
by (rule that[OF content_times_primitive_part_fract [symmetric] content_primitive_part_fract]) |
|
244 |
qed |
|
245 |
||
246 |
lemma fract_poly_dvdD: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
247 |
fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide, |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
248 |
semiring_gcd_mult_normalize} poly" |
63498 | 249 |
assumes "fract_poly p dvd fract_poly q" "content p = 1" |
250 |
shows "p dvd q" |
|
251 |
proof - |
|
252 |
from assms(1) obtain r where r: "fract_poly q = fract_poly p * r" by (erule dvdE) |
|
74362 | 253 |
from content_decompose_fract[of r] |
254 |
obtain c r' where r': "r = smult c (map_poly to_fract r')" "content r' = 1" . |
|
63498 | 255 |
from r r' have eq: "fract_poly q = smult c (fract_poly (p * r'))" by simp |
74362 | 256 |
from fract_poly_smult_eqE[OF this] obtain a b |
257 |
where ab: |
|
258 |
"c = to_fract b / to_fract a" |
|
259 |
"smult a q = smult b (p * r')" |
|
260 |
"coprime a b" |
|
261 |
"normalize a = a" . |
|
63498 | 262 |
have "content (smult a q) = content (smult b (p * r'))" by (simp only: ab(2)) |
263 |
hence eq': "normalize b = a * content q" by (simp add: assms content_mult r' ab(4)) |
|
264 |
have "1 = gcd a (normalize b)" by (simp add: ab) |
|
265 |
also note eq' |
|
266 |
also have "gcd a (a * content q) = a" by (simp add: gcd_proj1_if_dvd ab(4)) |
|
267 |
finally have [simp]: "a = 1" by simp |
|
268 |
from eq ab have "q = p * ([:b:] * r')" by simp |
|
269 |
thus ?thesis by (rule dvdI) |
|
270 |
qed |
|
271 |
||
272 |
||
273 |
subsection \<open>Polynomials over a field are a Euclidean ring\<close> |
|
274 |
||
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
275 |
context |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
276 |
begin |
63498 | 277 |
|
278 |
interpretation field_poly: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
279 |
normalization_euclidean_semiring_multiplicative where zero = "0 :: 'a :: field poly" |
66817 | 280 |
and one = 1 and plus = plus and minus = minus |
64164
38c407446400
separate type class for arbitrary quotient and remainder partitions
haftmann
parents:
63954
diff
changeset
|
281 |
and times = times |
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
282 |
and normalize = "\<lambda>p. smult (inverse (lead_coeff p)) p" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
283 |
and unit_factor = "\<lambda>p. [:lead_coeff p:]" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
284 |
and euclidean_size = "\<lambda>p. if p = 0 then 0 else 2 ^ degree p" |
64164
38c407446400
separate type class for arbitrary quotient and remainder partitions
haftmann
parents:
63954
diff
changeset
|
285 |
and divide = divide and modulo = modulo |
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
286 |
rewrites "dvd.dvd (times :: 'a poly \<Rightarrow> _) = Rings.dvd" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
287 |
and "comm_monoid_mult.prod_mset times 1 = prod_mset" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
288 |
and "comm_semiring_1.irreducible times 1 0 = irreducible" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
289 |
and "comm_semiring_1.prime_elem times 1 0 = prime_elem" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
290 |
proof - |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
291 |
show "dvd.dvd (times :: 'a poly \<Rightarrow> _) = Rings.dvd" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
292 |
by (simp add: dvd_dict) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
293 |
show "comm_monoid_mult.prod_mset times 1 = prod_mset" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
294 |
by (simp add: prod_mset_dict) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
295 |
show "comm_semiring_1.irreducible times 1 0 = irreducible" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
296 |
by (simp add: irreducible_dict) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
297 |
show "comm_semiring_1.prime_elem times 1 0 = prime_elem" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
298 |
by (simp add: prime_elem_dict) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
