author | nipkow |
Mon, 11 Jun 2007 18:34:12 +0200 | |
changeset 23331 | da040caa0596 |
parent 22808 | a7daa74e2980 |
child 24893 | b8ef7afe3a6b |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/Ordinal.thy |
435 | 2 |
ID: $Id$ |
1478 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
435 | 4 |
Copyright 1994 University of Cambridge |
5 |
||
6 |
*) |
|
7 |
||
13356 | 8 |
header{*Transitive Sets and Ordinals*} |
9 |
||
16417 | 10 |
theory Ordinal imports WF Bool equalities begin |
13155 | 11 |
|
12 |
constdefs |
|
13 |
||
14 |
Memrel :: "i=>i" |
|
15 |
"Memrel(A) == {z: A*A . EX x y. z=<x,y> & x:y }" |
|
16 |
||
17 |
Transset :: "i=>o" |
|
18 |
"Transset(i) == ALL x:i. x<=i" |
|
19 |
||
20 |
Ord :: "i=>o" |
|
21 |
"Ord(i) == Transset(i) & (ALL x:i. Transset(x))" |
|
22 |
||
23 |
lt :: "[i,i] => o" (infixl "<" 50) (*less-than on ordinals*) |
|
24 |
"i<j == i:j & Ord(j)" |
|
25 |
||
26 |
Limit :: "i=>o" |
|
27 |
"Limit(i) == Ord(i) & 0<i & (ALL y. y<i --> succ(y)<i)" |
|
2539 | 28 |
|
22808 | 29 |
abbreviation |
30 |
le (infixl "le" 50) where |
|
31 |
"x le y == x < succ(y)" |
|
435 | 32 |
|
22808 | 33 |
notation (xsymbols) |
34 |
le (infixl "\<le>" 50) |
|
435 | 35 |
|
22808 | 36 |
notation (HTML output) |
37 |
le (infixl "\<le>" 50) |
|
13155 | 38 |
|
39 |
||
13356 | 40 |
subsection{*Rules for Transset*} |
13155 | 41 |
|
13356 | 42 |
subsubsection{*Three Neat Characterisations of Transset*} |
13155 | 43 |
|
44 |
lemma Transset_iff_Pow: "Transset(A) <-> A<=Pow(A)" |
|
45 |
by (unfold Transset_def, blast) |
|
46 |
||
47 |
lemma Transset_iff_Union_succ: "Transset(A) <-> Union(succ(A)) = A" |
|
48 |
apply (unfold Transset_def) |
|
49 |
apply (blast elim!: equalityE) |
|
50 |
done |
|
51 |
||
52 |
lemma Transset_iff_Union_subset: "Transset(A) <-> Union(A) <= A" |
|
53 |
by (unfold Transset_def, blast) |
|
54 |
||
13356 | 55 |
subsubsection{*Consequences of Downwards Closure*} |
13155 | 56 |
|
57 |
lemma Transset_doubleton_D: |
|
58 |
"[| Transset(C); {a,b}: C |] ==> a:C & b: C" |
|
59 |
by (unfold Transset_def, blast) |
|
60 |
||
61 |
lemma Transset_Pair_D: |
|
62 |
"[| Transset(C); <a,b>: C |] ==> a:C & b: C" |
|
63 |
apply (simp add: Pair_def) |
|
64 |
apply (blast dest: Transset_doubleton_D) |
|
65 |
done |
|
66 |
||
67 |
lemma Transset_includes_domain: |
|
68 |
"[| Transset(C); A*B <= C; b: B |] ==> A <= C" |
|
69 |
by (blast dest: Transset_Pair_D) |
|
70 |
||
71 |
lemma Transset_includes_range: |
|
72 |
"[| Transset(C); A*B <= C; a: A |] ==> B <= C" |
|
73 |
by (blast dest: Transset_Pair_D) |
|
74 |
||
13356 | 75 |
subsubsection{*Closure Properties*} |
13155 | 76 |
|
77 |
lemma Transset_0: "Transset(0)" |
|
78 |
by (unfold Transset_def, blast) |
|
79 |
||
80 |
lemma Transset_Un: |
|
81 |
"[| Transset(i); Transset(j) |] ==> Transset(i Un j)" |
|
82 |
by (unfold Transset_def, blast) |
|
83 |
||
84 |
lemma Transset_Int: |
|
85 |
"[| Transset(i); Transset(j) |] ==> Transset(i Int j)" |
|
86 |
by (unfold Transset_def, blast) |
|
87 |
||
88 |
lemma Transset_succ: "Transset(i) ==> Transset(succ(i))" |
|
89 |
by (unfold Transset_def, blast) |
|
90 |
||
91 |
lemma Transset_Pow: "Transset(i) ==> Transset(Pow(i))" |
|
92 |
by (unfold Transset_def, blast) |
|
93 |
||
94 |
lemma Transset_Union: "Transset(A) ==> Transset(Union(A))" |
|
95 |
by (unfold Transset_def, blast) |
|
96 |
||
97 |
lemma Transset_Union_family: |
|
98 |
"[| !!i. i:A ==> Transset(i) |] ==> Transset(Union(A))" |
|
99 |
by (unfold Transset_def, blast) |
|
100 |
||
101 |
lemma Transset_Inter_family: |
|
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
102 |
"[| !!i. i:A ==> Transset(i) |] ==> Transset(Inter(A))" |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
103 |
by (unfold Inter_def Transset_def, blast) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
104 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
105 |
lemma Transset_UN: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
106 |
"(!!x. x \<in> A ==> Transset(B(x))) ==> Transset (\<Union>x\<in>A. B(x))" |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
107 |
by (rule Transset_Union_family, auto) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
108 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
109 |
lemma Transset_INT: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
110 |
"(!!x. x \<in> A ==> Transset(B(x))) ==> Transset (\<Inter>x\<in>A. B(x))" |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
111 |
by (rule Transset_Inter_family, auto) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
112 |
|
13155 | 113 |
|
13356 | 114 |
subsection{*Lemmas for Ordinals*} |
13155 | 115 |
|
116 |
lemma OrdI: |
|
117 |
"[| Transset(i); !!x. x:i ==> Transset(x) |] ==> Ord(i)" |
|
118 |
by (simp add: Ord_def) |
|
119 |
||
120 |
lemma Ord_is_Transset: "Ord(i) ==> Transset(i)" |
|
121 |
by (simp add: Ord_def) |
|
122 |
||
123 |
lemma Ord_contains_Transset: |
|
124 |
