author | immler |
Mon, 26 Feb 2018 09:58:47 +0100 | |
changeset 67728 | d97a28a006f9 |
parent 67443 | 3abf6a722518 |
child 68780 | 54fdc8bc73a3 |
permissions | -rw-r--r-- |
42151 | 1 |
(* Title: HOL/HOLCF/Cont.thy |
1479 | 2 |
Author: Franz Regensburger |
35794 | 3 |
Author: Brian Huffman |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
4 |
*) |
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
5 |
|
62175 | 6 |
section \<open>Continuity and monotonicity\<close> |
15577 | 7 |
|
8 |
theory Cont |
|
67312 | 9 |
imports Pcpo |
15577 | 10 |
begin |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
11 |
|
62175 | 12 |
text \<open> |
15588
14e3228f18cc
arranged for document generation, cleaned up some proofs
huffman
parents:
15577
diff
changeset
|
13 |
Now we change the default class! Form now on all untyped type variables are |
3323
194ae2e0c193
eliminated the constant less by the introduction of the axclass sq_ord
slotosch
parents:
2838
diff
changeset
|
14 |
of default class po |
62175 | 15 |
\<close> |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
16 |
|
36452 | 17 |
default_sort po |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
18 |
|
62175 | 19 |
subsection \<open>Definitions\<close> |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
20 |
|
67443
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents:
67312
diff
changeset
|
21 |
definition monofun :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" \<comment> \<open>monotonicity\<close> |
67312 | 22 |
where "monofun f \<longleftrightarrow> (\<forall>x y. x \<sqsubseteq> y \<longrightarrow> f x \<sqsubseteq> f y)" |
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
23 |
|
67312 | 24 |
definition cont :: "('a::cpo \<Rightarrow> 'b::cpo) \<Rightarrow> bool" |
25 |
where "cont f = (\<forall>Y. chain Y \<longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i))" |
|
26 |
||
27 |
lemma contI: "(\<And>Y. chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)) \<Longrightarrow> cont f" |
|
28 |
by (simp add: cont_def) |
|
15565 | 29 |
|
67312 | 30 |
lemma contE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)" |
31 |
by (simp add: cont_def) |
|
15565 | 32 |
|
67312 | 33 |
lemma monofunI: "(\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y) \<Longrightarrow> monofun f" |
34 |
by (simp add: monofun_def) |
|
15565 | 35 |
|
67312 | 36 |
lemma monofunE: "monofun f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y" |
37 |
by (simp add: monofun_def) |
|
15565 | 38 |
|
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
39 |
|
62175 | 40 |
subsection \<open>Equivalence of alternate definition\<close> |
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
41 |
|
62175 | 42 |
text \<open>monotone functions map chains to chains\<close> |
15565 | 43 |
|
67312 | 44 |
lemma ch2ch_monofun: "monofun f \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. f (Y i))" |
45 |
apply (rule chainI) |
|
46 |
apply (erule monofunE) |
|
47 |
apply (erule chainE) |
|
48 |
done |
|
15565 | 49 |
|
62175 | 50 |
text \<open>monotone functions map upper bound to upper bounds\<close> |
15565 | 51 |
|
67312 | 52 |
lemma ub2ub_monofun: "monofun f \<Longrightarrow> range Y <| u \<Longrightarrow> range (\<lambda>i. f (Y i)) <| f u" |
53 |
apply (rule ub_rangeI) |
|
54 |
apply (erule monofunE) |
|
55 |
apply (erule ub_rangeD) |
|
56 |
done |
|
15565 | 57 |
|
62175 | 58 |
text \<open>a lemma about binary chains\<close> |
15565 | 59 |
|
67312 | 60 |
lemma binchain_cont: "cont f \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. f (if i = 0 then x else y)) <<| f y" |
61 |
apply (subgoal_tac "f (\<Squnion>i::nat. if i = 0 then x else y) = f y") |
|
62 |
apply (erule subst) |
|
63 |
apply (erule contE) |
|
64 |
apply (erule bin_chain) |
|
65 |
apply (rule_tac f=f in arg_cong) |
|
66 |
apply (erule is_lub_bin_chain [THEN lub_eqI]) |
|
67 |
done |
|
15565 | 68 |
|
62175 | 69 |
text \<open>continuity implies monotonicity\<close> |
15565 | 70 |
|
16204
5dd79d3f0105
renamed theorems monofun, contlub, cont to monofun_def, etc.; changed intro/elim rules for these predicates into more useful rule_format; removed all MF2 lemmas (Pcpo.thy has more general versions now); cleaned up many proofs.