299 |
show "class.normalization_euclidean_semiring_multiplicative divide plus minus (0 :: 'a poly) times 1 |
66817 | 300 |
modulo (\<lambda>p. if p = 0 then 0 else 2 ^ degree p) |
301 |
(\<lambda>p. [:lead_coeff p:]) (\<lambda>p. smult (inverse (lead_coeff p)) p)" |
|
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
302 |
proof (standard, fold dvd_dict) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
303 |
fix p :: "'a poly" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
304 |
show "[:lead_coeff p:] * smult (inverse (lead_coeff p)) p = p" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
305 |
by (cases "p = 0") simp_all |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
306 |
next |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
307 |
fix p :: "'a poly" assume "is_unit p" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
308 |
then show "[:lead_coeff p:] = p" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
309 |
by (elim is_unit_polyE) (auto simp: monom_0 one_poly_def field_simps) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
310 |
next |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
311 |
fix p :: "'a poly" assume "p \<noteq> 0" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
312 |
then show "is_unit [:lead_coeff p:]" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
313 |
by (simp add: is_unit_pCons_iff) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
314 |
next |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
315 |
fix a b :: "'a poly" assume "is_unit a" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
316 |
thus "[:lead_coeff (a * b):] = a * [:lead_coeff b:]" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
317 |
by (auto elim!: is_unit_polyE) |
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
318 |
qed (auto simp: lead_coeff_mult Rings.div_mult_mod_eq intro!: degree_mod_less' degree_mult_right_le) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
319 |
qed |
63498 | 320 |
|
63722
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
Manuel Eberl <eberlm@in.tum.de>
parents:
63705
diff
changeset
|
321 |
lemma field_poly_irreducible_imp_prime: |
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
322 |
"prime_elem p" if "irreducible p" for p :: "'a :: field poly" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
323 |
using that by (fact field_poly.irreducible_imp_prime_elem) |
72265 | 324 |
|
63830 | 325 |
lemma field_poly_prod_mset_prime_factorization: |
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
326 |
"prod_mset (field_poly.prime_factorization p) = smult (inverse (lead_coeff p)) p" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
327 |
if "p \<noteq> 0" for p :: "'a :: field poly" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
328 |
using that by (fact field_poly.prod_mset_prime_factorization) |
63498 | 329 |
|
63722
b9c8da46443b
Deprivatisation of lemmas in Polynomial_Factorial
Manuel Eberl <eberlm@in.tum.de>
parents:
63705
diff
changeset
|
330 |
lemma field_poly_in_prime_factorization_imp_prime: |
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
331 |
"prime_elem p" if "p \<in># field_poly.prime_factorization x" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
332 |
for p :: "'a :: field poly" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
333 |
by (rule field_poly.prime_imp_prime_elem, rule field_poly.in_prime_factors_imp_prime) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
334 |
(fact that) |
63498 | 335 |
|
336 |
||
337 |
subsection \<open>Primality and irreducibility in polynomial rings\<close> |
|
338 |
||
339 |
lemma nonconst_poly_irreducible_iff: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
340 |
fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly" |
63498 | 341 |
assumes "degree p \<noteq> 0" |
342 |
shows "irreducible p \<longleftrightarrow> irreducible (fract_poly p) \<and> content p = 1" |
|
343 |
proof safe |
|
344 |
assume p: "irreducible p" |
|
345 |
||
74362 | 346 |
from content_decompose[of p] obtain p' where p': "p = smult (content p) p'" "content p' = 1" . |
63498 | 347 |