"[| Ord(i); j:i |] ==> Transset(j) " |
|
125 |
by (unfold Ord_def, blast) |
|
126 |
||
127 |
||
128 |
lemma Ord_in_Ord: "[| Ord(i); j:i |] ==> Ord(j)" |
|
129 |
by (unfold Ord_def Transset_def, blast) |
|
130 |
||
13243 | 131 |
(*suitable for rewriting PROVIDED i has been fixed*) |
132 |
lemma Ord_in_Ord': "[| j:i; Ord(i) |] ==> Ord(j)" |
|
133 |
by (blast intro: Ord_in_Ord) |
|
134 |
||
13155 | 135 |
(* Ord(succ(j)) ==> Ord(j) *) |
136 |
lemmas Ord_succD = Ord_in_Ord [OF _ succI1] |
|
137 |
||
138 |
lemma Ord_subset_Ord: "[| Ord(i); Transset(j); j<=i |] ==> Ord(j)" |
|
139 |
by (simp add: Ord_def Transset_def, blast) |
|
140 |
||
141 |
lemma OrdmemD: "[| j:i; Ord(i) |] ==> j<=i" |
|
142 |
by (unfold Ord_def Transset_def, blast) |
|
143 |
||
144 |
lemma Ord_trans: "[| i:j; j:k; Ord(k) |] ==> i:k" |
|
145 |
by (blast dest: OrdmemD) |
|
146 |
||
147 |
lemma Ord_succ_subsetI: "[| i:j; Ord(j) |] ==> succ(i) <= j" |
|
148 |
by (blast dest: OrdmemD) |
|
149 |
||
150 |
||
13356 | 151 |
subsection{*The Construction of Ordinals: 0, succ, Union*} |
13155 | 152 |
|
153 |
lemma Ord_0 [iff,TC]: "Ord(0)" |
|
154 |
by (blast intro: OrdI Transset_0) |
|
155 |
||
156 |
lemma Ord_succ [TC]: "Ord(i) ==> Ord(succ(i))" |
|
157 |
by (blast intro: OrdI Transset_succ Ord_is_Transset Ord_contains_Transset) |
|
158 |
||
159 |
lemmas Ord_1 = Ord_0 [THEN Ord_succ] |
|
160 |
||
161 |
lemma Ord_succ_iff [iff]: "Ord(succ(i)) <-> Ord(i)" |
|
162 |
by (blast intro: Ord_succ dest!: Ord_succD) |
|
163 |
||
13172 | 164 |
lemma Ord_Un [intro,simp,TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Un j)" |
13155 | 165 |
apply (unfold Ord_def) |
166 |
apply (blast intro!: Transset_Un) |
|
167 |
done |
|
168 |
||
169 |
lemma Ord_Int [TC]: "[| Ord(i); Ord(j) |] ==> Ord(i Int j)" |
|
170 |
apply (unfold Ord_def) |
|
171 |
apply (blast intro!: Transset_Int) |
|
172 |
done |
|
173 |
||
174 |
(*There is no set of all ordinals, for then it would contain itself*) |
|
175 |
lemma ON_class: "~ (ALL i. i:X <-> Ord(i))" |
|
176 |
apply (rule notI) |
|
13784 | 177 |
apply (frule_tac x = X in spec) |
13155 | 178 |
apply (safe elim!: mem_irrefl) |
179 |
apply (erule swap, rule OrdI [OF _ Ord_is_Transset]) |
|
180 |
apply (simp add: Transset_def) |
|
181 |
apply (blast intro: Ord_in_Ord)+ |
|
182 |
done |
|
183 |
||
13356 | 184 |
subsection{*< is 'less Than' for Ordinals*} |
13155 | 185 |
|
186 |
lemma ltI: "[| i:j; Ord(j) |] ==> i<j" |
|
187 |
by (unfold lt_def, blast) |
|
188 |
||
189 |
lemma ltE: |
|
190 |
"[| i<j; [| i:j; Ord(i); Ord(j) |] ==> P |] ==> P" |
|
191 |
apply (unfold lt_def) |
|
192 |
apply (blast intro: Ord_in_Ord) |
|
193 |
done |
|
194 |
||
195 |
lemma ltD: "i<j ==> i:j" |
|
196 |
by (erule ltE, assumption) |
|
197 |
||
198 |
lemma not_lt0 [simp]: "~ i<0" |
|
199 |
by (unfold lt_def, blast) |
|
200 |
||
201 |
lemma lt_Ord: "j<i ==> Ord(j)" |
|
202 |
by (erule ltE, assumption) |
|
203 |
||
204 |
lemma lt_Ord2: "j<i ==> Ord(i)" |
|
205 |
by (erule ltE, assumption) |
|
206 |
||
207 |
(* "ja le j ==> Ord(j)" *) |
|
208 |
lemmas le_Ord2 = lt_Ord2 [THEN Ord_succD] |
|
209 |
||
210 |
(* i<0 ==> R *) |
|
211 |
lemmas lt0E = not_lt0 [THEN notE, elim!] |
|
212 |
||
213 |
lemma lt_trans: "[| i<j; j<k |] ==> i<k" |
|
214 |
by (blast intro!: ltI elim!: ltE intro: Ord_trans) |
|
215 |
||
216 |
lemma lt_not_sym: "i<j ==> ~ (j<i)" |
|
217 |
apply (unfold lt_def) |
|
218 |
apply (blast elim: mem_asym) |
|
219 |
done |
|
220 |
||
221 |
(* [| i<j; ~P ==> j<i |] ==> P *) |
|
222 |
lemmas lt_asym = lt_not_sym [THEN swap] |
|
223 |
||
224 |
lemma lt_irrefl [elim!]: "i<i ==> P" |
|
225 |
by (blast intro: lt_asym) |
|
226 |
||
227 |
lemma lt_not_refl: "~ i<i" |
|
228 |
apply (rule notI) |
|
229 |
apply (erule lt_irrefl) |
|
230 |
done |
|
231 |
||
232 |
||
233 |
(** le is less than or equals; recall i le j abbrevs i<succ(j) !! **) |
|
234 |
||
235 |
lemma le_iff: "i le j <-> i<j | (i=j & Ord(j))" |
|
236 |
by (unfold lt_def, blast) |
|
237 |
||
238 |
(*Equivalently, i<j ==> i < succ(j)*) |
|
239 |
lemma leI: "i<j ==> i le j" |
|
240 |
by (simp (no_asm_simp) add: le_iff) |
|
241 |
||
242 |
lemma le_eqI: "[| i=j; Ord(j) |] ==> i le j" |
|
243 |
by (simp (no_asm_simp) add: le_iff) |
|
244 |
||
245 |
lemmas le_refl = refl [THEN le_eqI] |
|
246 |
||
247 |
lemma le_refl_iff [iff]: "i le i <-> Ord(i)" |
|
248 |
by (simp (no_asm_simp) add: lt_not_refl le_iff) |
|
249 |
||
250 |
lemma leCI: "(~ (i=j & Ord(j)) ==> i<j) ==> i le j" |
|
251 |
by (simp add: le_iff, blast) |
|
252 |
||
253 |
lemma leE: |
|
254 |
"[| i le j; i<j ==> P; [| i=j; Ord(j) |] ==> P |] ==> P" |
|
255 |
by (simp add: le_iff, blast) |
|
256 |
||
257 |
lemma le_anti_sym: "[| i le j; j le i |] ==> i=j" |
|
258 |
apply (simp add: le_iff) |
|
259 |
apply (blast elim: lt_asym) |
|
260 |
done |
|
261 |
||
262 |
lemma le0_iff [simp]: "i le 0 <-> i=0" |
|
263 |
by (blast elim!: leE) |
|
264 |
||
265 |
lemmas le0D = le0_iff [THEN iffD1, dest!] |
