src/HOL/Computational_Algebra/Squarefree.thy
author wenzelm
Tue, 03 Jan 2023 17:21:24 +0100
changeset 76887 d8cdddf7b9a5
parent 74543 ee039c11fb6f
permissions -rw-r--r--
avoid somewhat fragile Document.Node.Name.master_dir_path;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
66276
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     1
(*
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     2
  File:      HOL/Computational_Algebra/Squarefree.thy
74543
ee039c11fb6f updated email address
Manuel Eberl <manuel@pruvisto.org>
parents: 67399
diff changeset
     3
  Author:    Manuel Eberl <manuel@pruvisto.org>
66276
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     4
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     5
  Squarefreeness and decomposition of ring elements into square part and squarefree part
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     6
*)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     7
section \<open>Squarefreeness\<close>
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     8
theory Squarefree
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
     9
imports Primes
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    10
begin
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    11
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    12
(* TODO: Generalise to n-th powers *)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    13
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    14
definition squarefree :: "'a :: comm_monoid_mult \<Rightarrow> bool" where
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    15
  "squarefree n \<longleftrightarrow> (\<forall>x. x ^ 2 dvd n \<longrightarrow> x dvd 1)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    16
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    17
lemma squarefreeI: "(\<And>x. x ^ 2 dvd n \<Longrightarrow> x dvd 1) \<Longrightarrow> squarefree n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    18
  by (auto simp: squarefree_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    19
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    20
lemma squarefreeD: "squarefree n \<Longrightarrow> x ^ 2 dvd n \<Longrightarrow> x dvd 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    21
  by (auto simp: squarefree_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    22
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    23
lemma not_squarefreeI: "x ^ 2 dvd n \<Longrightarrow> \<not>x dvd 1 \<Longrightarrow> \<not>squarefree n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    24
  by (auto simp: squarefree_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    25
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    26
lemma not_squarefreeE [case_names square_dvd]: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    27
  "\<not>squarefree n \<Longrightarrow> (\<And>x. x ^ 2 dvd n \<Longrightarrow> \<not>x dvd 1 \<Longrightarrow> P) \<Longrightarrow> P"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    28
  by (auto simp: squarefree_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    29
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    30
lemma not_squarefree_0 [simp]: "\<not>squarefree (0 :: 'a :: comm_semiring_1)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    31
  by (rule not_squarefreeI[of 0]) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    32
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    33
lemma squarefree_factorial_semiring:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    34
  assumes "n \<noteq> 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    35
  shows   "squarefree (n :: 'a :: factorial_semiring) \<longleftrightarrow> (\<forall>p. prime p \<longrightarrow> \<not>p ^ 2 dvd n)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    36
  unfolding squarefree_def
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    37
proof safe
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    38
  assume *: "\<forall>p. prime p \<longrightarrow> \<not>p ^ 2 dvd n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    39
  fix x :: 'a assume x: "x ^ 2 dvd n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    40
  {
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    41
    assume "\<not>is_unit x"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    42
    moreover from assms and x have "x \<noteq> 0" by auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    43
    ultimately obtain p where "p dvd x" "prime p"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    44
      using prime_divisor_exists by blast
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    45
    with * have "\<not>p ^ 2 dvd n" by blast
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    46
    moreover from \<open>p dvd x\<close> have "p ^ 2 dvd x ^ 2" by (rule dvd_power_same)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    47
    ultimately have "\<not>x ^ 2 dvd n" by (blast dest: dvd_trans)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    48
    with x have False by contradiction
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    49
  }
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    50
  thus "is_unit x" by blast
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    51
qed auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    52
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    53
lemma squarefree_factorial_semiring':
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    54
  assumes "n \<noteq> 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    55
  shows   "squarefree (n :: 'a :: factorial_semiring) \<longleftrightarrow> 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    56
             (\<forall>p\<in>prime_factors n. multiplicity p n = 1)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    57
proof (subst squarefree_factorial_semiring [OF assms], safe)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    58
  fix p assume "\<forall>p\<in>#prime_factorization n. multiplicity p n = 1" "prime p" "p^2 dvd n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    59
  with assms show False
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    60
    by (cases "p dvd n")
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    61
       (auto simp: prime_factors_dvd power_dvd_iff_le_multiplicity not_dvd_imp_multiplicity_0)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    62
qed (auto intro!: multiplicity_eqI simp: power2_eq_square [symmetric])
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    63
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    64
lemma squarefree_factorial_semiring'':
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    65
  assumes "n \<noteq> 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    66
  shows   "squarefree (n :: 'a :: factorial_semiring) \<longleftrightarrow> 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    67
             (\<forall>p. prime p \<longrightarrow> multiplicity p n \<le> 1)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    68