huffman
parents:
16096
diff
changeset
|
71 |
lemma cont2mono: "cont f \<Longrightarrow> monofun f" |
67312 | 72 |
apply (rule monofunI) |
73 |
apply (drule (1) binchain_cont) |
|
74 |
apply (drule_tac i=0 in is_lub_rangeD1) |
|
75 |
apply simp |
|
76 |
done |
|
15565 | 77 |
|
29532 | 78 |
lemmas cont2monofunE = cont2mono [THEN monofunE] |
79 |
||
16737 | 80 |
lemmas ch2ch_cont = cont2mono [THEN ch2ch_monofun] |
81 |
||
62175 | 82 |
text \<open>continuity implies preservation of lubs\<close> |
15565 | 83 |
|
67312 | 84 |
lemma cont2contlubE: "cont f \<Longrightarrow> chain Y \<Longrightarrow> f (\<Squnion>i. Y i) = (\<Squnion>i. f (Y i))" |
85 |
apply (rule lub_eqI [symmetric]) |
|
86 |
apply (erule (1) contE) |
|
87 |
done |
|
15565 | 88 |
|
25896 | 89 |
lemma contI2: |
40736 | 90 |
fixes f :: "'a::cpo \<Rightarrow> 'b::cpo" |
25896 | 91 |
assumes mono: "monofun f" |
67312 | 92 |
assumes below: "\<And>Y. \<lbrakk>chain Y; chain (\<lambda>i. f (Y i))\<rbrakk> \<Longrightarrow> f (\<Squnion>i. Y i) \<sqsubseteq> (\<Squnion>i. f (Y i))" |
25896 | 93 |
shows "cont f" |
40736 | 94 |
proof (rule contI) |
95 |
fix Y :: "nat \<Rightarrow> 'a" |
|
96 |
assume Y: "chain Y" |
|
97 |
with mono have fY: "chain (\<lambda>i. f (Y i))" |
|
98 |
by (rule ch2ch_monofun) |
|
99 |
have "(\<Squnion>i. f (Y i)) = f (\<Squnion>i. Y i)" |
|
100 |
apply (rule below_antisym) |
|
67312 | 101 |
apply (rule lub_below [OF fY]) |
102 |
apply (rule monofunE [OF mono]) |
|
103 |
apply (rule is_ub_thelub [OF Y]) |
|
40736 | 104 |
apply (rule below [OF Y fY]) |
105 |
done |
|
106 |
with fY show "range (\<lambda>i. f (Y i)) <<| f (\<Squnion>i. Y i)" |
|
107 |
by (rule thelubE) |
|
108 |
qed |
|
25896 | 109 |
|
67312 | 110 |
|
62175 | 111 |
subsection \<open>Collection of continuity rules\<close> |
29530
9905b660612b
change to simpler, more extensible continuity simproc
huffman
parents:
29138
diff
changeset
|
112 |
|
57945
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
wenzelm
parents:
45294
diff
changeset
|
113 |
named_theorems cont2cont "continuity intro rule" |
29530
9905b660612b
change to simpler, more extensible continuity simproc
huffman
parents:
29138
diff
changeset
|
114 |
|
9905b660612b
change to simpler, more extensible continuity simproc
huffman
parents:
29138
diff
changeset
|
115 |
|
62175 | 116 |
subsection \<open>Continuity of basic functions\<close> |
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
117 |
|
62175 | 118 |
text \<open>The identity function is continuous\<close> |
15565 | 119 |
|
37079
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
huffman
parents:
36658
diff
changeset
|
120 |
lemma cont_id [simp, cont2cont]: "cont (\<lambda>x. x)" |
67312 | 121 |
apply (rule contI) |
122 |
apply (erule cpo_lubI) |
|
123 |
done |
|
15565 | 124 |
|
62175 | 125 |
text \<open>constant functions are continuous\<close> |
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
126 |
|
37079