|
266 |
||
13356 | 267 |
subsection{*Natural Deduction Rules for Memrel*} |
13155 | 268 |
|
269 |
(*The lemmas MemrelI/E give better speed than [iff] here*) |
|
270 |
lemma Memrel_iff [simp]: "<a,b> : Memrel(A) <-> a:b & a:A & b:A" |
|
271 |
by (unfold Memrel_def, blast) |
|
272 |
||
273 |
lemma MemrelI [intro!]: "[| a: b; a: A; b: A |] ==> <a,b> : Memrel(A)" |
|
274 |
by auto |
|
275 |
||
276 |
lemma MemrelE [elim!]: |
|
277 |
"[| <a,b> : Memrel(A); |
|
278 |
[| a: A; b: A; a:b |] ==> P |] |
|
279 |
==> P" |
|
280 |
by auto |
|
281 |
||
282 |
lemma Memrel_type: "Memrel(A) <= A*A" |
|
283 |
by (unfold Memrel_def, blast) |
|
284 |
||
285 |
lemma Memrel_mono: "A<=B ==> Memrel(A) <= Memrel(B)" |
|
286 |
by (unfold Memrel_def, blast) |
|
287 |
||
288 |
lemma Memrel_0 [simp]: "Memrel(0) = 0" |
|
289 |
by (unfold Memrel_def, blast) |
|
290 |
||
291 |
lemma Memrel_1 [simp]: "Memrel(1) = 0" |
|
292 |
by (unfold Memrel_def, blast) |
|
293 |
||
13269 | 294 |
lemma relation_Memrel: "relation(Memrel(A))" |
14864 | 295 |
by (simp add: relation_def Memrel_def) |
13269 | 296 |
|
13155 | 297 |
(*The membership relation (as a set) is well-founded. |
298 |
Proof idea: show A<=B by applying the foundation axiom to A-B *) |
|
299 |
lemma wf_Memrel: "wf(Memrel(A))" |
|
300 |
apply (unfold wf_def) |
|
301 |
apply (rule foundation [THEN disjE, THEN allI], erule disjI1, blast) |
|
302 |
done |
|
303 |
||
13396 | 304 |
text{*The premise @{term "Ord(i)"} does not suffice.*} |
13155 | 305 |
lemma trans_Memrel: |
306 |
"Ord(i) ==> trans(Memrel(i))" |
|
307 |
by (unfold Ord_def Transset_def trans_def, blast) |
|
308 |
||
13396 | 309 |
text{*However, the following premise is strong enough.*} |
310 |
lemma Transset_trans_Memrel: |
|
311 |
"\<forall>j\<in>i. Transset(j) ==> trans(Memrel(i))" |
|
312 |
by (unfold Transset_def trans_def, blast) |
|
313 |
||
13155 | 314 |
(*If Transset(A) then Memrel(A) internalizes the membership relation below A*) |
315 |
lemma Transset_Memrel_iff: |
|
316 |
"Transset(A) ==> <a,b> : Memrel(A) <-> a:b & b:A" |
|
317 |
by (unfold Transset_def, blast) |
|
318 |
||
319 |
||
13356 | 320 |
subsection{*Transfinite Induction*} |
13155 | 321 |
|
322 |
(*Epsilon induction over a transitive set*) |
|
323 |
lemma Transset_induct: |
|
324 |
"[| i: k; Transset(k); |
|
325 |
!!x.[| x: k; ALL y:x. P(y) |] ==> P(x) |] |
|
326 |
==> P(i)" |
|
327 |
apply (simp add: Transset_def) |
|
13269 | 328 |
apply (erule wf_Memrel [THEN wf_induct2], blast+) |
13155 | 329 |
done |
330 |
||
331 |
(*Induction over an ordinal*) |
|
13534 | 332 |
lemmas Ord_induct [consumes 2] = Transset_induct [OF _ Ord_is_Transset] |
333 |
lemmas Ord_induct_rule = Ord_induct [rule_format, consumes 2] |
|
13155 | 334 |
|
335 |
(*Induction over the class of ordinals -- a useful corollary of Ord_induct*) |
|
336 |
||
13534 | 337 |
lemma trans_induct [consumes 1]: |
13155 | 338 |
"[| Ord(i); |
339 |
!!x.[| Ord(x); ALL y:x. P(y) |] ==> P(x) |] |
|
340 |
==> P(i)" |
|
341 |
apply (rule Ord_succ [THEN succI1 [THEN Ord_induct]], assumption) |
|
342 |
apply (blast intro: Ord_succ [THEN Ord_in_Ord]) |
|
343 |
done |
|
344 |
||
13534 | 345 |
lemmas trans_induct_rule = trans_induct [rule_format, consumes 1] |
346 |
||
13155 | 347 |
|
348 |
(*** Fundamental properties of the epsilon ordering (< on ordinals) ***) |
|
349 |
||
350 |
||
13356 | 351 |
subsubsection{*Proving That < is a Linear Ordering on the Ordinals*} |
13155 | 352 |
|
353 |
lemma Ord_linear [rule_format]: |
|
354 |
"Ord(i) ==> (ALL j. Ord(j) --> i:j | i=j | j:i)" |
|
355 |
apply (erule trans_induct) |
|
356 |
apply (rule impI [THEN allI]) |
|
357 |
apply (erule_tac i=j in trans_induct) |
|
358 |
apply (blast dest: Ord_trans) |
|
359 |
done |
|
360 |
||
361 |
(*The trichotomy law for ordinals!*) |
|
362 |
lemma Ord_linear_lt: |
|
363 |
"[| Ord(i); Ord(j); i<j ==> P; i=j ==> P; j<i ==> P |] ==> P" |
|
364 |
apply (simp add: lt_def) |
|
365 |
apply (rule_tac i1=i and j1=j in Ord_linear [THEN disjE], blast+) |
|
366 |
done |
|
367 |
||
368 |
lemma Ord_linear2: |
|
369 |
"[| Ord(i); Ord(j); i<j ==> P; j le i ==> P |] ==> P" |
|
13784 | 370 |
apply (rule_tac i = i and j = j in Ord_linear_lt) |
13155 | 371 |
apply (blast intro: leI le_eqI sym ) + |
372 |
done |
|
373 |
||
374 |
lemma Ord_linear_le: |
|
375 |
"[| Ord(i); Ord(j); i le j ==> P; j le i ==> P |] ==> P" |
|
13784 | 376 |
apply (rule_tac i = i and j = j in Ord_linear_lt) |
13155 | 377 |
apply (blast intro: leI le_eqI ) + |
378 |
done |
|
379 |
||
380 |
lemma le_imp_not_lt: "j le i ==> ~ i<j" |
|
381 |
by (blast elim!: leE elim: lt_asym) |
|
382 |
||
383 |
lemma not_lt_imp_le: "[| ~ i<j; Ord(i); Ord(j) |] ==> j le i" |
|
13784 | 384 |
by (rule_tac i = i and j = j in Ord_linear2, auto) |
13155 | 385 |
|
13356 | 386 |
subsubsection{*Some Rewrite Rules for <, le*} |
13155 | 387 |
|
388 |
lemma Ord_mem_iff_lt: "Ord(j) ==> i:j <-> i<j" |
|
389 |