  by (subst squarefree_factorial_semiring'[OF assms]) (auto simp: prime_factors_multiplicity)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    69
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    70
lemma squarefree_unit [simp]: "is_unit n \<Longrightarrow> squarefree n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    71
proof (rule squarefreeI) 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    72
  fix x assume "x^2 dvd n" "n dvd 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    73
  hence "is_unit (x^2)" by (rule dvd_unit_imp_unit)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    74
  thus "is_unit x" by (simp add: is_unit_power_iff)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    75
qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    76
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    77
lemma squarefree_1 [simp]: "squarefree (1 :: 'a :: algebraic_semidom)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    78
  by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    79
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    80
lemma squarefree_minus [simp]: "squarefree (-n :: 'a :: comm_ring_1) \<longleftrightarrow> squarefree n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    81
  by (simp add: squarefree_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    82
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    83
lemma squarefree_mono: "a dvd b \<Longrightarrow> squarefree b \<Longrightarrow> squarefree a"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    84
  by (auto simp: squarefree_def intro: dvd_trans)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    85
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    86
lemma squarefree_multD:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    87
  assumes "squarefree (a * b)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    88
  shows   "squarefree a" "squarefree b"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    89
  by (rule squarefree_mono[OF _ assms], simp)+
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    90
    
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    91
lemma squarefree_prime_elem: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    92
  assumes "prime_elem (p :: 'a :: factorial_semiring)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    93
  shows   "squarefree p"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    94
proof -
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    95
  from assms have "p \<noteq> 0" by auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    96
  show ?thesis
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    97
  proof (subst squarefree_factorial_semiring [OF \<open>p \<noteq> 0\<close>]; safe)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    98
    fix q assume *: "prime q" "q^2 dvd p"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
    99
    with assms have "multiplicity q p \<ge> 2" by (intro multiplicity_geI) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   100
    thus False using assms \<open>prime q\<close> prime_multiplicity_other[of q "normalize p"]
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   101
      by (cases "q = normalize p") simp_all
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   102
  qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   103
qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   104
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   105
lemma squarefree_prime: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   106
  assumes "prime (p :: 'a :: factorial_semiring)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   107
  shows   "squarefree p"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   108
  using assms by (intro squarefree_prime_elem) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   109
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   110
lemma squarefree_mult_coprime:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   111
  fixes a b :: "'a :: factorial_semiring_gcd"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   112
  assumes "coprime a b" "squarefree a" "squarefree b"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   113
  shows   "squarefree (a * b)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   114
proof -
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   115
  from assms have nz: "a * b \<noteq> 0" by auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   116
  show ?thesis unfolding squarefree_factorial_semiring'[OF nz]
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   117
  proof
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   118
    fix p assume p: "p \<in> prime_factors (a * b)"
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   119
    with nz have "prime p"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   120
      by (simp add: prime_factors_dvd)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   121
    have "\<not> (p dvd a \<and> p dvd b)"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   122
    proof
66276
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   123
      assume "p dvd a \<and> p dvd b"
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   124
      with \<open>coprime a b\<close> have "is_unit p"
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   125
        by (auto intro: coprime_common_divisor)
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   126
      with \<open>prime p\<close> show False
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   127
        by simp
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   128
    qed
66276
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   129
    moreover from p have "p dvd a \<or> p dvd b" using nz 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   130
      by (auto simp: prime_factors_dvd prime_dvd_mult_iff)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   131
    ultimately show "multiplicity p (a * b) = 1" using nz p assms(2,3)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   132
      by (auto simp: prime_elem_multiplicity_mult_distrib prime_factors_multiplicity
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   133
            not_dvd_imp_multiplicity_0 squarefree_factorial_semiring')
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   134
  qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   135
qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   136
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   137
lemma squarefree_prod_coprime:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   138
  fixes f :: "'a \<Rightarrow> 'b :: factorial_semiring_gcd"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   139
  assumes "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> coprime (f a) (f b)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   140
  assumes "\<And>a. a \<in> A \<Longrightarrow> squarefree (f a)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   141
