author | wenzelm |
Fri, 25 Apr 2014 23:29:54 +0200 | |
changeset 56732 | da3fefcb43c3 |
parent 56545 | 8f1e7596deb7 |
child 57129 | 7edb7550663e |
permissions | -rw-r--r-- |
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1 |
(* Title: HOL/Groups_Big.thy |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
2 |
Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
3 |
with contributions by Jeremy Avigad |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
4 |
*) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
5 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
6 |
header {* Big sum and product over finite (non-empty) sets *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
7 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
8 |
theory Groups_Big |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
9 |
imports Finite_Set |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
10 |
begin |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
11 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
12 |
subsection {* Generic monoid operation over a set *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
13 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
14 |
no_notation times (infixl "*" 70) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
15 |
no_notation Groups.one ("1") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
16 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
17 |
locale comm_monoid_set = comm_monoid |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
18 |
begin |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
19 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
20 |
interpretation comp_fun_commute f |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
21 |
by default (simp add: fun_eq_iff left_commute) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
22 |
|
54745 | 23 |
interpretation comp?: comp_fun_commute "f \<circ> g" |
24 |
by (fact comp_comp_fun_commute) |
|
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
25 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
26 |
definition F :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
27 |
where |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
28 |
eq_fold: "F g A = Finite_Set.fold (f \<circ> g) 1 A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
29 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
30 |
lemma infinite [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
31 |
"\<not> finite A \<Longrightarrow> F g A = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
32 |
by (simp add: eq_fold) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
33 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
34 |
lemma empty [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
35 |
"F g {} = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
36 |
by (simp add: eq_fold) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
37 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
38 |
lemma insert [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
39 |
assumes "finite A" and "x \<notin> A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
40 |
shows "F g (insert x A) = g x * F g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
41 |
using assms by (simp add: eq_fold) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
42 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
43 |
lemma remove: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
44 |
assumes "finite A" and "x \<in> A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
45 |
shows "F g A = g x * F g (A - {x})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
46 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
47 |
from `x \<in> A` obtain B where A: "A = insert x B" and "x \<notin> B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
48 |
by (auto dest: mk_disjoint_insert) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
49 |
moreover from `finite A` A have "finite B" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
50 |
ultimately show ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
51 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
52 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
53 |
lemma insert_remove: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
54 |
assumes "finite A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
55 |
shows "F g (insert x A) = g x * F g (A - {x})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
56 |
using assms by (cases "x \<in> A") (simp_all add: remove insert_absorb) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
57 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
58 |
lemma neutral: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
59 |
assumes "\<forall>x\<in>A. g x = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
60 |
shows "F g A = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
61 |
using assms by (induct A rule: infinite_finite_induct) simp_all |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
62 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
63 |
lemma neutral_const [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
64 |
"F (\<lambda>_. 1) A = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
65 |
by (simp add: neutral) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
66 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
67 |
lemma union_inter: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
68 |
assumes "finite A" and "finite B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
69 |
shows "F g (A \<union> B) * F g (A \<inter> B) = F g A * F g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
70 |
-- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
71 |
using assms proof (induct A) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
72 |
case empty then show ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
73 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
74 |
case (insert x A) then show ?case |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
75 |
by (auto simp add: insert_absorb Int_insert_left commute [of _ "g x"] assoc left_commute) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
76 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
77 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
78 |
corollary union_inter_neutral: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
79 |
assumes "finite A" and "finite B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
80 |
and I0: "\<forall>x \<in> A \<inter> B. g x = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
81 |
shows "F g (A \<union> B) = F g A * F g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
82 |
using assms by (simp add: union_inter [symmetric] neutral) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
83 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
84 |
corollary union_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
85 |
assumes "finite A" and "finite B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
86 |
assumes "A \<inter> B = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
87 |
shows "F g (A \<union> B) = F g A * F g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
88 |
using assms by (simp add: union_inter_neutral) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
89 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
90 |
lemma subset_diff: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
91 |
assumes "B \<subseteq> A" and "finite A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
92 |
shows "F g A = F g (A - B) * F g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
93 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
94 |
from assms have "finite (A - B)" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
95 |
moreover from assms have "finite B" by (rule finite_subset) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
96 |
moreover from assms have "(A - B) \<inter> B = {}" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
97 |
ultimately have "F g (A - B \<union> B) = F g (A - B) * F g B" by (rule union_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
98 |
moreover from assms have "A \<union> B = A" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
99 |
ultimately show ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
100 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
101 |
|
56545 | 102 |
lemma setdiff_irrelevant: |
103 |
assumes "finite A" |
|
104 |
shows "F g (A - {x. g x = z}) = F g A" |
|
105 |
using assms by (induct A) (simp_all add: insert_Diff_if) |
|
106 |
||
107 |
lemma not_neutral_contains_not_neutral: |
|
108 |
assumes "F g A \<noteq> z" |
|
109 |
obtains a where "a \<in> A" and "g a \<noteq> z" |
|
110 |
proof - |
|
111 |
from assms have "\<exists>a\<in>A. g a \<noteq> z" |
|
112 |
proof (induct A rule: infinite_finite_induct) |
|
113 |
case (insert a A) |
|
114 |
then show ?case by simp (rule, simp) |
|
115 |
qed simp_all |
|
116 |
with that show thesis by blast |
|
117 |
qed |
|
118 |
||
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
119 |
lemma reindex: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
120 |
assumes "inj_on h A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
121 |
shows "F g (h ` A) = F (g \<circ> h) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
122 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
123 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
124 |
with assms show ?thesis by (simp add: eq_fold fold_image comp_assoc) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
125 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
126 |
case False with assms have "\<not> finite (h ` A)" by (blast dest: finite_imageD) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
127 |
with False show ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
128 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
129 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
130 |
lemma cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
131 |
assumes "A = B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
132 |
assumes g_h: "\<And>x. x \<in> B \<Longrightarrow> g x = h x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
133 |
shows "F g A = F h B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
134 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
135 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
136 |
then have "\<And>C. C \<subseteq> A \<longrightarrow> (\<forall>x\<in>C. g x = h x) \<longrightarrow> F g C = F h C" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
137 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
138 |
case empty then show ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
139 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
140 |
case (insert x F) then show ?case apply - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
141 |
apply (simp add: subset_insert_iff, clarify) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
142 |
apply (subgoal_tac "finite C") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
143 |
prefer 2 apply (blast dest: finite_subset [rotated]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
144 |
apply (subgoal_tac "C = insert x (C - {x})") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
145 |
prefer 2 apply blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
146 |
apply (erule ssubst) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
147 |