by (unfold lt_def, blast) |
|
390 |
||
391 |
lemma not_lt_iff_le: "[| Ord(i); Ord(j) |] ==> ~ i<j <-> j le i" |
|
392 |
by (blast dest: le_imp_not_lt not_lt_imp_le) |
|
2540 | 393 |
|
13155 | 394 |
lemma not_le_iff_lt: "[| Ord(i); Ord(j) |] ==> ~ i le j <-> j<i" |
395 |
by (simp (no_asm_simp) add: not_lt_iff_le [THEN iff_sym]) |
|
396 |
||
397 |
(*This is identical to 0<succ(i) *) |
|
398 |
lemma Ord_0_le: "Ord(i) ==> 0 le i" |
|
399 |
by (erule not_lt_iff_le [THEN iffD1], auto) |
|
400 |
||
401 |
lemma Ord_0_lt: "[| Ord(i); i~=0 |] ==> 0<i" |
|
402 |
apply (erule not_le_iff_lt [THEN iffD1]) |
|
403 |
apply (rule Ord_0, blast) |
|
404 |
done |
|
405 |
||
406 |
lemma Ord_0_lt_iff: "Ord(i) ==> i~=0 <-> 0<i" |
|
407 |
by (blast intro: Ord_0_lt) |
|
408 |
||
409 |
||
13356 | 410 |
subsection{*Results about Less-Than or Equals*} |
13155 | 411 |
|
412 |
(** For ordinals, j<=i (subset) implies j le i (less-than or equals) **) |
|
413 |
||
414 |
lemma zero_le_succ_iff [iff]: "0 le succ(x) <-> Ord(x)" |
|
415 |
by (blast intro: Ord_0_le elim: ltE) |
|
416 |
||
417 |
lemma subset_imp_le: "[| j<=i; Ord(i); Ord(j) |] ==> j le i" |
|
13269 | 418 |
apply (rule not_lt_iff_le [THEN iffD1], assumption+) |
13155 | 419 |
apply (blast elim: ltE mem_irrefl) |
420 |
done |
|
421 |
||
422 |
lemma le_imp_subset: "i le j ==> i<=j" |
|
423 |
by (blast dest: OrdmemD elim: ltE leE) |
|
424 |
||
425 |
lemma le_subset_iff: "j le i <-> j<=i & Ord(i) & Ord(j)" |
|
426 |
by (blast dest: subset_imp_le le_imp_subset elim: ltE) |
|
427 |
||
428 |
lemma le_succ_iff: "i le succ(j) <-> i le j | i=succ(j) & Ord(i)" |
|
429 |
apply (simp (no_asm) add: le_iff) |
|
430 |
apply blast |
|
431 |
done |
|
432 |
||
433 |
(*Just a variant of subset_imp_le*) |
|
434 |
lemma all_lt_imp_le: "[| Ord(i); Ord(j); !!x. x<j ==> x<i |] ==> j le i" |
|
435 |
by (blast intro: not_lt_imp_le dest: lt_irrefl) |
|
436 |
||
13356 | 437 |
subsubsection{*Transitivity Laws*} |
13155 | 438 |
|
439 |
lemma lt_trans1: "[| i le j; j<k |] ==> i<k" |
|
440 |
by (blast elim!: leE intro: lt_trans) |
|
441 |
||
442 |
lemma lt_trans2: "[| i<j; j le k |] ==> i<k" |
|
443 |
by (blast elim!: leE intro: lt_trans) |
|
444 |
||
445 |
lemma le_trans: "[| i le j; j le k |] ==> i le k" |
|
446 |
by (blast intro: lt_trans1) |
|
447 |
||
448 |
lemma succ_leI: "i<j ==> succ(i) le j" |
|
449 |
apply (rule not_lt_iff_le [THEN iffD1]) |
|
450 |
apply (blast elim: ltE leE lt_asym)+ |
|
451 |
done |
|
452 |
||
453 |
(*Identical to succ(i) < succ(j) ==> i<j *) |
|
454 |
lemma succ_leE: "succ(i) le j ==> i<j" |
|
455 |
apply (rule not_le_iff_lt [THEN iffD1]) |
|
456 |
apply (blast elim: ltE leE lt_asym)+ |
|
457 |
done |
|
458 |
||
459 |
lemma succ_le_iff [iff]: "succ(i) le j <-> i<j" |
|
460 |
by (blast intro: succ_leI succ_leE) |
|
461 |
||
462 |
lemma succ_le_imp_le: "succ(i) le succ(j) ==> i le j" |
|
463 |
by (blast dest!: succ_leE) |
|
464 |
||
465 |
lemma lt_subset_trans: "[| i <= j; j<k; Ord(i) |] ==> i<k" |
|
466 |
apply (rule subset_imp_le [THEN lt_trans1]) |
|
467 |
apply (blast intro: elim: ltE) + |
|
468 |
done |
|
469 |
||
13172 | 470 |
lemma lt_imp_0_lt: "j<i ==> 0<i" |
471 |
by (blast intro: lt_trans1 Ord_0_le [OF lt_Ord]) |
|
472 |
||
13243 | 473 |
lemma succ_lt_iff: "succ(i) < j <-> i<j & succ(i) \<noteq> j" |
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
474 |
apply auto |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
475 |
apply (blast intro: lt_trans le_refl dest: lt_Ord) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
476 |
apply (frule lt_Ord) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
477 |
apply (rule not_le_iff_lt [THEN iffD1]) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
478 |
apply (blast intro: lt_Ord2) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
479 |
apply blast |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
480 |
apply (simp add: lt_Ord lt_Ord2 le_iff) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
481 |
apply (blast dest: lt_asym) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
482 |
done |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
483 |
|
13243 | 484 |
lemma Ord_succ_mem_iff: "Ord(j) ==> succ(i) \<in> succ(j) <-> i\<in>j" |
485 |
apply (insert succ_le_iff [of i j]) |
|
486 |
apply (simp add: lt_def) |
|
487 |
done |
|
488 |
||
13356 | 489 |
subsubsection{*Union and Intersection*} |
13155 | 490 |
|
491 |
lemma Un_upper1_le: "[| Ord(i); Ord(j) |] ==> i le i Un j" |
|
492 |
by (rule Un_upper1 [THEN subset_imp_le], auto) |
|
493 |
||
494 |
lemma Un_upper2_le: "[| Ord(i); Ord(j) |] ==> j le i Un j" |
|
495 |
by (rule Un_upper2 [THEN subset_imp_le], auto) |
|
496 |
||
497 |
(*Replacing k by succ(k') yields the similar rule for le!*) |
|
498 |
lemma Un_least_lt: "[| i<k; j<k |] ==> i Un j < k" |
|
13784 | 499 |
apply (rule_tac i = i and j = j in Ord_linear_le) |
13155 | 500 |
apply (auto simp add: Un_commute le_subset_iff subset_Un_iff lt_Ord) |
