27468
|
1 |
(* Title : NatStar.thy
|
|
2 |
Author : Jacques D. Fleuriot
|
|
3 |
Copyright : 1998 University of Cambridge
|
|
4 |
|
|
5 |
Converted to Isar and polished by lcp
|
|
6 |
*)
|
|
7 |
|
|
8 |
header{*Star-transforms for the Hypernaturals*}
|
|
9 |
|
|
10 |
theory NatStar
|
|
11 |
imports Star
|
|
12 |
begin
|
|
13 |
|
|
14 |
lemma star_n_eq_starfun_whn: "star_n X = ( *f* X) whn"
|
|
15 |
by (simp add: hypnat_omega_def starfun_def star_of_def Ifun_star_n)
|
|
16 |
|
|
17 |
lemma starset_n_Un: "*sn* (%n. (A n) Un (B n)) = *sn* A Un *sn* B"
|
|
18 |
apply (simp add: starset_n_def star_n_eq_starfun_whn Un_def)
|
|
19 |
apply (rule_tac x=whn in spec, transfer, simp)
|
|
20 |
done
|
|
21 |
|
|
22 |
lemma InternalSets_Un:
|
|
23 |
"[| X \<in> InternalSets; Y \<in> InternalSets |]
|
|
24 |
==> (X Un Y) \<in> InternalSets"
|
|
25 |
by (auto simp add: InternalSets_def starset_n_Un [symmetric])
|
|
26 |
|
|
27 |
lemma starset_n_Int:
|
|
28 |
"*sn* (%n. (A n) Int (B n)) = *sn* A Int *sn* B"
|
|
29 |
apply (simp add: starset_n_def star_n_eq_starfun_whn Int_def)
|
|
30 |
apply (rule_tac x=whn in spec, transfer, simp)
|
|
31 |
done
|
|
32 |
|
|
33 |
lemma InternalSets_Int:
|
|
34 |
"[| X \<in> InternalSets; Y \<in> InternalSets |]
|
|
35 |
==> (X Int Y) \<in> InternalSets"
|
|
36 |
by (auto simp add: InternalSets_def starset_n_Int [symmetric])
|
|
37 |
|
|
38 |
lemma starset_n_Compl: "*sn* ((%n. - A n)) = -( *sn* A)"
|
|
39 |
apply (simp add: starset_n_def star_n_eq_starfun_whn Compl_eq)
|
|
40 |
apply (rule_tac x=whn in spec, transfer, simp)
|
|
41 |
done
|
|
42 |
|
|
43 |
lemma InternalSets_Compl: "X \<in> InternalSets ==> -X \<in> InternalSets"
|
|
44 |
by (auto simp add: InternalSets_def starset_n_Compl [symmetric])
|
|
45 |
|
|
46 |
lemma starset_n_diff: "*sn* (%n. (A n) - (B n)) = *sn* A - *sn* B"
|
|
47 |
apply (simp add: starset_n_def star_n_eq_starfun_whn set_diff_eq)
|
|
48 |
apply (rule_tac x=whn in spec, transfer, simp)
|
|
49 |
done
|
|
50 |
|
|
51 |
lemma InternalSets_diff:
|
|
52 |
"[| X \<in> InternalSets; Y \<in> InternalSets |]
|
|
53 |
==> (X - Y) \<in> InternalSets"
|
|
54 |
by (auto simp add: InternalSets_def starset_n_diff [symmetric])
|
|
55 |
|
|
56 |
lemma NatStar_SHNat_subset: "Nats \<le> *s* (UNIV:: nat set)"
|
|
57 |
by simp
|
|
58 |
|
|
59 |
lemma NatStar_hypreal_of_real_Int:
|
|
60 |
"*s* X Int Nats = hypnat_of_nat ` X"
|
|
61 |
by (auto simp add: SHNat_eq)
|
|
62 |
|
|
63 |
lemma starset_starset_n_eq: "*s* X = *sn* (%n. X)"
|
|
64 |
by (simp add: starset_n_starset)
|
|
65 |
|
|
66 |
lemma InternalSets_starset_n [simp]: "( *s* X) \<in> InternalSets"
|
|
67 |
by (auto simp add: InternalSets_def starset_starset_n_eq)
|
|
68 |
|
|
69 |
lemma InternalSets_UNIV_diff:
|
|
70 |
"X \<in> InternalSets ==> UNIV - X \<in> InternalSets"
|
|
71 |
apply (subgoal_tac "UNIV - X = - X")
|
|
72 |
by (auto intro: InternalSets_Compl)
|
|
73 |
|
|
74 |
|
|
75 |
subsection{*Nonstandard Extensions of Functions*}
|
|
76 |
|
|
77 |
text{* Example of transfer of a property from reals to hyperreals
|
|
78 |
--- used for limit comparison of sequences*}
|
|
79 |
|
|
80 |
lemma starfun_le_mono:
|
|
81 |
"\<forall>n. N \<le> n --> f n \<le> g n
|
|
82 |