hence "p = [:content p:] * p'" by simp |
348 |
from p this have "[:content p:] dvd 1 \<or> p' dvd 1" by (rule irreducibleD) |
|
349 |
moreover have "\<not>p' dvd 1" |
|
350 |
proof |
|
351 |
assume "p' dvd 1" |
|
352 |
hence "degree p = 0" by (subst p') (auto simp: is_unit_poly_iff) |
|
353 |
with assms show False by contradiction |
|
354 |
qed |
|
355 |
ultimately show [simp]: "content p = 1" by (simp add: is_unit_const_poly_iff) |
|
356 |
||
357 |
show "irreducible (map_poly to_fract p)" |
|
358 |
proof (rule irreducibleI) |
|
359 |
have "fract_poly p = 0 \<longleftrightarrow> p = 0" by (intro map_poly_eq_0_iff) auto |
|
360 |
with assms show "map_poly to_fract p \<noteq> 0" by auto |
|
361 |
next |
|
362 |
show "\<not>is_unit (fract_poly p)" |
|
363 |
proof |
|
364 |
assume "is_unit (map_poly to_fract p)" |
|
365 |
hence "degree (map_poly to_fract p) = 0" |
|
366 |
by (auto simp: is_unit_poly_iff) |
|
367 |
hence "degree p = 0" by (simp add: degree_map_poly) |
|
368 |
with assms show False by contradiction |
|
369 |
qed |
|
370 |
next |
|
371 |
fix q r assume qr: "fract_poly p = q * r" |
|
74362 | 372 |
from content_decompose_fract[of q] |
373 |
obtain cg q' where q: "q = smult cg (map_poly to_fract q')" "content q' = 1" . |
|
374 |
from content_decompose_fract[of r] |
|
375 |
obtain cr r' where r: "r = smult cr (map_poly to_fract r')" "content r' = 1" . |
|
63498 | 376 |
from qr q r p have nz: "cg \<noteq> 0" "cr \<noteq> 0" by auto |
377 |
from qr have eq: "fract_poly p = smult (cr * cg) (fract_poly (q' * r'))" |
|
378 |
by (simp add: q r) |
|
74362 | 379 |
from fract_poly_smult_eqE[OF this] obtain a b |
380 |
where ab: "cr * cg = to_fract b / to_fract a" |
|
381 |
"smult a p = smult b (q' * r')" "coprime a b" "normalize a = a" . |
|
63498 | 382 |
hence "content (smult a p) = content (smult b (q' * r'))" by (simp only:) |
383 |
with ab(4) have a: "a = normalize b" by (simp add: content_mult q r) |
|
67051 | 384 |
then have "normalize b = gcd a b" |
385 |
by simp |
|
386 |
with \<open>coprime a b\<close> have "normalize b = 1" |
|
387 |
by simp |
|
388 |
then have "a = 1" "is_unit b" |
|
389 |
by (simp_all add: a normalize_1_iff) |
|
63498 | 390 |
|
391 |
note eq |
|
392 |
also from ab(1) \<open>a = 1\<close> have "cr * cg = to_fract b" by simp |
|
393 |
also have "smult \<dots> (fract_poly (q' * r')) = fract_poly (smult b (q' * r'))" by simp |
|
394 |
finally have "p = ([:b:] * q') * r'" by (simp del: fract_poly_smult) |
|
395 |
from p and this have "([:b:] * q') dvd 1 \<or> r' dvd 1" by (rule irreducibleD) |
|
396 |
hence "q' dvd 1 \<or> r' dvd 1" by (auto dest: dvd_mult_right simp del: mult_pCons_left) |
|
397 |
hence "fract_poly q' dvd 1 \<or> fract_poly r' dvd 1" by (auto simp: fract_poly_is_unit) |
|
398 |
with q r show "is_unit q \<or> is_unit r" |
|
399 |
by (auto simp add: is_unit_smult_iff dvd_field_iff nz) |
|
400 |
qed |
|
401 |
||
402 |
next |
|
403 |
||
404 |
assume irred: "irreducible (fract_poly p)" and primitive: "content p = 1" |
|
405 |
show "irreducible p" |
|
406 |
proof (rule irreducibleI) |
|
407 |
from irred show "p \<noteq> 0" by auto |
|
408 |
next |
|
409 |
from irred show "\<not>p dvd 1" |
|
410 |
by (auto simp: irreducible_def dest: fract_poly_is_unit) |
|
411 |
next |
|
412 |
fix q r assume qr: "p = q * r" |
|
413 |
hence "fract_poly p = fract_poly q * fract_poly r" by simp |
|
414 |
from irred and this have "fract_poly q dvd 1 \<or> fract_poly r dvd 1" |
|
415 |
by (rule irreducibleD) |
|
416 |
with primitive qr show "q dvd 1 \<or> r dvd 1" |
|
417 |
by (auto simp: content_prod_eq_1_iff is_unit_fract_poly_iff) |
|
418 |
qed |
|
419 |
qed |
|
420 |
||
74542
d592354c4a26
removed some 'private' modifiers from HOL-Computational_Algebra
Manuel Eberl <manuel@pruvisto.org>
parents:
74362
diff
changeset
|
421 |
lemma irreducible_imp_prime_poly: |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
422 |
fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly" |
63498 | 423 |
assumes "irreducible p" |
63633 | 424 |
shows "prime_elem p" |
63498 | 425 |
proof (cases "degree p = 0") |
426 |
case True |
|
427 |