501 |
done |
|
502 |
||
503 |
lemma Un_least_lt_iff: "[| Ord(i); Ord(j) |] ==> i Un j < k <-> i<k & j<k" |
|
504 |
apply (safe intro!: Un_least_lt) |
|
505 |
apply (rule_tac [2] Un_upper2_le [THEN lt_trans1]) |
|
506 |
apply (rule Un_upper1_le [THEN lt_trans1], auto) |
|
507 |
done |
|
508 |
||
509 |
lemma Un_least_mem_iff: |
|
510 |
"[| Ord(i); Ord(j); Ord(k) |] ==> i Un j : k <-> i:k & j:k" |
|
511 |
apply (insert Un_least_lt_iff [of i j k]) |
|
512 |
apply (simp add: lt_def) |
|
513 |
done |
|
514 |
||
515 |
(*Replacing k by succ(k') yields the similar rule for le!*) |
|
516 |
lemma Int_greatest_lt: "[| i<k; j<k |] ==> i Int j < k" |
|
13784 | 517 |
apply (rule_tac i = i and j = j in Ord_linear_le) |
13155 | 518 |
apply (auto simp add: Int_commute le_subset_iff subset_Int_iff lt_Ord) |
519 |
done |
|
520 |
||
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
521 |
lemma Ord_Un_if: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
522 |
"[| Ord(i); Ord(j) |] ==> i \<union> j = (if j<i then i else j)" |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
523 |
by (simp add: not_lt_iff_le le_imp_subset leI |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
524 |
subset_Un_iff [symmetric] subset_Un_iff2 [symmetric]) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
525 |
|
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
526 |
lemma succ_Un_distrib: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
527 |
"[| Ord(i); Ord(j) |] ==> succ(i \<union> j) = succ(i) \<union> succ(j)" |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
528 |
by (simp add: Ord_Un_if lt_Ord le_Ord2) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
529 |
|
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
530 |
lemma lt_Un_iff: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
531 |
"[| Ord(i); Ord(j) |] ==> k < i \<union> j <-> k < i | k < j"; |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
532 |
apply (simp add: Ord_Un_if not_lt_iff_le) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
533 |
apply (blast intro: leI lt_trans2)+ |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
534 |
done |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
535 |
|
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
536 |
lemma le_Un_iff: |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
537 |
"[| Ord(i); Ord(j) |] ==> k \<le> i \<union> j <-> k \<le> i | k \<le> j"; |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
538 |
by (simp add: succ_Un_distrib lt_Un_iff [symmetric]) |
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
539 |
|
13172 | 540 |
lemma Un_upper1_lt: "[|k < i; Ord(j)|] ==> k < i Un j" |
541 |
by (simp add: lt_Un_iff lt_Ord2) |
|
542 |
||
543 |
lemma Un_upper2_lt: "[|k < j; Ord(i)|] ==> k < i Un j" |
|
544 |
by (simp add: lt_Un_iff lt_Ord2) |
|
545 |
||
546 |
(*See also Transset_iff_Union_succ*) |
|
547 |
lemma Ord_Union_succ_eq: "Ord(i) ==> \<Union>(succ(i)) = i" |
|
548 |
by (blast intro: Ord_trans) |
|
549 |
||
13162
660a71e712af
New theorems from Constructible, and moving some Isar material from Main
paulson
parents:
13155
diff
changeset
|
550 |
|
13356 | 551 |
subsection{*Results about Limits*} |
13155 | 552 |
|
13172 | 553 |
lemma Ord_Union [intro,simp,TC]: "[| !!i. i:A ==> Ord(i) |] ==> Ord(Union(A))" |
13155 | 554 |
apply (rule Ord_is_Transset [THEN Transset_Union_family, THEN OrdI]) |
555 |
apply (blast intro: Ord_contains_Transset)+ |
|
556 |
done |
|
557 |
||
13172 | 558 |
lemma Ord_UN [intro,simp,TC]: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
559 |
"[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(\<Union>x\<in>A. B(x))" |
13155 | 560 |
by (rule Ord_Union, blast) |
561 |
||
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
562 |
lemma Ord_Inter [intro,simp,TC]: |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
563 |
"[| !!i. i:A ==> Ord(i) |] ==> Ord(Inter(A))" |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
564 |
apply (rule Transset_Inter_family [THEN OrdI]) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
565 |
apply (blast intro: Ord_is_Transset) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
566 |
apply (simp add: Inter_def) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
567 |
apply (blast intro: Ord_contains_Transset) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
568 |
done |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
569 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
570 |
lemma Ord_INT [intro,simp,TC]: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
571 |
"[| !!x. x:A ==> Ord(B(x)) |] ==> Ord(\<Inter>x\<in>A. B(x))" |
13203
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
572 |
by (rule Ord_Inter, blast) |
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
573 |
|
fac77a839aa2
Tidying up. Mainly moving proofs from Main.thy to other (Isar) theory files.
