| 0 |      1 | (*  Title: 	LK/lk.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1993  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Classical First-Order Sequent Calculus
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | LK = Pure +
 | 
| 283 |     10 | 
 | 
| 0 |     11 | classes term < logic
 | 
| 283 |     12 | 
 | 
| 0 |     13 | default term
 | 
| 283 |     14 | 
 | 
|  |     15 | types
 | 
|  |     16 |  o sequence seqobj seqcont sequ sobj
 | 
|  |     17 | 
 | 
|  |     18 | arities
 | 
|  |     19 |  o :: logic
 | 
|  |     20 | 
 | 
| 0 |     21 | consts
 | 
|  |     22 |  True,False	:: "o"
 | 
|  |     23 |  "="		:: "['a,'a] => o"	(infixl 50)
 | 
|  |     24 |  "Not"		:: "o => o"		("~ _" [40] 40)
 | 
|  |     25 |  "&"		:: "[o,o] => o"		(infixr 35)
 | 
|  |     26 |  "|"		:: "[o,o] => o"		(infixr 30)
 | 
|  |     27 |  "-->","<->"	:: "[o,o] => o"		(infixr 25)
 | 
|  |     28 |  The		:: "('a => o) => 'a"	(binder "THE " 10)
 | 
|  |     29 |  All		:: "('a => o) => o"	(binder "ALL " 10)
 | 
|  |     30 |  Ex		:: "('a => o) => o"	(binder "EX " 10)
 | 
|  |     31 | 
 | 
|  |     32 |  (*Representation of sequents*)
 | 
|  |     33 |  Trueprop	:: "[sobj=>sobj,sobj=>sobj] => prop"
 | 
|  |     34 |  Seqof		:: "o => sobj=>sobj"
 | 
|  |     35 |  "@Trueprop"	:: "[sequence,sequence] => prop" ("((_)/ |- (_))" [6,6] 5)
 | 
|  |     36 |  "@MtSeq"	:: "sequence"				("" [] 1000)
 | 
|  |     37 |  "@NmtSeq"	:: "[seqobj,seqcont] => sequence"	("__" [] 1000)
 | 
|  |     38 |  "@MtSeqCont"	:: "seqcont"				("" [] 1000)
 | 
|  |     39 |  "@SeqCont"	:: "[seqobj,seqcont] => seqcont"	(",/ __" [] 1000)
 | 
|  |     40 |  ""		:: "o => seqobj"			("_" [] 1000)
 | 
|  |     41 |  "@SeqId"	:: "id => seqobj"			("$_" [] 1000)
 | 
|  |     42 |  "@SeqVar"	:: "var => seqobj"			("$_")
 | 
|  |     43 | 
 | 
|  |     44 | rules
 | 
|  |     45 |   (*Structural rules*)
 | 
|  |     46 | 
 | 
|  |     47 |   basic	"$H, P, $G |- $E, P, $F"
 | 
|  |     48 | 
 | 
|  |     49 |   thinR	"$H |- $E, $F ==> $H |- $E, P, $F"
 | 
|  |     50 |   thinL	"$H, $G |- $E ==> $H, P, $G |- $E"
 | 
|  |     51 | 
 | 
|  |     52 |   cut	"[| $H |- $E, P;  $H, P |- $E |] ==> $H |- $E"
 | 
|  |     53 | 
 | 
|  |     54 |   (*Propositional rules*)
 | 
|  |     55 | 
 | 
|  |     56 |   conjR	"[| $H|- $E, P, $F;  $H|- $E, Q, $F |] ==> $H|- $E, P&Q, $F"
 | 
|  |     57 |   conjL	"$H, P, Q, $G |- $E ==> $H, P & Q, $G |- $E"
 | 
|  |     58 | 
 | 
|  |     59 |   disjR	"$H |- $E, P, Q, $F ==> $H |- $E, P|Q, $F"
 | 
|  |     60 |   disjL	"[| $H, P, $G |- $E;  $H, Q, $G |- $E |] ==> $H, P|Q, $G |- $E"
 | 
|  |     61 | 
 | 
|  |     62 |   impR	"$H, P |- $E, Q, $F ==> $H |- $E, P-->Q, $F"
 | 
|  |     63 |   impL	"[| $H,$G |- $E,P;  $H, Q, $G |- $E |] ==> $H, P-->Q, $G |- $E"
 | 
|  |     64 | 
 | 
|  |     65 |   notR	"$H, P |- $E, $F ==> $H |- $E, ~P, $F"
 | 
|  |     66 |   notL	"$H, $G |- $E, P ==> $H, ~P, $G |- $E"
 | 
|  |     67 | 
 | 