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
huffman
parents:
36658
diff
changeset
|
127 |
lemma cont_const [simp, cont2cont]: "cont (\<lambda>x. c)" |
40771 | 128 |
using is_lub_const by (rule contI) |
15565 | 129 |
|
62175 | 130 |
text \<open>application of functions is continuous\<close> |
29532 | 131 |
|
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
31030
diff
changeset
|
132 |
lemma cont_apply: |
29532 | 133 |
fixes f :: "'a::cpo \<Rightarrow> 'b::cpo \<Rightarrow> 'c::cpo" and t :: "'a \<Rightarrow> 'b" |
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
31030
diff
changeset
|
134 |
assumes 1: "cont (\<lambda>x. t x)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
31030
diff
changeset
|
135 |
assumes 2: "\<And>x. cont (\<lambda>y. f x y)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
31030
diff
changeset
|
136 |
assumes 3: "\<And>y. cont (\<lambda>x. f x y)" |
29532 | 137 |
shows "cont (\<lambda>x. (f x) (t x))" |
35914 | 138 |
proof (rule contI2 [OF monofunI]) |
67312 | 139 |
fix x y :: "'a" |
140 |
assume "x \<sqsubseteq> y" |
|
29532 | 141 |
then show "f x (t x) \<sqsubseteq> f y (t y)" |
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
31030
diff
changeset
|
142 |
by (auto intro: cont2monofunE [OF 1] |
67312 | 143 |
cont2monofunE [OF 2] |
144 |
cont2monofunE [OF 3] |
|
145 |
below_trans) |
|
29532 | 146 |
next |
67312 | 147 |
fix Y :: "nat \<Rightarrow> 'a" |
148 |
assume "chain Y" |
|
35914 | 149 |
then show "f (\<Squnion>i. Y i) (t (\<Squnion>i. Y i)) \<sqsubseteq> (\<Squnion>i. f (Y i) (t (Y i)))" |
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
31030
diff
changeset
|
150 |
by (simp only: cont2contlubE [OF 1] ch2ch_cont [OF 1] |
67312 | 151 |
cont2contlubE [OF 2] ch2ch_cont [OF 2] |
152 |
cont2contlubE [OF 3] ch2ch_cont [OF 3] |
|
153 |
diag_lub below_refl) |
|
29532 | 154 |
qed |
155 |
||
67312 | 156 |
lemma cont_compose: "cont c \<Longrightarrow> cont (\<lambda>x. f x) \<Longrightarrow> cont (\<lambda>x. c (f x))" |
157 |
by (rule cont_apply [OF _ _ cont_const]) |
|
29532 | 158 |
|
62175 | 159 |
text \<open>Least upper bounds preserve continuity\<close> |
40004
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
huffman
parents:
37099
diff
changeset
|
160 |
|
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
huffman
parents:
37099
diff
changeset
|
161 |
lemma cont2cont_lub [simp]: |
67312 | 162 |
assumes chain: "\<And>x. chain (\<lambda>i. F i x)" |
163 |
and cont: "\<And>i. cont (\<lambda>x. F i x)" |
|
40004
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
huffman
parents:
37099
diff
changeset
|
164 |
shows "cont (\<lambda>x. \<Squnion>i. F i x)" |
67312 | 165 |
apply (rule contI2) |
166 |
apply (simp add: monofunI cont2monofunE [OF cont] lub_mono chain) |
|
167 |
apply (simp add: cont2contlubE [OF cont]) |
|
168 |
apply (simp add: diag_lub ch2ch_cont [OF cont] chain) |
|
169 |
done |
|
40004
9f6ed6840e8d
reformulate lemma cont2cont_lub and move to Cont.thy