paulson
parents:
13172
diff
changeset
|
574 |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
575 |
(* No < version; consider (\<Union>i\<in>nat.i)=nat *) |
13155 | 576 |
lemma UN_least_le: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
577 |
"[| Ord(i); !!x. x:A ==> b(x) le i |] ==> (\<Union>x\<in>A. b(x)) le i" |
13155 | 578 |
apply (rule le_imp_subset [THEN UN_least, THEN subset_imp_le]) |
579 |
apply (blast intro: Ord_UN elim: ltE)+ |
|
580 |
done |
|
581 |
||
582 |
lemma UN_succ_least_lt: |
|
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
583 |
"[| j<i; !!x. x:A ==> b(x)<j |] ==> (\<Union>x\<in>A. succ(b(x))) < i" |
13155 | 584 |
apply (rule ltE, assumption) |
585 |
apply (rule UN_least_le [THEN lt_trans2]) |
|
586 |
apply (blast intro: succ_leI)+ |
|
587 |
done |
|
588 |
||
13172 | 589 |
lemma UN_upper_lt: |
590 |
"[| a\<in>A; i < b(a); Ord(\<Union>x\<in>A. b(x)) |] ==> i < (\<Union>x\<in>A. b(x))" |
|
591 |
by (unfold lt_def, blast) |
|
592 |
||
13155 | 593 |
lemma UN_upper_le: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
594 |
"[| a: A; i le b(a); Ord(\<Union>x\<in>A. b(x)) |] ==> i le (\<Union>x\<in>A. b(x))" |
13155 | 595 |
apply (frule ltD) |
596 |
apply (rule le_imp_subset [THEN subset_trans, THEN subset_imp_le]) |
|
597 |
apply (blast intro: lt_Ord UN_upper)+ |
|
598 |
done |
|
599 |
||
13172 | 600 |
lemma lt_Union_iff: "\<forall>i\<in>A. Ord(i) ==> (j < \<Union>(A)) <-> (\<exists>i\<in>A. j<i)" |
601 |
by (auto simp: lt_def Ord_Union) |
|
602 |
||
603 |
lemma Union_upper_le: |
|
604 |
"[| j: J; i\<le>j; Ord(\<Union>(J)) |] ==> i \<le> \<Union>J" |
|
605 |
apply (subst Union_eq_UN) |
|
606 |
apply (rule UN_upper_le, auto) |
|
607 |
done |
|
608 |
||
13155 | 609 |
lemma le_implies_UN_le_UN: |
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
610 |
"[| !!x. x:A ==> c(x) le d(x) |] ==> (\<Union>x\<in>A. c(x)) le (\<Union>x\<in>A. d(x))" |
13155 | 611 |
apply (rule UN_least_le) |
612 |
apply (rule_tac [2] UN_upper_le) |
|
613 |
apply (blast intro: Ord_UN le_Ord2)+ |
|
614 |
done |
|
615 |
||
13615
449a70d88b38
Numerous cosmetic changes, prompted by the new simplifier
paulson
parents:
13544
diff
changeset
|
616 |
lemma Ord_equality: "Ord(i) ==> (\<Union>y\<in>i. succ(y)) = i" |
13155 | 617 |
by (blast intro: Ord_trans) |
618 |
||
619 |
(*Holds for all transitive sets, not just ordinals*) |
|
620 |
lemma Ord_Union_subset: "Ord(i) ==> Union(i) <= i" |
|
621 |
by (blast intro: Ord_trans) |
|
622 |
||
623 |
||
13356 | 624 |
subsection{*Limit Ordinals -- General Properties*} |
13155 | 625 |
|
626 |
lemma Limit_Union_eq: "Limit(i) ==> Union(i) = i" |
|
627 |
apply (unfold Limit_def) |
|
628 |
apply (fast intro!: ltI elim!: ltE elim: Ord_trans) |
|
629 |
done |
|
630 |
||
631 |
lemma Limit_is_Ord: "Limit(i) ==> Ord(i)" |
|
632 |
apply (unfold Limit_def) |
|
633 |
apply (erule conjunct1) |
|
634 |
done |
|
635 |
||
636 |
lemma Limit_has_0: "Limit(i) ==> 0 < i" |
|
637 |
apply (unfold Limit_def) |
|
638 |
apply (erule conjunct2 [THEN conjunct1]) |
|
639 |
done |
|
640 |
||
13544 | 641 |
lemma Limit_nonzero: "Limit(i) ==> i ~= 0" |
642 |
by (drule Limit_has_0, blast) |
|
643 |
||
13155 | 644 |
lemma Limit_has_succ: "[| Limit(i); j<i |] ==> succ(j) < i" |
645 |
by (unfold Limit_def, blast) |
|
646 |
||
13544 | 647 |
lemma Limit_succ_lt_iff [simp]: "Limit(i) ==> succ(j) < i <-> (j<i)" |
648 |
apply (safe intro!: Limit_has_succ) |
|
649 |
apply (frule lt_Ord) |
|
650 |
apply (blast intro: lt_trans) |
|
651 |
done |
|
652 |
||
13172 | 653 |
lemma zero_not_Limit [iff]: "~ Limit(0)" |
654 |
by (simp add: Limit_def) |
|
655 |
||
656 |
lemma Limit_has_1: "Limit(i) ==> 1 < i" |
|
657 |
by (blast intro: Limit_has_0 Limit_has_succ) |
|
658 |
||
659 |
lemma increasing_LimitI: "[| 0<l; \<forall>x\<in>l. \<exists>y\<in>l. x<y |] ==> Limit(l)" |
|
13544 | 660 |
apply (unfold Limit_def, simp add: lt_Ord2, clarify) |
13172 | 661 |
apply (drule_tac i=y in ltD) |
662 |
apply (blast intro: lt_trans1 [OF _ ltI] lt_Ord2) |
|
663 |
done |
|
664 |
||
13155 | 665 |
lemma non_succ_LimitI: |
666 |
"[| 0<i; ALL y. succ(y) ~= i |] ==> Limit(i)" |
|
667 |
apply (unfold Limit_def) |
|
668 |
apply (safe del: subsetI) |
|
669 |
apply (rule_tac [2] not_le_iff_lt [THEN iffD1]) |
|
670 |
apply (simp_all add: lt_Ord lt_Ord2) |
|
671 |
apply (blast elim: leE lt_asym) |