apply (simp add: Ball_def del: insert_Diff_single) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
148 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
149 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
150 |
with `A = B` g_h show ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
151 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
152 |
case False |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
153 |
with `A = B` show ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
154 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
155 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
156 |
lemma strong_cong [cong]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
157 |
assumes "A = B" "\<And>x. x \<in> B =simp=> g x = h x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
158 |
shows "F (\<lambda>x. g x) A = F (\<lambda>x. h x) B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
159 |
by (rule cong) (insert assms, simp_all add: simp_implies_def) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
160 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
161 |
lemma UNION_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
162 |
assumes "finite I" and "\<forall>i\<in>I. finite (A i)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
163 |
and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
164 |
shows "F g (UNION I A) = F (\<lambda>x. F g (A x)) I" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
165 |
apply (insert assms) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
166 |
apply (induct rule: finite_induct) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
167 |
apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
168 |
apply atomize |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
169 |
apply (subgoal_tac "\<forall>i\<in>Fa. x \<noteq> i") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
170 |
prefer 2 apply blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
171 |
apply (subgoal_tac "A x Int UNION Fa A = {}") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
172 |
prefer 2 apply blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
173 |
apply (simp add: union_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
174 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
175 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
176 |
lemma Union_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
177 |
assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A \<inter> B = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
178 |
shows "F g (Union C) = F (F g) C" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
179 |
proof cases |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
180 |
assume "finite C" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
181 |
from UNION_disjoint [OF this assms] |
56166 | 182 |
show ?thesis by simp |
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
183 |
qed (auto dest: finite_UnionD intro: infinite) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
184 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
185 |
lemma distrib: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
186 |
"F (\<lambda>x. g x * h x) A = F g A * F h A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
187 |
using assms by (induct A rule: infinite_finite_induct) (simp_all add: assoc commute left_commute) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
188 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
189 |
lemma Sigma: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
190 |
"finite A \<Longrightarrow> \<forall>x\<in>A. finite (B x) \<Longrightarrow> F (\<lambda>x. F (g x) (B x)) A = F (split g) (SIGMA x:A. B x)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
191 |
apply (subst Sigma_def) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
192 |
apply (subst UNION_disjoint, assumption, simp) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
193 |
apply blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
194 |
apply (rule cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
195 |
apply rule |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
196 |
apply (simp add: fun_eq_iff) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
197 |
apply (subst UNION_disjoint, simp, simp) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
198 |
apply blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
199 |
apply (simp add: comp_def) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
200 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
201 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
202 |
lemma related: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
203 |
assumes Re: "R 1 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
204 |
and Rop: "\<forall>x1 y1 x2 y2. R x1 x2 \<and> R y1 y2 \<longrightarrow> R (x1 * y1) (x2 * y2)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
205 |
and fS: "finite S" and Rfg: "\<forall>x\<in>S. R (h x) (g x)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
206 |
shows "R (F h S) (F g S)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
207 |
using fS by (rule finite_subset_induct) (insert assms, auto) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
208 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
209 |
lemma eq_general: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
210 |
assumes h: "\<forall>y\<in>S'. \<exists>!x. x \<in> S \<and> h x = y" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
211 |
and f12: "\<forall>x\<in>S. h x \<in> S' \<and> f2 (h x) = f1 x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
212 |
shows "F f1 S = F f2 S'" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
213 |
proof- |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
214 |
from h f12 have hS: "h ` S = S'" by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
215 |
{fix x y assume H: "x \<in> S" "y \<in> S" "h x = h y" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
216 |
from f12 h H have "x = y" by auto } |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
217 |
hence hinj: "inj_on h S" unfolding inj_on_def Ex1_def by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
218 |
from f12 have th: "\<And>x. x \<in> S \<Longrightarrow> (f2 \<circ> h) x = f1 x" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
219 |
from hS have "F f2 S' = F f2 (h ` S)" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
220 |
also have "\<dots> = F (f2 o h) S" using reindex [OF hinj, of f2] . |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
221 |
also have "\<dots> = F f1 S " using th cong [of _ _ "f2 o h" f1] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
222 |
by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
223 |
finally show ?thesis .. |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
224 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
225 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
226 |
lemma eq_general_reverses: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
227 |
assumes kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
228 |
and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = j x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
229 |
shows "F j S = F g T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
230 |
(* metis solves it, but not yet available here *) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
231 |
apply (rule eq_general [of T S h g j]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
232 |
apply (rule ballI) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
233 |
apply (frule kh) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
234 |
apply (rule ex1I[]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
235 |
apply blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
236 |
apply clarsimp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
237 |
apply (drule hk) apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
238 |
apply (rule sym) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
239 |
apply (erule conjunct1[OF conjunct2[OF hk]]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
240 |
apply (rule ballI) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
241 |
apply (drule hk) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
242 |
apply blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
243 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
244 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
245 |
lemma mono_neutral_cong_left: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
246 |
assumes "finite T" and "S \<subseteq> T" and "\<forall>i \<in> T - S. h i = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
247 |
and "\<And>x. x \<in> S \<Longrightarrow> g x = h x" shows "F g S = F h T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
248 |
proof- |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
249 |
have eq: "T = S \<union> (T - S)" using `S \<subseteq> T` by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
250 |
have d: "S \<inter> (T - S) = {}" using `S \<subseteq> T` by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
251 |
from `finite T` `S \<subseteq> T` have f: "finite S" "finite (T - S)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
252 |
by (auto intro: finite_subset) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
253 |
show ?thesis using assms(4) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
254 |
by (simp add: union_disjoint [OF f d, unfolded eq [symmetric]] neutral [OF assms(3)]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
255 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
256 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
257 |
lemma mono_neutral_cong_right: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
258 |
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1; \<And>x. x \<in> S \<Longrightarrow> g x = h x \<rbrakk> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
259 |
\<Longrightarrow> F g T = F h S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
260 |
by (auto intro!: mono_neutral_cong_left [symmetric]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
261 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
262 |
lemma mono_neutral_left: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
263 |
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g S = F g T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
264 |
by (blast intro: mono_neutral_cong_left) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
265 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
266 |
lemma mono_neutral_right: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
267 |
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1 \<rbrakk> \<Longrightarrow> F g T = F g S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
268 |
by (blast intro!: mono_neutral_left [symmetric]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
269 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
270 |
lemma delta: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
271 |
assumes fS: "finite S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
272 |
shows "F (\<lambda>k. if k = a then b k else 1) S = (if a \<in> S then b a else 1)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
273 |
proof- |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
274 |
let ?f = "(\<lambda>k. if k=a then b k else 1)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
275 |