==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n \<le> ( *f* g) n"
|
|
83 |
by transfer
|
|
84 |
|
|
85 |
(*****----- and another -----*****)
|
|
86 |
lemma starfun_less_mono:
|
|
87 |
"\<forall>n. N \<le> n --> f n < g n
|
|
88 |
==> \<forall>n. hypnat_of_nat N \<le> n --> ( *f* f) n < ( *f* g) n"
|
|
89 |
by transfer
|
|
90 |
|
|
91 |
text{*Nonstandard extension when we increment the argument by one*}
|
|
92 |
|
|
93 |
lemma starfun_shift_one:
|
|
94 |
"!!N. ( *f* (%n. f (Suc n))) N = ( *f* f) (N + (1::hypnat))"
|
|
95 |
by (transfer, simp)
|
|
96 |
|
|
97 |
text{*Nonstandard extension with absolute value*}
|
|
98 |
|
|
99 |
lemma starfun_abs: "!!N. ( *f* (%n. abs (f n))) N = abs(( *f* f) N)"
|
|
100 |
by (transfer, rule refl)
|
|
101 |
|
|
102 |
text{*The hyperpow function as a nonstandard extension of realpow*}
|
|
103 |
|
|
104 |
lemma starfun_pow: "!!N. ( *f* (%n. r ^ n)) N = (hypreal_of_real r) pow N"
|
|
105 |
by (transfer, rule refl)
|
|
106 |
|
|
107 |
lemma starfun_pow2:
|
|
108 |
"!!N. ( *f* (%n. (X n) ^ m)) N = ( *f* X) N pow hypnat_of_nat m"
|
|
109 |
by (transfer, rule refl)
|
|
110 |
|
|
111 |
lemma starfun_pow3: "!!R. ( *f* (%r. r ^ n)) R = (R) pow hypnat_of_nat n"
|
|
112 |
by (transfer, rule refl)
|
|
113 |
|
|
114 |
text{*The @{term hypreal_of_hypnat} function as a nonstandard extension of
|
|
115 |
@{term real_of_nat} *}
|
|
116 |
|
|
117 |
lemma starfunNat_real_of_nat: "( *f* real) = hypreal_of_hypnat"
|
|
118 |
by transfer (simp add: expand_fun_eq real_of_nat_def)
|
|
119 |
|
|
120 |
lemma starfun_inverse_real_of_nat_eq:
|
|
121 |
"N \<in> HNatInfinite
|
|
122 |
==> ( *f* (%x::nat. inverse(real x))) N = inverse(hypreal_of_hypnat N)"
|
|
123 |
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
|
|
124 |
apply (subgoal_tac "hypreal_of_hypnat N ~= 0")
|
|
125 |
apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat starfun_inverse_inverse)
|
|
126 |
done
|
|
127 |
|
|
128 |
text{*Internal functions - some redundancy with *f* now*}
|
|
129 |
|
|
130 |
lemma starfun_n: "( *fn* f) (star_n X) = star_n (%n. f n (X n))"
|
|
131 |
by (simp add: starfun_n_def Ifun_star_n)
|
|
132 |
|
|
133 |
text{*Multiplication: @{text "( *fn) x ( *gn) = *(fn x gn)"}*}
|
|
134 |
|
|
135 |
lemma starfun_n_mult:
|
|
136 |
"( *fn* f) z * ( *fn* g) z = ( *fn* (% i x. f i x * g i x)) z"
|
|
137 |
apply (cases z)
|
|
138 |
apply (simp add: starfun_n star_n_mult)
|
|
139 |
done
|
|
140 |
|
|
141 |
text{*Addition: @{text "( *fn) + ( *gn) = *(fn + gn)"}*}
|
|
142 |
|
|
143 |
lemma starfun_n_add:
|
|
144 |
"( *fn* f) z + ( *fn* g) z = ( *fn* (%i x. f i x + g i x)) z"
|
|
145 |
apply (cases z)
|
|
146 |
apply (simp add: starfun_n star_n_add)
|
|
147 |
done
|
|
148 |
|
|
149 |
text{*Subtraction: @{text "( *fn) - ( *gn) = *(fn + - gn)"}*}
|
|
150 |
|
|
151 |
lemma starfun_n_add_minus:
|
|
152 |
"( *fn* f) z + -( *fn* g) z = ( *fn* (%i x. f i x + -g i x)) z"
|
|
153 |
apply (cases z)
|
|
154 |
apply (simp add: starfun_n star_n_minus star_n_add)
|
|
155 |
done
|
|
156 |
|
|
157 |
|
|
158 |
text{*Composition: @{text "( *fn) o ( *gn) = *(fn o gn)"}*}
|
|
159 |
|
|
160 |
lemma starfun_n_const_fun [simp]:
|
|
161 |
"( *fn* (%i x. k)) z = star_of k"
|
|