with assms show ?thesis |
|
428 |
by (auto simp: prime_elem_const_poly_iff irreducible_const_poly_iff |
|
63633 | 429 |
intro!: irreducible_imp_prime_elem elim!: degree_eq_zeroE) |
63498 | 430 |
next |
431 |
case False |
|
432 |
from assms False have irred: "irreducible (fract_poly p)" and primitive: "content p = 1" |
|
433 |
by (simp_all add: nonconst_poly_irreducible_iff) |
|
63633 | 434 |
from irred have prime: "prime_elem (fract_poly p)" by (rule field_poly_irreducible_imp_prime) |
63498 | 435 |
show ?thesis |
63633 | 436 |
proof (rule prime_elemI) |
63498 | 437 |
fix q r assume "p dvd q * r" |
438 |
hence "fract_poly p dvd fract_poly (q * r)" by (rule fract_poly_dvd) |
|
439 |
hence "fract_poly p dvd fract_poly q * fract_poly r" by simp |
|
440 |
from prime and this have "fract_poly p dvd fract_poly q \<or> fract_poly p dvd fract_poly r" |
|
63633 | 441 |
by (rule prime_elem_dvd_multD) |
63498 | 442 |
with primitive show "p dvd q \<or> p dvd r" by (auto dest: fract_poly_dvdD) |
443 |
qed (insert assms, auto simp: irreducible_def) |
|
444 |
qed |
|
445 |
||
446 |
lemma degree_primitive_part_fract [simp]: |
|
447 |
"degree (primitive_part_fract p) = degree p" |
|
448 |
proof - |
|
449 |
have "p = smult (fract_content p) (fract_poly (primitive_part_fract p))" |
|
450 |
by (simp add: content_times_primitive_part_fract) |
|
451 |
also have "degree \<dots> = degree (primitive_part_fract p)" |
|
452 |
by (auto simp: degree_map_poly) |
|
453 |
finally show ?thesis .. |
|
454 |
qed |
|
455 |
||
456 |
lemma irreducible_primitive_part_fract: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
457 |
fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd,semiring_gcd_mult_normalize} fract poly" |
63498 | 458 |
assumes "irreducible p" |
459 |
shows "irreducible (primitive_part_fract p)" |
|
460 |
proof - |
|
461 |
from assms have deg: "degree (primitive_part_fract p) \<noteq> 0" |
|
462 |
by (intro notI) |
|
463 |
(auto elim!: degree_eq_zeroE simp: irreducible_def is_unit_poly_iff dvd_field_iff) |
|
464 |
hence [simp]: "p \<noteq> 0" by auto |
|
465 |
||
466 |
note \<open>irreducible p\<close> |
|
467 |
also have "p = [:fract_content p:] * fract_poly (primitive_part_fract p)" |
|
468 |
by (simp add: content_times_primitive_part_fract) |
|
469 |
also have "irreducible \<dots> \<longleftrightarrow> irreducible (fract_poly (primitive_part_fract p))" |
|
470 |
by (intro irreducible_mult_unit_left) (simp_all add: is_unit_poly_iff dvd_field_iff) |
|
471 |
finally show ?thesis using deg |
|
472 |
by (simp add: nonconst_poly_irreducible_iff) |
|
473 |
qed |
|
474 |
||
63633 | 475 |
lemma prime_elem_primitive_part_fract: |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
476 |
fixes p :: "'a :: {idom_divide, ring_gcd, factorial_semiring, semiring_Gcd,semiring_gcd_mult_normalize} fract poly" |
63633 | 477 |
shows "irreducible p \<Longrightarrow> prime_elem (primitive_part_fract p)" |
63498 | 478 |
by (intro irreducible_imp_prime_poly irreducible_primitive_part_fract) |
479 |
||
480 |
lemma irreducible_linear_field_poly: |
|
481 |
fixes a b :: "'a::field" |
|
482 |
assumes "b \<noteq> 0" |
|
483 |
shows "irreducible [:a,b:]" |
|
484 |
proof (rule irreducibleI) |
|
485 |
fix p q assume pq: "[:a,b:] = p * q" |
|
63539 | 486 |
also from pq assms have "degree \<dots> = degree p + degree q" |
63498 | 487 |
by (intro degree_mult_eq) auto |
488 |
finally have "degree p = 0 \<or> degree q = 0" using assms by auto |
|
489 |
with assms pq show "is_unit p \<or> is_unit q" |
|
490 |
by (auto simp: is_unit_const_poly_iff dvd_field_iff elim!: degree_eq_zeroE) |
|
491 |
qed (insert assms, auto simp: is_unit_poly_iff) |
|
492 |
||
63633 | 493 |
lemma prime_elem_linear_field_poly: |
494 |
"(b :: 'a :: field) \<noteq> 0 \<Longrightarrow> prime_elem [:a,b:]" |
|
63498 | 495 |
by (rule field_poly_irreducible_imp_prime, rule irreducible_linear_field_poly) |
496 |
||
497 |
lemma irreducible_linear_poly: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
498 |
fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd,semiring_gcd_mult_normalize}" |
63498 | 499 |
shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> irreducible [:a,b:]" |
500 |
by (auto intro!: irreducible_linear_field_poly |
|
501 |
simp: nonconst_poly_irreducible_iff content_def map_poly_pCons) |
|
502 |
||
63633 | 503 |
lemma prime_elem_linear_poly: |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
504 |
fixes a b :: "'a::{idom_divide,ring_gcd,factorial_semiring,semiring_Gcd,semiring_gcd_mult_normalize}" |
63633 | 505 |
shows "b \<noteq> 0 \<Longrightarrow> coprime a b \<Longrightarrow> prime_elem [:a,b:]" |
63498 | 506 |
by (rule irreducible_imp_prime_poly, rule irreducible_linear_poly) |
507 |
||
64591
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
508 |
|
63498 | 509 |
subsection \<open>Prime factorisation of polynomials\<close> |
510 |
||
74542
d592354c4a26
removed some 'private' modifiers from HOL-Computational_Algebra
Manuel Eberl <manuel@pruvisto.org>
parents:
74362
diff
changeset
|
511 |
lemma poly_prime_factorization_exists_content_1: |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
512 |
fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly" |
63498 | 513 |
assumes "p \<noteq> 0" "content p = 1" |
63830 | 514 |
shows "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize p" |
63498 | 515 |
proof - |
516 |
let ?P = "field_poly.prime_factorization (fract_poly p)" |
|
63830 | 517 |
define c where "c = prod_mset (image_mset fract_content ?P)" |
63498 | 518 |
define c' where "c' = c * to_fract (lead_coeff p)" |
63830 | 519 |
define e where "e = prod_mset (image_mset primitive_part_fract ?P)" |
63498 | 520 |
define A where "A = image_mset (normalize \<circ> primitive_part_fract) ?P" |
521 |
have "content e = (\<Prod>x\<in>#field_poly.prime_factorization (map_poly to_fract p). |
|
522 |
content (primitive_part_fract x))" |
|
63830 | 523 |
by (simp add: e_def content_prod_mset multiset.map_comp o_def) |
63498 | 524 |
also have "image_mset (\<lambda>x. content (primitive_part_fract x)) ?P = image_mset (\<lambda>_. 1) ?P" |
525 |
by (intro image_mset_cong content_primitive_part_fract) auto |
|
64591
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
526 |
finally have content_e: "content e = 1" |
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
527 |
by simp |
63498 | 528 |
|
66805
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
529 |
from \<open>p \<noteq> 0\<close> have "fract_poly p = [:lead_coeff (fract_poly p):] * |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
530 |
smult (inverse (lead_coeff (fract_poly p))) (fract_poly p)" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
531 |
by simp |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
532 |
also have "[:lead_coeff (fract_poly p):] = [:to_fract (lead_coeff p):]" |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
533 |
by (simp add: monom_0 degree_map_poly coeff_map_poly) |
274b4edca859
Polynomial_Factorial does not depend on Field_as_Ring as such
haftmann
parents:
65965
diff
changeset
|
534 |
also from assms have "smult (inverse (lead_coeff (fract_poly p))) (fract_poly p) = prod_mset ?P" |
63830 | 535 |
by (subst field_poly_prod_mset_prime_factorization) simp_all |
536 |
also have "\<dots> = prod_mset (image_mset id ?P)" by simp |
|
63498 | 537 |
also have "image_mset id ?P = |
538 |
image_mset (\<lambda>x. [:fract_content x:] * fract_poly (primitive_part_fract x)) ?P" |
|
539 |
by (intro image_mset_cong) (auto simp: content_times_primitive_part_fract) |
|
63830 | 540 |
also have "prod_mset \<dots> = smult c (fract_poly e)" |
64591
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
541 |
by (subst prod_mset.distrib) (simp_all add: prod_mset_fract_poly prod_mset_const_poly c_def e_def) |
63498 | 542 |
also have "[:to_fract (lead_coeff p):] * \<dots> = smult c' (fract_poly e)" |
543 |
by (simp add: c'_def) |
|
544 |
finally have eq: "fract_poly p = smult c' (fract_poly e)" . |
|
545 |
also obtain b where b: "c' = to_fract b" "is_unit b" |
|
546 |
proof - |
|
74362 | 547 |
from fract_poly_smult_eqE[OF eq] |
548 |
obtain a b where ab: |
|
549 |
"c' = to_fract b / to_fract a" |
|
550 |
"smult a p = smult b e" |
|
551 |
"coprime a b" |
|
552 |
"normalize a = a" . |