{ assume a: "a \<notin> S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
276 |
hence "\<forall>k\<in>S. ?f k = 1" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
277 |
hence ?thesis using a by simp } |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
278 |
moreover |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
279 |
{ assume a: "a \<in> S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
280 |
let ?A = "S - {a}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
281 |
let ?B = "{a}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
282 |
have eq: "S = ?A \<union> ?B" using a by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
283 |
have dj: "?A \<inter> ?B = {}" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
284 |
from fS have fAB: "finite ?A" "finite ?B" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
285 |
have "F ?f S = F ?f ?A * F ?f ?B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
286 |
using union_disjoint [OF fAB dj, of ?f, unfolded eq [symmetric]] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
287 |
by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
288 |
then have ?thesis using a by simp } |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
289 |
ultimately show ?thesis by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
290 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
291 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
292 |
lemma delta': |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
293 |
assumes fS: "finite S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
294 |
shows "F (\<lambda>k. if a = k then b k else 1) S = (if a \<in> S then b a else 1)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
295 |
using delta [OF fS, of a b, symmetric] by (auto intro: cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
296 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
297 |
lemma If_cases: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
298 |
fixes P :: "'b \<Rightarrow> bool" and g h :: "'b \<Rightarrow> 'a" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
299 |
assumes fA: "finite A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
300 |
shows "F (\<lambda>x. if P x then h x else g x) A = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
301 |
F h (A \<inter> {x. P x}) * F g (A \<inter> - {x. P x})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
302 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
303 |
have a: "A = A \<inter> {x. P x} \<union> A \<inter> -{x. P x}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
304 |
"(A \<inter> {x. P x}) \<inter> (A \<inter> -{x. P x}) = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
305 |
by blast+ |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
306 |
from fA |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
307 |
have f: "finite (A \<inter> {x. P x})" "finite (A \<inter> -{x. P x})" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
308 |
let ?g = "\<lambda>x. if P x then h x else g x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
309 |
from union_disjoint [OF f a(2), of ?g] a(1) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
310 |
show ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
311 |
by (subst (1 2) cong) simp_all |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
312 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
313 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
314 |
lemma cartesian_product: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
315 |
"F (\<lambda>x. F (g x) B) A = F (split g) (A <*> B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
316 |
apply (rule sym) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
317 |
apply (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
318 |
apply (cases "finite B") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
319 |
apply (simp add: Sigma) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
320 |
apply (cases "A={}", simp) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
321 |
apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
322 |
apply (auto intro: infinite dest: finite_cartesian_productD2) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
323 |
apply (cases "B = {}") apply (auto intro: infinite dest: finite_cartesian_productD1) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
324 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
325 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
326 |
end |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
327 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
328 |
notation times (infixl "*" 70) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
329 |
notation Groups.one ("1") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
330 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
331 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
332 |
subsection {* Generalized summation over a set *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
333 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
334 |
context comm_monoid_add |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
335 |
begin |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
336 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
337 |
definition setsum :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
338 |
where |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
339 |
"setsum = comm_monoid_set.F plus 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
340 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
341 |
sublocale setsum!: comm_monoid_set plus 0 |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
342 |
where |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
343 |
"comm_monoid_set.F plus 0 = setsum" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
344 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
345 |
show "comm_monoid_set plus 0" .. |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
346 |
then interpret setsum!: comm_monoid_set plus 0 . |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
347 |
from setsum_def show "comm_monoid_set.F plus 0 = setsum" by rule |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
348 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
349 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
350 |
abbreviation |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
351 |
Setsum ("\<Sum>_" [1000] 999) where |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
352 |
"\<Sum>A \<equiv> setsum (%x. x) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
353 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
354 |
end |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
355 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
356 |
text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
357 |
written @{text"\<Sum>x\<in>A. e"}. *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
358 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
359 |
syntax |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
360 |
"_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3SUM _:_. _)" [0, 51, 10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
361 |
syntax (xsymbols) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
362 |
"_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
363 |
syntax (HTML output) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
364 |
"_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add" ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
365 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
366 |
translations -- {* Beware of argument permutation! *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
367 |
"SUM i:A. b" == "CONST setsum (%i. b) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
368 |
"\<Sum>i\<in>A. b" == "CONST setsum (%i. b) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
369 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
370 |
text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
371 |
@{text"\<Sum>x|P. e"}. *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
372 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
373 |
syntax |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
374 |
"_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
375 |
syntax (xsymbols) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
376 |
"_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
377 |
syntax (HTML output) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
378 |
"_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
379 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
380 |
translations |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
381 |
"SUM x|P. t" => "CONST setsum (%x. t) {x. P}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
382 |
"\<Sum>x|P. t" => "CONST setsum (%x. t) {x. P}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
383 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
384 |
print_translation {* |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
385 |
let |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
386 |
fun setsum_tr' [Abs (x, Tx, t), Const (@{const_syntax Collect}, _) $ Abs (y, Ty, P)] = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
387 |
if x <> y then raise Match |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
388 |
else |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
389 |
let |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
390 |
val x' = Syntax_Trans.mark_bound_body (x, Tx); |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
391 |
val t' = subst_bound (x', t); |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
392 |
val P' = subst_bound (x', P); |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
393 |
in |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
394 |
Syntax.const @{syntax_const "_qsetsum"} $ Syntax_Trans.mark_bound_abs (x, Tx) $ P' $ t' |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
395 |
end |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
396 |
| setsum_tr' _ = raise Match; |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
397 |
in [(@{const_syntax setsum}, K setsum_tr')] end |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
398 |
*} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
399 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
400 |
text {* TODO These are candidates for generalization *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
401 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
402 |
context comm_monoid_add |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
403 |
begin |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
404 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
405 |
lemma setsum_reindex_id: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
406 |
"inj_on f B ==> setsum f B = setsum id (f ` B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
407 |
by (simp add: setsum.reindex) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
408 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
409 |
lemma setsum_reindex_nonzero: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
410 |
assumes fS: "finite S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
411 |
and nz: "\<And>x y. x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x \<noteq> y \<Longrightarrow> f x = f y \<Longrightarrow> h (f x) = 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
412 |