|
672 |
done |
|
673 |
||
674 |
lemma succ_LimitE [elim!]: "Limit(succ(i)) ==> P" |
|
675 |
apply (rule lt_irrefl) |
|
676 |
apply (rule Limit_has_succ, assumption) |
|
677 |
apply (erule Limit_is_Ord [THEN Ord_succD, THEN le_refl]) |
|
678 |
done |
|
679 |
||
680 |
lemma not_succ_Limit [simp]: "~ Limit(succ(i))" |
|
681 |
by blast |
|
682 |
||
683 |
lemma Limit_le_succD: "[| Limit(i); i le succ(j) |] ==> i le j" |
|
684 |
by (blast elim!: leE) |
|
685 |
||
13172 | 686 |
|
13356 | 687 |
subsubsection{*Traditional 3-Way Case Analysis on Ordinals*} |
13155 | 688 |
|
689 |
lemma Ord_cases_disj: "Ord(i) ==> i=0 | (EX j. Ord(j) & i=succ(j)) | Limit(i)" |
|
690 |
by (blast intro!: non_succ_LimitI Ord_0_lt) |
|
691 |
||
692 |
lemma Ord_cases: |
|
693 |
"[| Ord(i); |
|
694 |
i=0 ==> P; |
|
695 |
!!j. [| Ord(j); i=succ(j) |] ==> P; |
|
696 |
Limit(i) ==> P |
|
697 |
|] ==> P" |
|
698 |
by (drule Ord_cases_disj, blast) |
|
699 |
||
13534 | 700 |
lemma trans_induct3 [case_names 0 succ limit, consumes 1]: |
13155 | 701 |
"[| Ord(i); |
702 |
P(0); |
|
703 |
!!x. [| Ord(x); P(x) |] ==> P(succ(x)); |
|
704 |
!!x. [| Limit(x); ALL y:x. P(y) |] ==> P(x) |
|
705 |
|] ==> P(i)" |
|
706 |
apply (erule trans_induct) |
|
707 |
apply (erule Ord_cases, blast+) |
|
708 |
done |
|
709 |
||
13534 | 710 |
lemmas trans_induct3_rule = trans_induct3 [rule_format, case_names 0 succ limit, consumes 1] |
711 |
||
13172 | 712 |
text{*A set of ordinals is either empty, contains its own union, or its |
713 |
union is a limit ordinal.*} |
|
714 |
lemma Ord_set_cases: |
|
715 |
"\<forall>i\<in>I. Ord(i) ==> I=0 \<or> \<Union>(I) \<in> I \<or> (\<Union>(I) \<notin> I \<and> Limit(\<Union>(I)))" |
|
716 |
apply (clarify elim!: not_emptyE) |
|
717 |
apply (cases "\<Union>(I)" rule: Ord_cases) |
|
718 |
apply (blast intro: Ord_Union) |
|
719 |
apply (blast intro: subst_elem) |
|
720 |
apply auto |
|
721 |
apply (clarify elim!: equalityE succ_subsetE) |
|
722 |
apply (simp add: Union_subset_iff) |
|
723 |
apply (subgoal_tac "B = succ(j)", blast) |
|
724 |
apply (rule le_anti_sym) |
|
725 |
apply (simp add: le_subset_iff) |
|
726 |
apply (simp add: ltI) |
|
727 |
done |
|
728 |
||
729 |
text{*If the union of a set of ordinals is a successor, then it is |
|
730 |
an element of that set.*} |
|
731 |
lemma Ord_Union_eq_succD: "[|\<forall>x\<in>X. Ord(x); \<Union>X = succ(j)|] ==> succ(j) \<in> X" |
|
732 |
by (drule Ord_set_cases, auto) |
|
733 |
||
734 |
lemma Limit_Union [rule_format]: "[| I \<noteq> 0; \<forall>i\<in>I. Limit(i) |] ==> Limit(\<Union>I)" |
|
735 |
apply (simp add: Limit_def lt_def) |
|
736 |
apply (blast intro!: equalityI) |
|
737 |
done |
|
738 |
||
13155 | 739 |
ML |
740 |
{* |
|
741 |
val Memrel_def = thm "Memrel_def"; |
|
742 |
val Transset_def = thm "Transset_def"; |
|
743 |
val Ord_def = thm "Ord_def"; |
|
744 |
val lt_def = thm "lt_def"; |
|
745 |
val Limit_def = thm "Limit_def"; |
|
746 |
||
747 |
val Transset_iff_Pow = thm "Transset_iff_Pow"; |
|
748 |
val Transset_iff_Union_succ = thm "Transset_iff_Union_succ"; |
|
749 |
val Transset_iff_Union_subset = thm "Transset_iff_Union_subset"; |
|
750 |
val Transset_doubleton_D = thm "Transset_doubleton_D"; |
|
751 |
val Transset_Pair_D = thm "Transset_Pair_D"; |
|
752 |
val Transset_includes_domain = thm "Transset_includes_domain"; |
|
753 |
val Transset_includes_range = thm "Transset_includes_range"; |
|
754 |
val Transset_0 = thm "Transset_0"; |
|
755 |
val Transset_Un = thm "Transset_Un"; |
|
756 |
val Transset_Int = thm "Transset_Int"; |
|
757 |
val Transset_succ = thm "Transset_succ"; |
|
758 |
val Transset_Pow = thm "Transset_Pow"; |
|
759 |
val Transset_Union = thm "Transset_Union"; |
|
760 |
val Transset_Union_family = thm "Transset_Union_family"; |
|
761 |
val Transset_Inter_family = thm "Transset_Inter_family"; |
|
762 |
val OrdI = thm "OrdI"; |
|
763 |
val Ord_is_Transset = thm "Ord_is_Transset"; |
|
764 |
val Ord_contains_Transset = thm "Ord_contains_Transset"; |
|
765 |
val Ord_in_Ord = thm "Ord_in_Ord"; |
|
766 |
val Ord_succD = thm "Ord_succD"; |
|
767 |
val Ord_subset_Ord = thm "Ord_subset_Ord"; |
|
768 |
val OrdmemD = thm "OrdmemD"; |
|
769 |
val Ord_trans = thm "Ord_trans"; |
|
770 |
val Ord_succ_subsetI = thm "Ord_succ_subsetI"; |
|
771 |
val Ord_0 = thm "Ord_0"; |
|
772 |
val Ord_succ = thm "Ord_succ"; |
