120
|
1 |
(* Title: ZF/coinductive.ML
|
0
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1993 University of Cambridge
|
|
5 |
|
120
|
6 |
Coinductive Definitions for Zermelo-Fraenkel Set Theory
|
0
|
7 |
|
|
8 |
Uses greatest fixedpoints with Quine-inspired products and sums
|
|
9 |
|
|
10 |
Sums are used only for mutual recursion;
|
|
11 |
Products are used only to derive "streamlined" induction rules for relations
|
|
12 |
*)
|
|
13 |
|
|
14 |
structure Gfp =
|
|
15 |
struct
|
|
16 |
val oper = Const("gfp", [iT,iT-->iT]--->iT)
|
|
17 |
val bnd_mono = Const("bnd_mono", [iT,iT-->iT]--->oT)
|
|
18 |
val bnd_monoI = bnd_monoI
|
|
19 |
val subs = def_gfp_subset
|
|
20 |
val Tarski = def_gfp_Tarski
|
|
21 |
val induct = def_Collect_coinduct
|
|
22 |
end;
|
|
23 |
|
|
24 |
structure Quine_Prod =
|
|
25 |
struct
|
|
26 |
val sigma = Const("QSigma", [iT, iT-->iT]--->iT)
|
|
27 |
val pair = Const("QPair", [iT,iT]--->iT)
|
|
28 |
val split_const = Const("qsplit", [[iT,iT]--->iT, iT]--->iT)
|
|
29 |
val fsplit_const = Const("qfsplit", [[iT,iT]--->oT, iT]--->oT)
|
|
30 |
val pair_iff = QPair_iff
|
|
31 |
val split_eq = qsplit
|
|
32 |
val fsplitI = qfsplitI
|
|
33 |
val fsplitD = qfsplitD
|
|
34 |
val fsplitE = qfsplitE
|
|
35 |
end;
|
|
36 |
|
|
37 |
structure Quine_Sum =
|
|
38 |
struct
|
|
39 |
val sum = Const("op <+>", [iT,iT]--->iT)
|
|
40 |
val inl = Const("QInl", iT-->iT)
|
|
41 |
val inr = Const("QInr", iT-->iT)
|
|
42 |
val elim = Const("qcase", [iT-->iT, iT-->iT, iT]--->iT)
|
|
43 |
val case_inl = qcase_QInl
|
|
44 |
val case_inr = qcase_QInr
|
|
45 |
val inl_iff = QInl_iff
|
|
46 |
val inr_iff = QInr_iff
|
|
47 |
val distinct = QInl_QInr_iff
|
|
48 |
val distinct' = QInr_QInl_iff
|
|
49 |
end;
|
|
50 |
|
120
|
51 |
signature COINDRULE =
|
0
|
52 |
sig
|
120
|
53 |
val coinduct : thm
|
0
|
54 |
end;
|
|
55 |
|
|
56 |
|
120
|
57 |
functor CoInductive_Fun (Ind: INDUCTIVE)
|
|
58 |
: sig include INTR_ELIM COINDRULE end =
|
0
|
59 |
struct
|
|
60 |
structure Intr_elim =
|
|
61 |
Intr_elim_Fun(structure Ind=Ind and Fp=Gfp and
|
|
62 |
Pr=Quine_Prod and Su=Quine_Sum);
|
|
63 |
|
|
64 |
open Intr_elim
|
120
|
65 |
val coinduct = raw_induct
|
0
|
66 |
end;
|
|
67 |
|