|  |     68 |   FalseL "$H, False, $G |- $E"
 | 
|  |     69 | 
 | 
|  |     70 |   True_def "True == False-->False"
 | 
|  |     71 |   iff_def  "P<->Q == (P-->Q) & (Q-->P)"
 | 
|  |     72 | 
 | 
|  |     73 |   (*Quantifiers*)
 | 
|  |     74 | 
 | 
|  |     75 |   allR	"(!!x.$H |- $E, P(x), $F) ==> $H |- $E, ALL x.P(x), $F"
 | 
|  |     76 |   allL	"$H, P(x), $G, ALL x.P(x) |- $E ==> $H, ALL x.P(x), $G |- $E"
 | 
|  |     77 | 
 | 
|  |     78 |   exR	"$H |- $E, P(x), $F, EX x.P(x) ==> $H |- $E, EX x.P(x), $F"
 | 
|  |     79 |   exL	"(!!x.$H, P(x), $G |- $E) ==> $H, EX x.P(x), $G |- $E"
 | 
|  |     80 | 
 | 
|  |     81 |   (*Equality*)
 | 
|  |     82 | 
 | 
|  |     83 |   refl	"$H |- $E, a=a, $F"
 | 
|  |     84 |   sym   "$H |- $E, a=b, $F ==> $H |- $E, b=a, $F"
 | 
|  |     85 |   trans "[| $H|- $E, a=b, $F;  $H|- $E, b=c, $F |] ==> $H|- $E, a=c, $F"
 | 
|  |     86 | 
 | 
|  |     87 | 
 | 
|  |     88 |   (*Descriptions*)
 | 
|  |     89 | 
 | 
|  |     90 |   The "[| $H |- $E, P(a), $F;  !!x.$H, P(x) |- $E, x=a, $F |] ==> \
 | 
|  |     91 | \          $H |- $E, P(THE x.P(x)), $F"
 | 
|  |     92 | end
 | 
|  |     93 | 
 | 
|  |     94 | ML
 | 
|  |     95 | 
 | 
|  |     96 | (*Abstract over "sobj" -- representation of a sequence of formulae *)
 | 
|  |     97 | fun abs_sobj t = Abs("sobj", Type("sobj",[]), t);
 | 
|  |     98 | 
 | 
|  |     99 | (*Representation of empty sequence*)
 | 
|  |    100 | val Sempty =  abs_sobj (Bound 0);
 | 
|  |    101 | 
 | 
|  |    102 | fun seq_obj_tr(Const("@SeqId",_)$id) = id |
 | 
|  |    103 |     seq_obj_tr(Const("@SeqVar",_)$id) = id |
 | 
|  |    104 |     seq_obj_tr(fm) = Const("Seqof",dummyT)$fm;
 | 
|  |    105 | 
 | 
|  |    106 | fun seq_tr(_$obj$seq) = seq_obj_tr(obj)$seq_tr(seq) |
 | 
|  |    107 |     seq_tr(_) = Bound 0;
 | 
|  |    108 | 
 | 
|  |    109 | fun seq_tr1(Const("@MtSeq",_)) = Sempty |
 | 
|  |    110 |     seq_tr1(seq) = abs_sobj(seq_tr seq);
 | 
|  |    111 | 
 | 
|  |    112 | fun true_tr[s1,s2] = Const("Trueprop",dummyT)$seq_tr1 s1$seq_tr1 s2;
 | 
|  |    113 | 
 | 
|  |    114 | fun seq_obj_tr'(Const("Seqof",_)$fm) = fm |
 | 
|  |    115 |     seq_obj_tr'(id) = Const("@SeqId",dummyT)$id;
 | 
|  |    116 | 
 | 
|  |    117 | fun seq_tr'(obj$sq,C) =
 | 
|  |    118 |       let val sq' = case sq of
 | 
|  |    119 |             Bound 0 => Const("@MtSeqCont",dummyT) |
 | 
|  |    120 |             _ => seq_tr'(sq,Const("@SeqCont",dummyT))
 | 
|  |    121 |       in C $ seq_obj_tr' obj $ sq' end;
 | 
|  |    122 | 
 | 
|  |    123 | fun seq_tr1'(Bound 0) = Const("@MtSeq",dummyT) |
 | 
|  |    124 |     seq_tr1' s = seq_tr'(s,Const("@NmtSeq",dummyT));
 | 
|  |    125 | 
 | 
|  |    126 | fun true_tr'[Abs(_,_,s1),Abs(_,_,s2)] =
 | 
|  |    127 |       Const("@Trueprop",dummyT)$seq_tr1' s1$seq_tr1' s2;
 | 
|  |    128 | 
 | 
|  |    129 | val parse_translation = [("@Trueprop",true_tr)];
 | 
|  |    130 | val print_translation = [("Trueprop",true_tr')];
 |