shows "setsum h (f ` S) = setsum (h \<circ> f) S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
413 |
using nz proof (induct rule: finite_induct [OF fS]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
414 |
case 1 thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
415 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
416 |
case (2 x F) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
417 |
{ assume fxF: "f x \<in> f ` F" hence "\<exists>y \<in> F . f y = f x" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
418 |
then obtain y where y: "y \<in> F" "f x = f y" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
419 |
from "2.hyps" y have xy: "x \<noteq> y" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
420 |
from "2.prems" [of x y] "2.hyps" xy y have h0: "h (f x) = 0" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
421 |
have "setsum h (f ` insert x F) = setsum h (f ` F)" using fxF by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
422 |
also have "\<dots> = setsum (h o f) (insert x F)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
423 |
unfolding setsum.insert[OF `finite F` `x\<notin>F`] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
424 |
using h0 |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
425 |
apply (simp cong del: setsum.strong_cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
426 |
apply (rule "2.hyps"(3)) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
427 |
apply (rule_tac y="y" in "2.prems") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
428 |
apply simp_all |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
429 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
430 |
finally have ?case . } |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
431 |
moreover |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
432 |
{ assume fxF: "f x \<notin> f ` F" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
433 |
have "setsum h (f ` insert x F) = h (f x) + setsum h (f ` F)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
434 |
using fxF "2.hyps" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
435 |
also have "\<dots> = setsum (h o f) (insert x F)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
436 |
unfolding setsum.insert[OF `finite F` `x\<notin>F`] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
437 |
apply (simp cong del: setsum.strong_cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
438 |
apply (rule cong [OF refl [of "op + (h (f x))"]]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
439 |
apply (rule "2.hyps"(3)) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
440 |
apply (rule_tac y="y" in "2.prems") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
441 |
apply simp_all |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
442 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
443 |
finally have ?case . } |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
444 |
ultimately show ?case by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
445 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
446 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
447 |
lemma setsum_cong2: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
448 |
"(\<And>x. x \<in> A \<Longrightarrow> f x = g x) \<Longrightarrow> setsum f A = setsum g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
449 |
by (auto intro: setsum.cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
450 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
451 |
lemma setsum_reindex_cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
452 |
"[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
453 |
==> setsum h B = setsum g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
454 |
by (simp add: setsum.reindex) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
455 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
456 |
lemma setsum_restrict_set: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
457 |
assumes fA: "finite A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
458 |
shows "setsum f (A \<inter> B) = setsum (\<lambda>x. if x \<in> B then f x else 0) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
459 |
proof- |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
460 |
from fA have fab: "finite (A \<inter> B)" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
461 |
have aba: "A \<inter> B \<subseteq> A" by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
462 |
let ?g = "\<lambda>x. if x \<in> A\<inter>B then f x else 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
463 |
from setsum.mono_neutral_left [OF fA aba, of ?g] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
464 |
show ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
465 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
466 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
467 |
lemma setsum_Union_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
468 |
assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A Int B = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
469 |
shows "setsum f (Union C) = setsum (setsum f) C" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
470 |
using assms by (fact setsum.Union_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
471 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
472 |
lemma setsum_cartesian_product: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
473 |
"(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
474 |
by (fact setsum.cartesian_product) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
475 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
476 |
lemma setsum_UNION_zero: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
477 |
assumes fS: "finite S" and fSS: "\<forall>T \<in> S. finite T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
478 |
and f0: "\<And>T1 T2 x. T1\<in>S \<Longrightarrow> T2\<in>S \<Longrightarrow> T1 \<noteq> T2 \<Longrightarrow> x \<in> T1 \<Longrightarrow> x \<in> T2 \<Longrightarrow> f x = 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
479 |
shows "setsum f (\<Union>S) = setsum (\<lambda>T. setsum f T) S" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
480 |
using fSS f0 |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
481 |
proof(induct rule: finite_induct[OF fS]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
482 |
case 1 thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
483 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
484 |
case (2 T F) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
485 |
then have fTF: "finite T" "\<forall>T\<in>F. finite T" "finite F" and TF: "T \<notin> F" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
486 |
and H: "setsum f (\<Union> F) = setsum (setsum f) F" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
487 |
from fTF have fUF: "finite (\<Union>F)" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
488 |
from "2.prems" TF fTF |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
489 |
show ?case |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
490 |
by (auto simp add: H [symmetric] intro: setsum.union_inter_neutral [OF fTF(1) fUF, of f]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
491 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
492 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
493 |
text {* Commuting outer and inner summation *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
494 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
495 |
lemma setsum_commute: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
496 |
"(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
497 |
proof (simp add: setsum_cartesian_product) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
498 |
have "(\<Sum>(x,y) \<in> A <*> B. f x y) = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
499 |
(\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
500 |
(is "?s = _") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
501 |
apply (simp add: setsum.reindex [where h = "%(i, j). (j, i)"] swap_inj_on) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
502 |
apply (simp add: split_def) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
503 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
504 |
also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
505 |
(is "_ = ?t") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
506 |
apply (simp add: swap_product) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
507 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
508 |
finally show "?s = ?t" . |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
509 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
510 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
511 |
lemma setsum_Plus: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
512 |
fixes A :: "'a set" and B :: "'b set" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
513 |
assumes fin: "finite A" "finite B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
514 |
shows "setsum f (A <+> B) = setsum (f \<circ> Inl) A + setsum (f \<circ> Inr) B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
515 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
516 |
have "A <+> B = Inl ` A \<union> Inr ` B" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
517 |
moreover from fin have "finite (Inl ` A :: ('a + 'b) set)" "finite (Inr ` B :: ('a + 'b) set)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
518 |
by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
519 |
moreover have "Inl ` A \<inter> Inr ` B = ({} :: ('a + 'b) set)" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
520 |
moreover have "inj_on (Inl :: 'a \<Rightarrow> 'a + 'b) A" "inj_on (Inr :: 'b \<Rightarrow> 'a + 'b) B" by(auto intro: inj_onI) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
521 |
ultimately show ?thesis using fin by(simp add: setsum.union_disjoint setsum.reindex) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
522 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
523 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
524 |
end |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
525 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
526 |
text {* TODO These are legacy *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
527 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
528 |
lemma setsum_empty: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
529 |
"setsum f {} = 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
530 |
by (fact setsum.empty) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
531 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
532 |
lemma setsum_insert: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
533 |
"finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
534 |
by (fact setsum.insert) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
535 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
536 |
lemma setsum_infinite: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
537 |
"~ finite A ==> setsum f A = 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
538 |
by (fact setsum.infinite) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
539 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
540 |
lemma setsum_reindex: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
541 |
"inj_on f B \<Longrightarrow> setsum h (f ` B) = setsum (h \<circ> f) B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
542 |