huffman
parents:
37099
diff
changeset
|
170 |
|
62175 | 171 |
text \<open>if-then-else is continuous\<close> |
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
172 |
|
67312 | 173 |
lemma cont_if [simp, cont2cont]: "cont f \<Longrightarrow> cont g \<Longrightarrow> cont (\<lambda>x. if b then f x else g x)" |
174 |
by (induct b) simp_all |
|
175 |
||
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
176 |
|
62175 | 177 |
subsection \<open>Finite chains and flat pcpos\<close> |
15565 | 178 |
|
62175 | 179 |
text \<open>Monotone functions map finite chains to finite chains.\<close> |
15565 | 180 |
|
67312 | 181 |
lemma monofun_finch2finch: "monofun f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))" |
182 |
by (force simp add: finite_chain_def ch2ch_monofun max_in_chain_def) |
|
15565 | 183 |
|
62175 | 184 |
text \<open>The same holds for continuous functions.\<close> |
15565 | 185 |
|
67312 | 186 |
lemma cont_finch2finch: "cont f \<Longrightarrow> finite_chain Y \<Longrightarrow> finite_chain (\<lambda>n. f (Y n))" |
187 |
by (rule cont2mono [THEN monofun_finch2finch]) |
|
15565 | 188 |
|
62175 | 189 |
text \<open>All monotone functions with chain-finite domain are continuous.\<close> |
40010 | 190 |
|
67312 | 191 |
lemma chfindom_monofun2cont: "monofun f \<Longrightarrow> cont f" |
192 |
for f :: "'a::chfin \<Rightarrow> 'b::cpo" |
|
193 |
apply (erule contI2) |
|
194 |
apply (frule chfin2finch) |
|
195 |
apply (clarsimp simp add: finite_chain_def) |
|
196 |
apply (subgoal_tac "max_in_chain i (\<lambda>i. f (Y i))") |
|
197 |
apply (simp add: maxinch_is_thelub ch2ch_monofun) |
|
198 |
apply (force simp add: max_in_chain_def) |
|
199 |
done |
|
15565 | 200 |
|
62175 | 201 |
text \<open>All strict functions with flat domain are continuous.\<close> |
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
202 |
|
67312 | 203 |
lemma flatdom_strict2mono: "f \<bottom> = \<bottom> \<Longrightarrow> monofun f" |
204 |
for f :: "'a::flat \<Rightarrow> 'b::pcpo" |
|
205 |
apply (rule monofunI) |
|
206 |
apply (drule ax_flat) |
|
207 |
apply auto |
|
208 |
done |
|
16624
645b9560f3fd
cleaned up; reorganized and added section headings
huffman
parents:
16564
diff
changeset
|
209 |
|
67312 | 210 |
lemma flatdom_strict2cont: "f \<bottom> = \<bottom> \<Longrightarrow> cont f" |
211 |
for f :: "'a::flat \<Rightarrow> 'b::pcpo" |
|
212 |
by (rule flatdom_strict2mono [THEN chfindom_monofun2cont]) |
|
15565 | 213 |
|
62175 | 214 |
text \<open>All functions with discrete domain are continuous.\<close> |
26024 | 215 |
|
67312 | 216 |
lemma cont_discrete_cpo [simp, cont2cont]: "cont f" |
217 |
for f :: "'a::discrete_cpo \<Rightarrow> 'b::cpo" |
|
218 |
apply (rule contI) |
|
219 |
apply (drule discrete_chain_const, clarify) |
|
220 |
apply (simp add: is_lub_const) |
|
221 |
done |
|
26024 | 222 |
|
243
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
nipkow
parents:
diff
changeset
|
223 |
end |