|
63498 | 553 |
from ab(2) have "content (smult a p) = content (smult b e)" by (simp only: ) |
554 |
with assms content_e have "a = normalize b" by (simp add: ab(4)) |
|
67051 | 555 |
with ab have ab': "a = 1" "is_unit b" |
556 |
by (simp_all add: normalize_1_iff) |
|
63498 | 557 |
with ab ab' have "c' = to_fract b" by auto |
558 |
from this and \<open>is_unit b\<close> show ?thesis by (rule that) |
|
559 |
qed |
|
560 |
hence "smult c' (fract_poly e) = fract_poly (smult b e)" by simp |
|
561 |
finally have "p = smult b e" by (simp only: fract_poly_eq_iff) |
|
562 |
hence "p = [:b:] * e" by simp |
|
563 |
with b have "normalize p = normalize e" |
|
564 |
by (simp only: normalize_mult) (simp add: is_unit_normalize is_unit_poly_iff) |
|
63830 | 565 |
also have "normalize e = prod_mset A" |
566 |
by (simp add: multiset.map_comp e_def A_def normalize_prod_mset) |
|
567 |
finally have "prod_mset A = normalize p" .. |
|
63498 | 568 |
|
63633 | 569 |
have "prime_elem p" if "p \<in># A" for p |
570 |
using that by (auto simp: A_def prime_elem_primitive_part_fract prime_elem_imp_irreducible |
|
63498 | 571 |
dest!: field_poly_in_prime_factorization_imp_prime ) |
63830 | 572 |
from this and \<open>prod_mset A = normalize p\<close> show ?thesis |
63498 | 573 |
by (intro exI[of _ A]) blast |
574 |
qed |
|
575 |
||
576 |
lemma poly_prime_factorization_exists: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
577 |
fixes p :: "'a :: {factorial_semiring,semiring_Gcd,ring_gcd,idom_divide,semiring_gcd_mult_normalize} poly" |
63498 | 578 |
assumes "p \<noteq> 0" |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
579 |
shows "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> normalize (prod_mset A) = normalize p" |
63498 | 580 |
proof - |
581 |
define B where "B = image_mset (\<lambda>x. [:x:]) (prime_factorization (content p))" |
|
63830 | 582 |
have "\<exists>A. (\<forall>p. p \<in># A \<longrightarrow> prime_elem p) \<and> prod_mset A = normalize (primitive_part p)" |
63498 | 583 |
by (rule poly_prime_factorization_exists_content_1) (insert assms, simp_all) |
74362 | 584 |
then obtain A where A: "\<forall>p. p \<in># A \<longrightarrow> prime_elem p" "\<Prod>\<^sub># A = normalize (primitive_part p)" |
585 |
by blast |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
586 |
have "normalize (prod_mset (A + B)) = normalize (prod_mset A * normalize (prod_mset B))" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
587 |
by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
588 |
also from assms have "normalize (prod_mset B) = normalize [:content p:]" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
589 |
by (simp add: prod_mset_const_poly normalize_const_poly prod_mset_prime_factorization_weak B_def) |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
590 |
also have "prod_mset A = normalize (primitive_part p)" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
591 |
using A by simp |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
592 |
finally have "normalize (prod_mset (A + B)) = normalize (primitive_part p * [:content p:])" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
593 |
by simp |
63633 | 594 |
moreover have "\<forall>p. p \<in># B \<longrightarrow> prime_elem p" |
63905 | 595 |
by (auto simp: B_def intro!: lift_prime_elem_poly dest: in_prime_factors_imp_prime) |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
596 |
ultimately show ?thesis using A by (intro exI[of _ "A + B"]) (auto) |
63498 | 597 |
qed |
598 |
||
599 |
end |
|
600 |
||
601 |
||
602 |
subsection \<open>Typeclass instances\<close> |
|
603 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
604 |
instance poly :: ("{factorial_ring_gcd,semiring_gcd_mult_normalize}") factorial_semiring |
63498 | 605 |
by standard (rule poly_prime_factorization_exists) |
606 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
607 |
instantiation poly :: ("{factorial_ring_gcd, semiring_gcd_mult_normalize}") factorial_ring_gcd |
63498 | 608 |
begin |
609 |
||
610 |
definition gcd_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where |
|
611 |
[code del]: "gcd_poly = gcd_factorial" |