by (fact setsum.reindex) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
543 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
544 |
lemma setsum_cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
545 |
"A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
546 |
by (fact setsum.cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
547 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
548 |
lemma strong_setsum_cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
549 |
"A = B ==> (!!x. x:B =simp=> f x = g x) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
550 |
==> setsum (%x. f x) A = setsum (%x. g x) B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
551 |
by (fact setsum.strong_cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
552 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
553 |
lemmas setsum_0 = setsum.neutral_const |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
554 |
lemmas setsum_0' = setsum.neutral |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
555 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
556 |
lemma setsum_Un_Int: "finite A ==> finite B ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
557 |
setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
558 |
-- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
559 |
by (fact setsum.union_inter) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
560 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
561 |
lemma setsum_Un_disjoint: "finite A ==> finite B |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
562 |
==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
563 |
by (fact setsum.union_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
564 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
565 |
lemma setsum_subset_diff: "\<lbrakk> B \<subseteq> A; finite A \<rbrakk> \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
566 |
setsum f A = setsum f (A - B) + setsum f B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
567 |
by (fact setsum.subset_diff) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
568 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
569 |
lemma setsum_mono_zero_left: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
570 |
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. f i = 0 \<rbrakk> \<Longrightarrow> setsum f S = setsum f T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
571 |
by (fact setsum.mono_neutral_left) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
572 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
573 |
lemmas setsum_mono_zero_right = setsum.mono_neutral_right |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
574 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
575 |
lemma setsum_mono_zero_cong_left: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
576 |
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 0; \<And>x. x \<in> S \<Longrightarrow> f x = g x \<rbrakk> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
577 |
\<Longrightarrow> setsum f S = setsum g T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
578 |
by (fact setsum.mono_neutral_cong_left) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
579 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
580 |
lemmas setsum_mono_zero_cong_right = setsum.mono_neutral_cong_right |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
581 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
582 |
lemma setsum_delta: "finite S \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
583 |
setsum (\<lambda>k. if k=a then b k else 0) S = (if a \<in> S then b a else 0)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
584 |
by (fact setsum.delta) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
585 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
586 |
lemma setsum_delta': "finite S \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
587 |
setsum (\<lambda>k. if a = k then b k else 0) S = (if a\<in> S then b a else 0)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
588 |
by (fact setsum.delta') |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
589 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
590 |
lemma setsum_cases: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
591 |
assumes "finite A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
592 |
shows "setsum (\<lambda>x. if P x then f x else g x) A = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
593 |
setsum f (A \<inter> {x. P x}) + setsum g (A \<inter> - {x. P x})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
594 |
using assms by (fact setsum.If_cases) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
595 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
596 |
(*But we can't get rid of finite I. If infinite, although the rhs is 0, |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
597 |
the lhs need not be, since UNION I A could still be finite.*) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
598 |
lemma setsum_UN_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
599 |
assumes "finite I" and "ALL i:I. finite (A i)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
600 |
and "ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
601 |
shows "setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
602 |
using assms by (fact setsum.UNION_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
603 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
604 |
(*But we can't get rid of finite A. If infinite, although the lhs is 0, |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
605 |
the rhs need not be, since SIGMA A B could still be finite.*) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
606 |
lemma setsum_Sigma: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
607 |
assumes "finite A" and "ALL x:A. finite (B x)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
608 |
shows "(\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
609 |
using assms by (fact setsum.Sigma) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
610 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
611 |
lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
612 |
by (fact setsum.distrib) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
613 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
614 |
lemma setsum_Un_zero: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
615 |
"\<lbrakk> finite S; finite T; \<forall>x \<in> S\<inter>T. f x = 0 \<rbrakk> \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
616 |
setsum f (S \<union> T) = setsum f S + setsum f T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
617 |
by (fact setsum.union_inter_neutral) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
618 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
619 |
lemma setsum_eq_general_reverses: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
620 |
assumes fS: "finite S" and fT: "finite T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
621 |
and kh: "\<And>y. y \<in> T \<Longrightarrow> k y \<in> S \<and> h (k y) = y" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
622 |
and hk: "\<And>x. x \<in> S \<Longrightarrow> h x \<in> T \<and> k (h x) = x \<and> g (h x) = f x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
623 |
shows "setsum f S = setsum g T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
624 |
using kh hk by (fact setsum.eq_general_reverses) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
625 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
626 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
627 |
subsubsection {* Properties in more restricted classes of structures *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
628 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
629 |
lemma setsum_Un: "finite A ==> finite B ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
630 |
(setsum f (A Un B) :: 'a :: ab_group_add) = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
631 |
setsum f A + setsum f B - setsum f (A Int B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
632 |
by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
633 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
634 |
lemma setsum_Un2: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
635 |
assumes "finite (A \<union> B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
636 |
shows "setsum f (A \<union> B) = setsum f (A - B) + setsum f (B - A) + setsum f (A \<inter> B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
637 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
638 |
have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
639 |
by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
640 |
with assms show ?thesis by simp (subst setsum_Un_disjoint, auto)+ |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
641 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
642 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
643 |
lemma setsum_diff1: "finite A \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
644 |
(setsum f (A - {a}) :: ('a::ab_group_add)) = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
645 |
(if a:A then setsum f A - f a else setsum f A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
646 |
by (erule finite_induct) (auto simp add: insert_Diff_if) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
647 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
648 |
lemma setsum_diff: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
649 |
assumes le: "finite A" "B \<subseteq> A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
650 |
shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
651 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
652 |
from le have finiteB: "finite B" using finite_subset by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
653 |
show ?thesis using finiteB le |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
654 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
655 |
case empty |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
656 |
thus ?case by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
657 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
658 |
case (insert x F) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
659 |
thus ?case using le finiteB |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
660 |
by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
661 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
662 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
663 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
664 |
lemma setsum_mono: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
665 |
assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, ordered_ab_semigroup_add}))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
666 |
shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
667 |
proof (cases "finite K") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
668 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
669 |
thus ?thesis using le |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
670 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
671 |
case empty |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
672 |
thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
673 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
674 |
case insert |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
675 |