  shows   "squarefree (prod f A)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   142
  using assms 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   143
  by (induction A rule: infinite_finite_induct) 
67051
e7e54a0b9197 dedicated definition for coprimality
haftmann
parents: 66276
diff changeset
   144
     (auto intro!: squarefree_mult_coprime prod_coprime_right)
66276
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   145
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   146
lemma squarefree_powerD: "m > 0 \<Longrightarrow> squarefree (n ^ m) \<Longrightarrow> squarefree n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   147
  by (cases m) (auto dest: squarefree_multD)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   148
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   149
lemma squarefree_power_iff: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   150
  "squarefree (n ^ m) \<longleftrightarrow> m = 0 \<or> is_unit n \<or> (squarefree n \<and> m = 1)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   151
proof safe
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   152
  assume "squarefree (n ^ m)" "m > 0" "\<not>is_unit n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   153
  show "m = 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   154
  proof (rule ccontr)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   155
    assume "m \<noteq> 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   156
    with \<open>m > 0\<close> have "n ^ 2 dvd n ^ m" by (intro le_imp_power_dvd) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   157
    from this and \<open>\<not>is_unit n\<close> have "\<not>squarefree (n ^ m)" by (rule not_squarefreeI)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   158
    with \<open>squarefree (n ^ m)\<close> show False by contradiction
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   159
  qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   160
qed (auto simp: is_unit_power_iff dest: squarefree_powerD)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   161
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   162
definition squarefree_nat :: "nat \<Rightarrow> bool" where
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   163
  [code_abbrev]: "squarefree_nat = squarefree"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   164
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   165
lemma squarefree_nat_code_naive [code]: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   166
  "squarefree_nat n \<longleftrightarrow> n \<noteq> 0 \<and> (\<forall>k\<in>{2..n}. \<not>k ^ 2 dvd n)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   167
proof safe
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   168
  assume *: "\<forall>k\<in>{2..n}. \<not> k\<^sup>2 dvd n" and n: "n > 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   169
  show "squarefree_nat n" unfolding squarefree_nat_def
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   170
  proof (rule squarefreeI)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   171
    fix k assume k: "k ^ 2 dvd n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   172
    have "k dvd n" by (rule dvd_trans[OF _ k]) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   173
    with n have "k \<le> n" by (intro dvd_imp_le)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   174
    with bspec[OF *, of k] k have "\<not>k > 1" by (intro notI) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   175
    moreover from k and n have "k \<noteq> 0" by (intro notI) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   176
    ultimately have "k = 1" by presburger
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   177
    thus "is_unit k" by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   178
  qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   179
qed (auto simp: squarefree_nat_def squarefree_def intro!: Nat.gr0I)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   180
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   181
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   182
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   183
definition square_part :: "'a :: factorial_semiring \<Rightarrow> 'a" where
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   184
  "square_part n = (if n = 0 then 0 else 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   185
     normalize (\<Prod>p\<in>prime_factors n. p ^ (multiplicity p n div 2)))"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   186
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   187
lemma square_part_nonzero: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   188
  "n \<noteq> 0 \<Longrightarrow> square_part n = normalize (\<Prod>p\<in>prime_factors n. p ^ (multiplicity p n div 2))"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   189
  by (simp add: square_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   190
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   191
lemma square_part_0 [simp]: "square_part 0 = 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   192
  by (simp add: square_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   193
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   194
lemma square_part_unit [simp]: "is_unit x \<Longrightarrow> square_part x = 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   195
  by (auto simp: square_part_def prime_factorization_unit)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   196
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   197
lemma square_part_1 [simp]: "square_part 1 = 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   198
  by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   199
    
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   200
lemma square_part_0_iff [simp]: "square_part n = 0 \<longleftrightarrow> n = 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   201
  by (simp add: square_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   202
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   203
lemma normalize_uminus [simp]: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   204
  "normalize (-x :: 'a :: {normalization_semidom, comm_ring_1}) = normalize x"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   205
  by (rule associatedI) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   206
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   207
lemma multiplicity_uminus_right [simp]:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   208
  "multiplicity (x :: 'a :: {factorial_semiring, comm_ring_1}) (-y) = multiplicity x y"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   209
proof -
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   210
  have "multiplicity x (-y) = multiplicity x (normalize (-y))"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   211
    by (rule multiplicity_normalize_right [symmetric])
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   212
  also have "\<dots> = multiplicity x y" by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   213
  finally show ?thesis .