|
612 |
||
613 |
definition lcm_poly :: "'a poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where |
|
614 |
[code del]: "lcm_poly = lcm_factorial" |
|
615 |
||
616 |
definition Gcd_poly :: "'a poly set \<Rightarrow> 'a poly" where |
|
617 |
[code del]: "Gcd_poly = Gcd_factorial" |
|
618 |
||
619 |
definition Lcm_poly :: "'a poly set \<Rightarrow> 'a poly" where |
|
620 |
[code del]: "Lcm_poly = Lcm_factorial" |
|
621 |
||
622 |
instance by standard (simp_all add: gcd_poly_def lcm_poly_def Gcd_poly_def Lcm_poly_def) |
|
623 |
||
624 |
end |
|
625 |
||
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
626 |
instance poly :: ("{factorial_ring_gcd, semiring_gcd_mult_normalize}") semiring_gcd_mult_normalize .. |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
627 |
|
76121 | 628 |
instance poly :: ("{field,factorial_ring_gcd,semiring_gcd_mult_normalize}") |
629 |
"normalization_euclidean_semiring" .. |
|
63498 | 630 |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
631 |
instance poly :: ("{field, normalization_euclidean_semiring, factorial_ring_gcd, |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
632 |
semiring_gcd_mult_normalize}") euclidean_ring_gcd |
66817 | 633 |
by (rule euclidean_ring_gcd_class.intro, rule factorial_euclidean_semiring_gcdI) standard |
63498 | 634 |
|
635 |
||
636 |
subsection \<open>Polynomial GCD\<close> |
|
637 |
||
638 |
lemma gcd_poly_decompose: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
639 |
fixes p q :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly" |
63498 | 640 |
shows "gcd p q = |
641 |
smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))" |
|
642 |
proof (rule sym, rule gcdI) |
|
643 |
have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd |
|
644 |
[:content p:] * primitive_part p" by (intro mult_dvd_mono) simp_all |
|
645 |
thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd p" |
|
646 |
by simp |
|
647 |
next |
|
648 |
have "[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q) dvd |
|
649 |
[:content q:] * primitive_part q" by (intro mult_dvd_mono) simp_all |
|
650 |
thus "smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q)) dvd q" |
|
651 |
by simp |
|
652 |
next |
|
653 |
fix d assume "d dvd p" "d dvd q" |
|
654 |
hence "[:content d:] * primitive_part d dvd |
|
655 |
[:gcd (content p) (content q):] * gcd (primitive_part p) (primitive_part q)" |
|
656 |
by (intro mult_dvd_mono) auto |
|
657 |
thus "d dvd smult (gcd (content p) (content q)) (gcd (primitive_part p) (primitive_part q))" |
|
658 |
by simp |
|
659 |
qed (auto simp: normalize_smult) |
|
660 |
||
661 |
||
662 |
lemma gcd_poly_pseudo_mod: |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
663 |
fixes p q :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly" |
63498 | 664 |
assumes nz: "q \<noteq> 0" and prim: "content p = 1" "content q = 1" |
665 |
shows "gcd p q = gcd q (primitive_part (pseudo_mod p q))" |
|
666 |
proof - |
|
667 |
define r s where "r = fst (pseudo_divmod p q)" and "s = snd (pseudo_divmod p q)" |
|
668 |
define a where "a = [:coeff q (degree q) ^ (Suc (degree p) - degree q):]" |
|
669 |
have [simp]: "primitive_part a = unit_factor a" |
|
670 |
by (simp add: a_def unit_factor_poly_def unit_factor_power monom_0) |
|
671 |
from nz have [simp]: "a \<noteq> 0" by (auto simp: a_def) |
|
672 |
||
673 |
have rs: "pseudo_divmod p q = (r, s)" by (simp add: r_def s_def) |
|
674 |
have "gcd (q * r + s) q = gcd q s" |
|
675 |
using gcd_add_mult[of q r s] by (simp add: gcd.commute add_ac mult_ac) |
|
676 |
with pseudo_divmod(1)[OF nz rs] |
|
677 |
have "gcd (p * a) q = gcd q s" by (simp add: a_def) |
|
678 |
also from prim have "gcd (p * a) q = gcd p q" |
|
679 |
by (subst gcd_poly_decompose) |
|
680 |
(auto simp: primitive_part_mult gcd_mult_unit1 primitive_part_prim |
|
681 |
simp del: mult_pCons_right ) |
|
682 |
also from prim have "gcd q s = gcd q (primitive_part s)" |
|
683 |
by (subst gcd_poly_decompose) (simp_all add: primitive_part_prim) |
|
684 |
also have "s = pseudo_mod p q" by (simp add: s_def pseudo_mod_def) |
|
685 |
finally show ?thesis . |
|