thus ?case using add_mono by fastforce |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
676 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
677 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
678 |
case False then show ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
679 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
680 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
681 |
lemma setsum_strict_mono: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
682 |
fixes f :: "'a \<Rightarrow> 'b::{ordered_cancel_ab_semigroup_add,comm_monoid_add}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
683 |
assumes "finite A" "A \<noteq> {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
684 |
and "!!x. x:A \<Longrightarrow> f x < g x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
685 |
shows "setsum f A < setsum g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
686 |
using assms |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
687 |
proof (induct rule: finite_ne_induct) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
688 |
case singleton thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
689 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
690 |
case insert thus ?case by (auto simp: add_strict_mono) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
691 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
692 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
693 |
lemma setsum_strict_mono_ex1: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
694 |
fixes f :: "'a \<Rightarrow> 'b::{comm_monoid_add, ordered_cancel_ab_semigroup_add}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
695 |
assumes "finite A" and "ALL x:A. f x \<le> g x" and "EX a:A. f a < g a" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
696 |
shows "setsum f A < setsum g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
697 |
proof- |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
698 |
from assms(3) obtain a where a: "a:A" "f a < g a" by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
699 |
have "setsum f A = setsum f ((A-{a}) \<union> {a})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
700 |
by(simp add:insert_absorb[OF `a:A`]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
701 |
also have "\<dots> = setsum f (A-{a}) + setsum f {a}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
702 |
using `finite A` by(subst setsum_Un_disjoint) auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
703 |
also have "setsum f (A-{a}) \<le> setsum g (A-{a})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
704 |
by(rule setsum_mono)(simp add: assms(2)) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
705 |
also have "setsum f {a} < setsum g {a}" using a by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
706 |
also have "setsum g (A - {a}) + setsum g {a} = setsum g((A-{a}) \<union> {a})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
707 |
using `finite A` by(subst setsum_Un_disjoint[symmetric]) auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
708 |
also have "\<dots> = setsum g A" by(simp add:insert_absorb[OF `a:A`]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
709 |
finally show ?thesis by (auto simp add: add_right_mono add_strict_left_mono) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
710 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
711 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
712 |
lemma setsum_negf: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
713 |
"setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
714 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
715 |
case True thus ?thesis by (induct set: finite) auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
716 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
717 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
718 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
719 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
720 |
lemma setsum_subtractf: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
721 |
"setsum (%x. ((f x)::'a::ab_group_add) - g x) A = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
722 |
setsum f A - setsum g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
723 |
using setsum_addf [of f "- g" A] by (simp add: setsum_negf) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
724 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
725 |
lemma setsum_nonneg: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
726 |
assumes nn: "\<forall>x\<in>A. (0::'a::{ordered_ab_semigroup_add,comm_monoid_add}) \<le> f x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
727 |
shows "0 \<le> setsum f A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
728 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
729 |
case True thus ?thesis using nn |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
730 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
731 |
case empty then show ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
732 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
733 |
case (insert x F) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
734 |
then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
735 |
with insert show ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
736 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
737 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
738 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
739 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
740 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
741 |
lemma setsum_nonpos: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
742 |
assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{ordered_ab_semigroup_add,comm_monoid_add})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
743 |
shows "setsum f A \<le> 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
744 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
745 |
case True thus ?thesis using np |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
746 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
747 |
case empty then show ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
748 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
749 |
case (insert x F) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
750 |
then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
751 |
with insert show ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
752 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
753 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
754 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
755 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
756 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
757 |
lemma setsum_nonneg_leq_bound: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
758 |
fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
759 |
assumes "finite s" "\<And>i. i \<in> s \<Longrightarrow> f i \<ge> 0" "(\<Sum>i \<in> s. f i) = B" "i \<in> s" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
760 |
shows "f i \<le> B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
761 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
762 |
have "0 \<le> (\<Sum> i \<in> s - {i}. f i)" and "0 \<le> f i" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
763 |
using assms by (auto intro!: setsum_nonneg) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
764 |
moreover |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
765 |
have "(\<Sum> i \<in> s - {i}. f i) + f i = B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
766 |
using assms by (simp add: setsum_diff1) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
767 |
ultimately show ?thesis by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
768 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
769 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
770 |
lemma setsum_nonneg_0: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
771 |
fixes f :: "'a \<Rightarrow> 'b::{ordered_ab_group_add}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
772 |
assumes "finite s" and pos: "\<And> i. i \<in> s \<Longrightarrow> f i \<ge> 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
773 |
and "(\<Sum> i \<in> s. f i) = 0" and i: "i \<in> s" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
774 |
shows "f i = 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
775 |
using setsum_nonneg_leq_bound[OF assms] pos[OF i] by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
776 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
777 |
lemma setsum_mono2: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
778 |
fixes f :: "'a \<Rightarrow> 'b :: ordered_comm_monoid_add" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
779 |
assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
780 |
shows "setsum f A \<le> setsum f B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
781 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
782 |
have "setsum f A \<le> setsum f A + setsum f (B-A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
783 |
by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
784 |
also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
785 |
by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
786 |
also have "A \<union> (B-A) = B" using sub by blast |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
787 |
finally show ?thesis . |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
788 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
789 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
790 |
lemma setsum_mono3: "finite B ==> A <= B ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
791 |
ALL x: B - A. |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
792 |
0 <= ((f x)::'a::{comm_monoid_add,ordered_ab_semigroup_add}) ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
793 |
setsum f A <= setsum f B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
794 |
apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
795 |
apply (erule ssubst) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
796 |
apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
797 |
apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
798 |
apply (rule add_left_mono) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
799 |
apply (erule setsum_nonneg) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
800 |
apply (subst setsum_Un_disjoint [THEN sym]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
801 |
apply (erule finite_subset, assumption) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
802 |
apply (rule finite_subset) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
803 |
prefer 2 |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
804 |
apply assumption |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
805 |
apply (auto simp add: sup_absorb2) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
806 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
807 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
808 |
lemma setsum_right_distrib: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
809 |
fixes f :: "'a => ('b::semiring_0)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
810 |
shows "r * setsum f A = setsum (%n. r * f n) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
811 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
812 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
813 |