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   214
qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   215
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   216
lemma multiplicity_uminus_left [simp]:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   217
  "multiplicity (-x :: 'a :: {factorial_semiring, comm_ring_1}) y = multiplicity x y"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   218
proof -
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   219
  have "multiplicity (-x) y = multiplicity (normalize (-x)) y"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   220
    by (rule multiplicity_normalize_left [symmetric])
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   221
  also have "\<dots> = multiplicity x y" by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   222
  finally show ?thesis .
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   223
qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   224
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   225
lemma prime_factorization_uminus [simp]:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   226
  "prime_factorization (-x :: 'a :: {factorial_semiring, comm_ring_1}) = prime_factorization x"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   227
  by (rule prime_factorization_cong) simp_all
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   228
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   229
lemma square_part_uminus [simp]: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   230
    "square_part (-x :: 'a :: {factorial_semiring, comm_ring_1}) = square_part x"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   231
  by (simp add: square_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   232
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   233
lemma prime_multiplicity_square_part:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   234
  assumes "prime p"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   235
  shows   "multiplicity p (square_part n) = multiplicity p n div 2"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   236
proof (cases "n = 0")
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   237
  case False
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   238
  thus ?thesis unfolding square_part_nonzero[OF False] multiplicity_normalize_right
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   239
    using finite_prime_divisors[of n] assms
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   240
    by (subst multiplicity_prod_prime_powers)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   241
       (auto simp: not_dvd_imp_multiplicity_0 prime_factors_dvd multiplicity_prod_prime_powers)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   242
qed auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   243
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   244
lemma square_part_square_dvd [simp, intro]: "square_part n ^ 2 dvd n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   245
proof (cases "n = 0")
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   246
  case False
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   247
  thus ?thesis
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   248
    by (intro multiplicity_le_imp_dvd) 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   249
       (auto simp: prime_multiplicity_square_part prime_elem_multiplicity_power_distrib)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   250
qed auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   251
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   252
lemma prime_multiplicity_le_imp_dvd:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   253
  assumes "x \<noteq> 0" "y \<noteq> 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   254
  shows   "x dvd y \<longleftrightarrow> (\<forall>p. prime p \<longrightarrow> multiplicity p x \<le> multiplicity p y)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   255
  using assms by (auto intro: multiplicity_le_imp_dvd dvd_imp_multiplicity_le)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   256
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   257
lemma dvd_square_part_iff: "x dvd square_part n \<longleftrightarrow> x ^ 2 dvd n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   258
proof (cases "x = 0"; cases "n = 0")
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   259
  assume nz: "x \<noteq> 0" "n \<noteq> 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   260
  thus ?thesis
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   261
    by (subst (1 2) prime_multiplicity_le_imp_dvd)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   262
       (auto simp: prime_multiplicity_square_part prime_elem_multiplicity_power_distrib)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   263
qed auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   264
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   265
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   266
definition squarefree_part :: "'a :: factorial_semiring \<Rightarrow> 'a" where
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   267
  "squarefree_part n = (if n = 0 then 1 else n div square_part n ^ 2)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   268
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   269
lemma squarefree_part_0 [simp]: "squarefree_part 0 = 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   270
  by (simp add: squarefree_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   271
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   272
lemma squarefree_part_unit [simp]: "is_unit n \<Longrightarrow> squarefree_part n = n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   273
  by (auto simp add: squarefree_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   274
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   275
lemma squarefree_part_1 [simp]: "squarefree_part 1 = 1"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   276
  by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   277
    
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   278
lemma squarefree_decompose: "n = squarefree_part n * square_part n ^ 2"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   279
  by (simp add: squarefree_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   280
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   281
lemma squarefree_part_uminus [simp]: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   282
  assumes "x \<noteq> 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   283
  shows   "squarefree_part (-x :: 'a :: {factorial_semiring, comm_ring_1}) = -squarefree_part x"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   284
proof -
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   285
  have "-(squarefree_part x * square_part x ^ 2) = -x" 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   286
    by (subst squarefree_decompose [symmetric]) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   287
  also have "\<dots> = squarefree_part (-x) * square_part (-x) ^ 2" by (rule squarefree_decompose)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   288
  finally have "(- squarefree_part x) * square_part x ^ 2 = 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   289
                  squarefree_part (-x) * square_part x ^ 2" by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   290
  thus ?thesis using assms by (subst (asm) mult_right_cancel) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   291