|
773 |
val Ord_1 = thm "Ord_1"; |
|
774 |
val Ord_succ_iff = thm "Ord_succ_iff"; |
|
775 |
val Ord_Un = thm "Ord_Un"; |
|
776 |
val Ord_Int = thm "Ord_Int"; |
|
777 |
val Ord_Inter = thm "Ord_Inter"; |
|
778 |
val Ord_INT = thm "Ord_INT"; |
|
779 |
val ON_class = thm "ON_class"; |
|
780 |
val ltI = thm "ltI"; |
|
781 |
val ltE = thm "ltE"; |
|
782 |
val ltD = thm "ltD"; |
|
783 |
val not_lt0 = thm "not_lt0"; |
|
784 |
val lt_Ord = thm "lt_Ord"; |
|
785 |
val lt_Ord2 = thm "lt_Ord2"; |
|
786 |
val le_Ord2 = thm "le_Ord2"; |
|
787 |
val lt0E = thm "lt0E"; |
|
788 |
val lt_trans = thm "lt_trans"; |
|
789 |
val lt_not_sym = thm "lt_not_sym"; |
|
790 |
val lt_asym = thm "lt_asym"; |
|
791 |
val lt_irrefl = thm "lt_irrefl"; |
|
792 |
val lt_not_refl = thm "lt_not_refl"; |
|
793 |
val le_iff = thm "le_iff"; |
|
794 |
val leI = thm "leI"; |
|
795 |
val le_eqI = thm "le_eqI"; |
|
796 |
val le_refl = thm "le_refl"; |
|
797 |
val le_refl_iff = thm "le_refl_iff"; |
|
798 |
val leCI = thm "leCI"; |
|
799 |
val leE = thm "leE"; |
|
800 |
val le_anti_sym = thm "le_anti_sym"; |
|
801 |
val le0_iff = thm "le0_iff"; |
|
802 |
val le0D = thm "le0D"; |
|
803 |
val Memrel_iff = thm "Memrel_iff"; |
|
804 |
val MemrelI = thm "MemrelI"; |
|
805 |
val MemrelE = thm "MemrelE"; |
|
806 |
val Memrel_type = thm "Memrel_type"; |
|
807 |
val Memrel_mono = thm "Memrel_mono"; |
|
808 |
val Memrel_0 = thm "Memrel_0"; |
|
809 |
val Memrel_1 = thm "Memrel_1"; |
|
810 |
val wf_Memrel = thm "wf_Memrel"; |
|
811 |
val trans_Memrel = thm "trans_Memrel"; |
|
812 |
val Transset_Memrel_iff = thm "Transset_Memrel_iff"; |
|
813 |
val Transset_induct = thm "Transset_induct"; |
|
814 |
val Ord_induct = thm "Ord_induct"; |
|
815 |
val trans_induct = thm "trans_induct"; |
|
816 |
val Ord_linear = thm "Ord_linear"; |
|
817 |
val Ord_linear_lt = thm "Ord_linear_lt"; |
|
818 |
val Ord_linear2 = thm "Ord_linear2"; |
|
819 |
val Ord_linear_le = thm "Ord_linear_le"; |
|
820 |
val le_imp_not_lt = thm "le_imp_not_lt"; |
|
821 |
val not_lt_imp_le = thm "not_lt_imp_le"; |
|
822 |
val Ord_mem_iff_lt = thm "Ord_mem_iff_lt"; |
|
823 |
val not_lt_iff_le = thm "not_lt_iff_le"; |
|
824 |
val not_le_iff_lt = thm "not_le_iff_lt"; |
|
825 |
val Ord_0_le = thm "Ord_0_le"; |
|
826 |
val Ord_0_lt = thm "Ord_0_lt"; |
|
827 |
val Ord_0_lt_iff = thm "Ord_0_lt_iff"; |
|
828 |
val zero_le_succ_iff = thm "zero_le_succ_iff"; |
|
829 |
val subset_imp_le = thm "subset_imp_le"; |
|
830 |
val le_imp_subset = thm "le_imp_subset"; |
|
831 |
val le_subset_iff = thm "le_subset_iff"; |
|
832 |
val le_succ_iff = thm "le_succ_iff"; |
|
833 |
val all_lt_imp_le = thm "all_lt_imp_le"; |
|
834 |
val lt_trans1 = thm "lt_trans1"; |
|
835 |
val lt_trans2 = thm "lt_trans2"; |
|
836 |
val le_trans = thm "le_trans"; |
|
837 |
val succ_leI = thm "succ_leI"; |
|
838 |
val succ_leE = thm "succ_leE"; |
|
839 |
val succ_le_iff = thm "succ_le_iff"; |
|
840 |
val succ_le_imp_le = thm "succ_le_imp_le"; |
|
841 |
val lt_subset_trans = thm "lt_subset_trans"; |
|
842 |
val Un_upper1_le = thm "Un_upper1_le"; |
|
843 |
val Un_upper2_le = thm "Un_upper2_le"; |
|
844 |
val Un_least_lt = thm "Un_least_lt"; |
|
845 |
val Un_least_lt_iff = thm "Un_least_lt_iff"; |
|
846 |
val Un_least_mem_iff = thm "Un_least_mem_iff"; |
|
847 |
val Int_greatest_lt = thm "Int_greatest_lt"; |
|
848 |
val Ord_Union = thm "Ord_Union"; |
|
849 |
val Ord_UN = thm "Ord_UN"; |
|
850 |
val UN_least_le = thm "UN_least_le"; |
|
851 |
val UN_succ_least_lt = thm "UN_succ_least_lt"; |
|
852 |
val UN_upper_le = thm "UN_upper_le"; |
|
853 |
val le_implies_UN_le_UN = thm "le_implies_UN_le_UN"; |
|
854 |
val Ord_equality = thm "Ord_equality"; |
|
855 |
val Ord_Union_subset = thm "Ord_Union_subset"; |
|
856 |
val Limit_Union_eq = thm "Limit_Union_eq"; |
|
857 |
val Limit_is_Ord = thm "Limit_is_Ord"; |
|
858 |
val Limit_has_0 = thm "Limit_has_0"; |
|
859 |
val Limit_has_succ = thm "Limit_has_succ"; |
|
860 |
val non_succ_LimitI = thm "non_succ_LimitI"; |
|
861 |
val succ_LimitE = thm "succ_LimitE"; |
|
862 |
val not_succ_Limit = thm "not_succ_Limit"; |
|
863 |
val Limit_le_succD = thm "Limit_le_succD"; |
|
864 |
val Ord_cases_disj = thm "Ord_cases_disj"; |
|
865 |
val Ord_cases = thm "Ord_cases"; |
|
866 |
val trans_induct3 = thm "trans_induct3"; |
|
867 |
*} |
|
435 | 868 |
|
869 |
end |