thus ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
814 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
815 |
case empty thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
816 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
817 |
case (insert x A) thus ?case by (simp add: distrib_left) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
818 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
819 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
820 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
821 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
822 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
823 |
lemma setsum_left_distrib: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
824 |
"setsum f A * (r::'a::semiring_0) = (\<Sum>n\<in>A. f n * r)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
825 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
826 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
827 |
then show ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
828 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
829 |
case empty thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
830 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
831 |
case (insert x A) thus ?case by (simp add: distrib_right) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
832 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
833 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
834 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
835 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
836 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
837 |
lemma setsum_divide_distrib: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
838 |
"setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
839 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
840 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
841 |
then show ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
842 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
843 |
case empty thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
844 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
845 |
case (insert x A) thus ?case by (simp add: add_divide_distrib) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
846 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
847 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
848 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
849 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
850 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
851 |
lemma setsum_abs[iff]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
852 |
fixes f :: "'a => ('b::ordered_ab_group_add_abs)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
853 |
shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
854 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
855 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
856 |
thus ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
857 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
858 |
case empty thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
859 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
860 |
case (insert x A) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
861 |
thus ?case by (auto intro: abs_triangle_ineq order_trans) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
862 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
863 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
864 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
865 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
866 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
867 |
lemma setsum_abs_ge_zero[iff]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
868 |
fixes f :: "'a => ('b::ordered_ab_group_add_abs)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
869 |
shows "0 \<le> setsum (%i. abs(f i)) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
870 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
871 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
872 |
thus ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
873 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
874 |
case empty thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
875 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
876 |
case (insert x A) thus ?case by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
877 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
878 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
879 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
880 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
881 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
882 |
lemma abs_setsum_abs[simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
883 |
fixes f :: "'a => ('b::ordered_ab_group_add_abs)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
884 |
shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
885 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
886 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
887 |
thus ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
888 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
889 |
case empty thus ?case by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
890 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
891 |
case (insert a A) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
892 |
hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
893 |
also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
894 |
also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
895 |
by (simp del: abs_of_nonneg) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
896 |
also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
897 |
finally show ?case . |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
898 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
899 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
900 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
901 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
902 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
903 |
lemma setsum_diff1'[rule_format]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
904 |
"finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
905 |
apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
906 |
apply (auto simp add: insert_Diff_if add_ac) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
907 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
908 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
909 |
lemma setsum_diff1_ring: assumes "finite A" "a \<in> A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
910 |
shows "setsum f (A - {a}) = setsum f A - (f a::'a::ring)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
911 |
unfolding setsum_diff1'[OF assms] by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
912 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
913 |
lemma setsum_product: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
914 |
fixes f :: "'a => ('b::semiring_0)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
915 |
shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
916 |
by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
917 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
918 |
lemma setsum_mult_setsum_if_inj: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
919 |
fixes f :: "'a => ('b::semiring_0)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
920 |
shows "inj_on (%(a,b). f a * g b) (A \<times> B) ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
921 |
setsum f A * setsum g B = setsum id {f a * g b|a b. a:A & b:B}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
922 |
by(auto simp: setsum_product setsum_cartesian_product |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
923 |
intro!: setsum_reindex_cong[symmetric]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
924 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
925 |
lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
926 |
apply (case_tac "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
927 |
prefer 2 apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
928 |
apply (erule rev_mp) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
929 |
apply (erule finite_induct, auto) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
930 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
931 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
932 |
lemma setsum_eq_0_iff [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
933 |
"finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
934 |
by (induct set: finite) auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
935 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
936 |
lemma setsum_eq_Suc0_iff: "finite A \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
937 |
setsum f A = Suc 0 \<longleftrightarrow> (EX a:A. f a = Suc 0 & (ALL b:A. a\<noteq>b \<longrightarrow> f b = 0))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
938 |
apply(erule finite_induct) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
939 |
apply (auto simp add:add_is_1) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
940 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
941 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
942 |
lemmas setsum_eq_1_iff = setsum_eq_Suc0_iff[simplified One_nat_def[symmetric]] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
943 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
944 |
lemma setsum_Un_nat: "finite A ==> finite B ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
945 |
(setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
946 |
-- {* For the natural numbers, we have subtraction. *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
947 |
by (subst setsum_Un_Int [symmetric], auto simp add: algebra_simps) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
948 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
949 |
lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
950 |
(if a:A then setsum f A - f a else setsum f A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
951 |
apply (case_tac "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
952 |
prefer 2 apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
953 |
apply (erule finite_induct) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
954 |
apply (auto simp add: insert_Diff_if) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
955 |
apply (drule_tac a = a in mk_disjoint_insert, auto) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
956 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
957 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
958 |
lemma setsum_diff_nat: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
959 |
assumes "finite B" and "B \<subseteq> A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
960 |
shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
961 |
using assms |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
962 |
proof induct |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
963 |
show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
964 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
965 |
fix F x assume finF: "finite F" and xnotinF: "x \<notin> F" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
966 |
and xFinA: "insert x F \<subseteq> A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
967 |