qed
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   292
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   293
lemma squarefree_part_nonzero [simp]: "squarefree_part n \<noteq> 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   294
  using squarefree_decompose[of n] by (cases "n \<noteq> 0") auto    
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   295
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   296
lemma prime_multiplicity_squarefree_part:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   297
  assumes "prime p"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   298
  shows   "multiplicity p (squarefree_part n) = multiplicity p n mod 2"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   299
proof (cases "n = 0")
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   300
  case False
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   301
  hence n: "n \<noteq> 0" by auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   302
  have "multiplicity p n mod 2 + 2 * (multiplicity p n div 2) = multiplicity p n" by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   303
  also have "\<dots> = multiplicity p (squarefree_part n * square_part n ^ 2)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   304
    by (subst squarefree_decompose[of n]) simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   305
  also from assms n have "\<dots> = multiplicity p (squarefree_part n) + 2 * (multiplicity p n div 2)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   306
    by (subst prime_elem_multiplicity_mult_distrib) 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   307
       (auto simp: prime_elem_multiplicity_power_distrib prime_multiplicity_square_part)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   308
  finally show ?thesis by (subst (asm) add_right_cancel) simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   309
qed auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   310
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   311
lemma prime_multiplicity_squarefree_part_le_Suc_0 [intro]:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   312
  assumes "prime p"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   313
  shows   "multiplicity p (squarefree_part n) \<le> Suc 0"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   314
  by (simp add: assms prime_multiplicity_squarefree_part)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   315
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   316
lemma squarefree_squarefree_part [simp, intro]: "squarefree (squarefree_part n)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   317
  by (subst squarefree_factorial_semiring'')
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   318
     (auto simp: prime_multiplicity_squarefree_part_le_Suc_0)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   319
  
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   320
lemma squarefree_decomposition_unique:
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   321
  assumes "square_part m = square_part n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   322
  assumes "squarefree_part m = squarefree_part n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   323
  shows   "m = n"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   324
  by (subst (1 2) squarefree_decompose) (simp_all add: assms)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   325
    
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   326
lemma normalize_square_part [simp]: "normalize (square_part x) = square_part x"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   327
  by (simp add: square_part_def)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   328
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   329
lemma square_part_even_power': "square_part (x ^ (2 * n)) = normalize (x ^ n)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   330
proof (cases "x = 0")
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   331
  case False
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   332
  have "normalize (square_part (x ^ (2 * n))) = normalize (x ^ n)" using False
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   333
    by (intro multiplicity_eq_imp_eq)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   334
       (auto simp: prime_multiplicity_square_part prime_elem_multiplicity_power_distrib)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   335
  thus ?thesis by simp
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   336
qed (auto simp: power_0_left)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   337
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   338
lemma square_part_even_power: "even n \<Longrightarrow> square_part (x ^ n) = normalize (x ^ (n div 2))"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   339
  by (subst square_part_even_power' [symmetric]) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   340
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   341
lemma square_part_odd_power': "square_part (x ^ (Suc (2 * n))) = normalize (x ^ n * square_part x)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   342
proof (cases "x = 0")
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   343
  case False
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   344
  have "normalize (square_part (x ^ (Suc (2 * n)))) = normalize (square_part x * x ^ n)" 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   345
  proof (rule multiplicity_eq_imp_eq, goal_cases)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   346
    case (3 p)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   347
    hence "multiplicity p (square_part (x ^ Suc (2 * n))) = 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   348
             (2 * (n * multiplicity p x) + multiplicity p x) div 2"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   349
      by (subst prime_multiplicity_square_part)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   350
         (auto simp: False prime_elem_multiplicity_power_distrib algebra_simps simp del: power_Suc)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   351
    also from 3 False have "\<dots> = multiplicity p (square_part x * x ^ n)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   352
      by (subst div_mult_self4) (auto simp: prime_multiplicity_square_part 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   353
            prime_elem_multiplicity_mult_distrib prime_elem_multiplicity_power_distrib)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   354
    finally show ?case .
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   355
  qed (insert False, auto)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   356
  thus ?thesis by (simp add: mult_ac)
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   357
qed auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   358
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   359
lemma square_part_odd_power: 
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   360
  "odd n \<Longrightarrow> square_part (x ^ n) = normalize (x ^ (n div 2) * square_part x)"
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   361
  by (subst square_part_odd_power' [symmetric]) auto
acc3b7dd0b21 More material on powers for HOL-Computational_Algebra/HOL-Number_Theory
eberlm <eberlm@in.tum.de>
parents:
diff changeset
   362
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67051
diff changeset
   363
end