author | wenzelm |
Wed, 07 Feb 2001 20:57:03 +0100 | |
changeset 11083 | d8fda557e476 |
parent 10832 | e33b47e4246d |
child 11138 | bdfb9ec76a0a |
permissions | -rw-r--r-- |
1465 | 1 |
(* Title: HOL/mono.ML |
923 | 2 |
ID: $Id$ |
1465 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
923 | 4 |
Copyright 1991 University of Cambridge |
5 |
||
6 |
Monotonicity of various operations |
|
7 |
*) |
|
8 |
||
10832 | 9 |
Goal "A<=B ==> f`A <= f`B"; |
2922 | 10 |
by (Blast_tac 1); |
923 | 11 |
qed "image_mono"; |
12 |
||
5316 | 13 |
Goal "A<=B ==> Pow(A) <= Pow(B)"; |
2922 | 14 |
by (Blast_tac 1); |
923 | 15 |
qed "Pow_mono"; |
16 |
||
5316 | 17 |
Goal "A<=B ==> Union(A) <= Union(B)"; |
2922 | 18 |
by (Blast_tac 1); |
923 | 19 |
qed "Union_mono"; |
20 |
||
5316 | 21 |
Goal "B<=A ==> Inter(A) <= Inter(B)"; |
2922 | 22 |
by (Blast_tac 1); |
923 | 23 |
qed "Inter_anti_mono"; |
24 |
||
5316 | 25 |
val prems = Goal |
923 | 26 |
"[| A<=B; !!x. x:A ==> f(x)<=g(x) |] ==> \ |
27 |
\ (UN x:A. f(x)) <= (UN x:B. g(x))"; |
|
4089 | 28 |
by (blast_tac (claset() addIs (prems RL [subsetD])) 1); |
923 | 29 |
qed "UN_mono"; |
30 |
||
4159
4aff9b7e5597
UNIV now a constant; UNION1, INTER1 now translations and no longer have
paulson
parents:
4089
diff
changeset
|
31 |
(*The last inclusion is POSITIVE! *) |
5316 | 32 |
val prems = Goal |
923 | 33 |
"[| B<=A; !!x. x:A ==> f(x)<=g(x) |] ==> \ |
34 |
\ (INT x:A. f(x)) <= (INT x:A. g(x))"; |
|
4089 | 35 |
by (blast_tac (claset() addIs (prems RL [subsetD])) 1); |
923 | 36 |
qed "INT_anti_mono"; |
37 |
||
5316 | 38 |
Goal "C<=D ==> insert a C <= insert a D"; |
2922 | 39 |
by (Blast_tac 1); |
1849 | 40 |
qed "insert_mono"; |
41 |
||
5316 | 42 |
Goal "[| A<=C; B<=D |] ==> A Un B <= C Un D"; |
2922 | 43 |
by (Blast_tac 1); |
923 | 44 |
qed "Un_mono"; |
45 |
||
5316 | 46 |
Goal "[| A<=C; B<=D |] ==> A Int B <= C Int D"; |
2922 | 47 |
by (Blast_tac 1); |
923 | 48 |
qed "Int_mono"; |
49 |
||
5316 | 50 |
Goal "!!A::'a set. [| A<=C; D<=B |] ==> A-B <= C-D"; |
2922 | 51 |
by (Blast_tac 1); |
923 | 52 |
qed "Diff_mono"; |
53 |
||
5490 | 54 |
Goal "!!A::'a set. A <= B ==> -B <= -A"; |
2922 | 55 |
by (Blast_tac 1); |
923 | 56 |
qed "Compl_anti_mono"; |
57 |
||
58 |
(** Monotonicity of implications. For inductive definitions **) |
|
59 |
||
5316 | 60 |
Goal "A<=B ==> x:A --> x:B"; |
923 | 61 |
by (rtac impI 1); |
62 |
by (etac subsetD 1); |
|