686 |
qed |
|
687 |
||
688 |
lemma degree_pseudo_mod_less: |
|
689 |
assumes "q \<noteq> 0" "pseudo_mod p q \<noteq> 0" |
|
690 |
shows "degree (pseudo_mod p q) < degree q" |
|
691 |
using pseudo_mod(2)[of q p] assms by auto |
|
692 |
||
693 |
function gcd_poly_code_aux :: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" where |
|
694 |
"gcd_poly_code_aux p q = |
|
695 |
(if q = 0 then normalize p else gcd_poly_code_aux q (primitive_part (pseudo_mod p q)))" |
|
696 |
by auto |
|
697 |
termination |
|
698 |
by (relation "measure ((\<lambda>p. if p = 0 then 0 else Suc (degree p)) \<circ> snd)") |
|
64164
38c407446400
separate type class for arbitrary quotient and remainder partitions
haftmann
parents:
63954
diff
changeset
|
699 |
(auto simp: degree_pseudo_mod_less) |
63498 | 700 |
|
701 |
declare gcd_poly_code_aux.simps [simp del] |
|
702 |
||
703 |
lemma gcd_poly_code_aux_correct: |
|
704 |
assumes "content p = 1" "q = 0 \<or> content q = 1" |
|
705 |
shows "gcd_poly_code_aux p q = gcd p q" |
|
706 |
using assms |
|
707 |
proof (induction p q rule: gcd_poly_code_aux.induct) |
|
708 |
case (1 p q) |
|
709 |
show ?case |
|
710 |
proof (cases "q = 0") |
|
711 |
case True |
|
712 |
thus ?thesis by (subst gcd_poly_code_aux.simps) auto |
|
713 |
next |
|
714 |
case False |
|
715 |
hence "gcd_poly_code_aux p q = gcd_poly_code_aux q (primitive_part (pseudo_mod p q))" |
|
716 |
by (subst gcd_poly_code_aux.simps) simp_all |
|
717 |
also from "1.prems" False |
|
718 |
have "primitive_part (pseudo_mod p q) = 0 \<or> |
|
719 |
content (primitive_part (pseudo_mod p q)) = 1" |
|
720 |
by (cases "pseudo_mod p q = 0") auto |
|
721 |
with "1.prems" False |
|
722 |
have "gcd_poly_code_aux q (primitive_part (pseudo_mod p q)) = |
|
723 |
gcd q (primitive_part (pseudo_mod p q))" |
|
724 |
by (intro 1) simp_all |
|
725 |
also from "1.prems" False |
|
726 |
have "\<dots> = gcd p q" by (intro gcd_poly_pseudo_mod [symmetric]) auto |
|
727 |
finally show ?thesis . |
|
728 |
qed |
|
729 |
qed |
|
730 |
||
731 |
definition gcd_poly_code |
|
732 |
:: "'a :: factorial_ring_gcd poly \<Rightarrow> 'a poly \<Rightarrow> 'a poly" |
|
733 |
where "gcd_poly_code p q = |
|
734 |
(if p = 0 then normalize q else if q = 0 then normalize p else |
|
735 |
smult (gcd (content p) (content q)) |
|
736 |
(gcd_poly_code_aux (primitive_part p) (primitive_part q)))" |
|
737 |
||
64591
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
738 |
lemma gcd_poly_code [code]: "gcd p q = gcd_poly_code p q" |
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
739 |
by (simp add: gcd_poly_code_def gcd_poly_code_aux_correct gcd_poly_decompose [symmetric]) |
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
740 |
|
63498 | 741 |
lemma lcm_poly_code [code]: |
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
742 |
fixes p q :: "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly" |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
743 |
shows "lcm p q = normalize (p * q div gcd p q)" |
64591
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
744 |
by (fact lcm_gcd) |
63498 | 745 |
|
71398
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
746 |
lemmas Gcd_poly_set_eq_fold [code] = |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
747 |
Gcd_set_eq_fold [where ?'a = "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"] |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
748 |
lemmas Lcm_poly_set_eq_fold [code] = |
e0237f2eb49d
Removed multiplicativity assumption from normalization_semidom
Manuel Eberl <eberlm@in.tum.de>
parents:
68790
diff
changeset
|
749 |
Lcm_set_eq_fold [where ?'a = "'a :: {factorial_ring_gcd,semiring_gcd_mult_normalize} poly"] |
64860 | 750 |
|
64591
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
751 |
text \<open>Example: |
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
752 |
@{lemma "Lcm {[:1, 2, 3:], [:2, 3, 4:]} = [:[:2:], [:7:], [:16:], [:17:], [:12 :: int:]:]" by eval} |
240a39af9ec4
restructured matter on polynomials and normalized fractions
haftmann
parents:
64267
diff
changeset
|
753 |
\<close> |
63498 | 754 |
|
63764 | 755 |
end |