162 |
apply (cases z)
|
|
163 |
apply (simp add: starfun_n star_of_def)
|
|
164 |
done
|
|
165 |
|
|
166 |
lemma starfun_n_minus: "- ( *fn* f) x = ( *fn* (%i x. - (f i) x)) x"
|
|
167 |
apply (cases x)
|
|
168 |
apply (simp add: starfun_n star_n_minus)
|
|
169 |
done
|
|
170 |
|
|
171 |
lemma starfun_n_eq [simp]:
|
|
172 |
"( *fn* f) (star_of n) = star_n (%i. f i n)"
|
|
173 |
by (simp add: starfun_n star_of_def)
|
|
174 |
|
|
175 |
lemma starfun_eq_iff: "(( *f* f) = ( *f* g)) = (f = g)"
|
|
176 |
by (transfer, rule refl)
|
|
177 |
|
|
178 |
lemma starfunNat_inverse_real_of_nat_Infinitesimal [simp]:
|
|
179 |
"N \<in> HNatInfinite ==> ( *f* (%x. inverse (real x))) N \<in> Infinitesimal"
|
|
180 |
apply (rule_tac f1 = inverse in starfun_o2 [THEN subst])
|
|
181 |
apply (subgoal_tac "hypreal_of_hypnat N ~= 0")
|
|
182 |
apply (simp_all add: zero_less_HNatInfinite starfunNat_real_of_nat)
|
|
183 |
done
|
|
184 |
|
|
185 |
|
|
186 |
subsection{*Nonstandard Characterization of Induction*}
|
|
187 |
|
|
188 |
lemma hypnat_induct_obj:
|
|
189 |
"!!n. (( *p* P) (0::hypnat) &
|
|
190 |
(\<forall>n. ( *p* P)(n) --> ( *p* P)(n + 1)))
|
|
191 |
--> ( *p* P)(n)"
|
|
192 |
by (transfer, induct_tac n, auto)
|
|
193 |
|
|
194 |
lemma hypnat_induct:
|
|
195 |
"!!n. [| ( *p* P) (0::hypnat);
|
|
196 |
!!n. ( *p* P)(n) ==> ( *p* P)(n + 1)|]
|
|
197 |
==> ( *p* P)(n)"
|
|
198 |
by (transfer, induct_tac n, auto)
|
|
199 |
|
|
200 |
lemma starP2_eq_iff: "( *p2* (op =)) = (op =)"
|
|
201 |
by transfer (rule refl)
|
|
202 |
|
|
203 |
lemma starP2_eq_iff2: "( *p2* (%x y. x = y)) X Y = (X = Y)"
|
|
204 |
by (simp add: starP2_eq_iff)
|
|
205 |
|
|
206 |
lemma nonempty_nat_set_Least_mem:
|
|
207 |
"c \<in> (S :: nat set) ==> (LEAST n. n \<in> S) \<in> S"
|
|
208 |
by (erule LeastI)
|
|
209 |
|
|
210 |
lemma nonempty_set_star_has_least:
|
|
211 |
"!!S::nat set star. Iset S \<noteq> {} ==> \<exists>n \<in> Iset S. \<forall>m \<in> Iset S. n \<le> m"
|
|
212 |
apply (transfer empty_def)
|
|
213 |
apply (rule_tac x="LEAST n. n \<in> S" in bexI)
|
|
214 |
apply (simp add: Least_le)
|
|
215 |
apply (rule LeastI_ex, auto)
|
|
216 |
done
|
|
217 |
|
|
218 |
lemma nonempty_InternalNatSet_has_least:
|
|
219 |
"[| (S::hypnat set) \<in> InternalSets; S \<noteq> {} |] ==> \<exists>n \<in> S. \<forall>m \<in> S. n \<le> m"
|
|
220 |
apply (clarsimp simp add: InternalSets_def starset_n_def)
|
|
221 |
apply (erule nonempty_set_star_has_least)
|
|
222 |
done
|
|
223 |
|
|
224 |
text{* Goldblatt page 129 Thm 11.3.2*}
|
|
225 |
lemma internal_induct_lemma:
|
|
226 |
"!!X::nat set star. [| (0::hypnat) \<in> Iset X; \<forall>n. n \<in> Iset X --> n + 1 \<in> Iset X |]
|
|
227 |
==> Iset X = (UNIV:: hypnat set)"
|
|
228 |
apply (transfer UNIV_def)
|
|
229 |
apply (rule equalityI [OF subset_UNIV subsetI])
|
|
230 |
apply (induct_tac x, auto)
|
|
231 |
done
|
|
232 |
|
|
233 |
lemma internal_induct:
|
|
234 |
"[| X \<in> InternalSets; (0::hypnat) \<in> X; \<forall>n. n \<in> X --> n + 1 \<in> X |]
|
|
235 |
==> X = (UNIV:: hypnat set)"
|
|
236 |
apply (clarsimp simp add: InternalSets_def starset_n_def)
|
|
237 |
apply (erule (1) internal_induct_lemma)
|
|
238 |
done
|
|
239 |
|
|
240 |
|
|
241 |
end
|