63 |
by (assume_tac 1); |
|
64 |
qed "in_mono"; |
|
65 |
||
5316 | 66 |
Goal "[| P1-->Q1; P2-->Q2 |] ==> (P1&P2) --> (Q1&Q2)"; |
2922 | 67 |
by (Blast_tac 1); |
923 | 68 |
qed "conj_mono"; |
69 |
||
5316 | 70 |
Goal "[| P1-->Q1; P2-->Q2 |] ==> (P1|P2) --> (Q1|Q2)"; |
2922 | 71 |
by (Blast_tac 1); |
923 | 72 |
qed "disj_mono"; |
73 |
||
5316 | 74 |
Goal "[| Q1-->P1; P2-->Q2 |] ==> (P1-->P2)-->(Q1-->Q2)"; |
2922 | 75 |
by (Blast_tac 1); |
923 | 76 |
qed "imp_mono"; |
77 |
||
5316 | 78 |
Goal "P-->P"; |
923 | 79 |
by (rtac impI 1); |
80 |
by (assume_tac 1); |
|
81 |
qed "imp_refl"; |
|
82 |
||
5316 | 83 |
val [PQimp] = Goal |
3842 | 84 |
"[| !!x. P(x) --> Q(x) |] ==> (EX x. P(x)) --> (EX x. Q(x))"; |
4089 | 85 |
by (blast_tac (claset() addIs [PQimp RS mp]) 1); |
923 | 86 |
qed "ex_mono"; |
87 |
||
5316 | 88 |
val [PQimp] = Goal |
3842 | 89 |
"[| !!x. P(x) --> Q(x) |] ==> (ALL x. P(x)) --> (ALL x. Q(x))"; |
4089 | 90 |
by (blast_tac (claset() addIs [PQimp RS mp]) 1); |
923 | 91 |
qed "all_mono"; |
92 |
||
5316 | 93 |
val [PQimp] = Goal |
923 | 94 |
"[| !!x. P(x) --> Q(x) |] ==> Collect(P) <= Collect(Q)"; |
4089 | 95 |
by (blast_tac (claset() addIs [PQimp RS mp]) 1); |
923 | 96 |
qed "Collect_mono"; |
97 |
||
5316 | 98 |
val [subs,PQimp] = Goal |
923 | 99 |
"[| A<=B; !!x. x:A ==> P(x) --> Q(x) \ |
100 |
\ |] ==> A Int Collect(P) <= B Int Collect(Q)"; |
|
4089 | 101 |
by (blast_tac (claset() addIs [subs RS subsetD, PQimp RS mp]) 1); |
923 | 102 |
qed "Int_Collect_mono"; |
103 |
||
104 |
val basic_monos = [subset_refl, imp_refl, disj_mono, conj_mono, |
|
1515 | 105 |
ex_mono, Collect_mono, in_mono]; |
923 | 106 |
|
7109 | 107 |
(* Courtesy of Stephan Merz *) |
7064 | 108 |
Goalw [Least_def,mono_def] |
109 |
"[| mono (f::'a::order => 'b::order); ? x:S. ! y:S. x <= y |] \ |
|
10832 | 110 |
\ ==> (LEAST y. y : f`S) = f(LEAST x. x : S)"; |
7064 | 111 |
by (etac bexE 1); |
9969 | 112 |
by (rtac someI2 1); |
7064 | 113 |
by (Force_tac 1); |
9969 | 114 |
by (rtac some_equality 1); |
7064 | 115 |
by (Force_tac 1); |
116 |
by (force_tac (claset() addSIs [order_antisym], simpset()) 1); |
|
117 |
qed "Least_mono"; |
|
7713 | 118 |
|
119 |
Goal "[| a = b; c = d; b --> d |] ==> a --> c"; |
|
120 |
by (Fast_tac 1); |
|
121 |
qed "eq_to_mono"; |
|
122 |
||
123 |
Goal "[| a = b; c = d; ~ b --> ~ d |] ==> ~ a --> ~ c"; |
|
124 |
by (Fast_tac 1); |
|
125 |
qed "eq_to_mono2"; |