and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
968 |
from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
969 |
from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
970 |
by (simp add: setsum_diff1_nat) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
971 |
from xFinA have "F \<subseteq> A" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
972 |
with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
973 |
with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
974 |
by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
975 |
from xnotinF have "A - insert x F = (A - F) - {x}" by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
976 |
with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
977 |
by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
978 |
from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
979 |
with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
980 |
by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
981 |
thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
982 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
983 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
984 |
lemma setsum_comp_morphism: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
985 |
assumes "h 0 = 0" and "\<And>x y. h (x + y) = h x + h y" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
986 |
shows "setsum (h \<circ> g) A = h (setsum g A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
987 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
988 |
case False then show ?thesis by (simp add: assms) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
989 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
990 |
case True then show ?thesis by (induct A) (simp_all add: assms) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
991 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
992 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
993 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
994 |
subsubsection {* Cardinality as special case of @{const setsum} *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
995 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
996 |
lemma card_eq_setsum: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
997 |
"card A = setsum (\<lambda>x. 1) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
998 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
999 |
have "plus \<circ> (\<lambda>_. Suc 0) = (\<lambda>_. Suc)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1000 |
by (simp add: fun_eq_iff) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1001 |
then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) = Finite_Set.fold (\<lambda>_. Suc)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1002 |
by (rule arg_cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1003 |
then have "Finite_Set.fold (plus \<circ> (\<lambda>_. Suc 0)) 0 A = Finite_Set.fold (\<lambda>_. Suc) 0 A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1004 |
by (blast intro: fun_cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1005 |
then show ?thesis by (simp add: card.eq_fold setsum.eq_fold) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1006 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1007 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1008 |
lemma setsum_constant [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1009 |
"(\<Sum>x \<in> A. y) = of_nat (card A) * y" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1010 |
apply (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1011 |
apply (erule finite_induct) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1012 |
apply (auto simp add: algebra_simps) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1013 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1014 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1015 |
lemma setsum_bounded: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1016 |
assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{semiring_1, ordered_ab_semigroup_add})" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1017 |
shows "setsum f A \<le> of_nat (card A) * K" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1018 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1019 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1020 |
thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1021 |
next |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1022 |
case False thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1023 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1024 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1025 |
lemma card_UN_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1026 |
assumes "finite I" and "\<forall>i\<in>I. finite (A i)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1027 |
and "\<forall>i\<in>I. \<forall>j\<in>I. i \<noteq> j \<longrightarrow> A i \<inter> A j = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1028 |
shows "card (UNION I A) = (\<Sum>i\<in>I. card(A i))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1029 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1030 |
have "(\<Sum>i\<in>I. card (A i)) = (\<Sum>i\<in>I. \<Sum>x\<in>A i. 1)" by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1031 |
with assms show ?thesis by (simp add: card_eq_setsum setsum_UN_disjoint del: setsum_constant) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1032 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1033 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1034 |
lemma card_Union_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1035 |
"finite C ==> (ALL A:C. finite A) ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1036 |
(ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1037 |
==> card (Union C) = setsum card C" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1038 |
apply (frule card_UN_disjoint [of C id]) |
56166 | 1039 |
apply simp_all |
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1040 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1041 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1042 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1043 |
subsubsection {* Cardinality of products *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1044 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1045 |
lemma card_SigmaI [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1046 |
"\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1047 |
\<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1048 |
by(simp add: card_eq_setsum setsum_Sigma del:setsum_constant) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1049 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1050 |
(* |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1051 |
lemma SigmaI_insert: "y \<notin> A ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1052 |
(SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1053 |
by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1054 |
*) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1055 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1056 |
lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1057 |
by (cases "finite A \<and> finite B") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1058 |
(auto simp add: card_eq_0_iff dest: finite_cartesian_productD1 finite_cartesian_productD2) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1059 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1060 |
lemma card_cartesian_product_singleton: "card({x} <*> A) = card(A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1061 |
by (simp add: card_cartesian_product) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1062 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1063 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1064 |
subsection {* Generalized product over a set *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1065 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1066 |
context comm_monoid_mult |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1067 |
begin |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1068 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1069 |
definition setprod :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1070 |
where |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1071 |
"setprod = comm_monoid_set.F times 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1072 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1073 |
sublocale setprod!: comm_monoid_set times 1 |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1074 |
where |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1075 |
"comm_monoid_set.F times 1 = setprod" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1076 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1077 |
show "comm_monoid_set times 1" .. |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1078 |
then interpret setprod!: comm_monoid_set times 1 . |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1079 |
from setprod_def show "comm_monoid_set.F times 1 = setprod" by rule |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1080 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1081 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1082 |
abbreviation |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1083 |
Setprod ("\<Prod>_" [1000] 999) where |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1084 |
"\<Prod>A \<equiv> setprod (\<lambda>x. x) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1085 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1086 |
end |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1087 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1088 |
syntax |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1089 |
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3PROD _:_. _)" [0, 51, 10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1090 |
syntax (xsymbols) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1091 |
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1092 |
syntax (HTML output) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1093 |
"_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult" ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1094 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1095 |
translations -- {* Beware of argument permutation! *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1096 |
"PROD i:A. b" == "CONST setprod (%i. b) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1097 |
"\<Prod>i\<in>A. b" == "CONST setprod (%i. b) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1098 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1099 |
text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1100 |
@{text"\<Prod>x|P. e"}. *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1101 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1102 |
syntax |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1103 |
"_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1104 |
syntax (xsymbols) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1105 |
"_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1106 |
syntax (HTML output) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1107 |
"_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1108 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1109 |
translations |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1110 |
"PROD x|P. t" => "CONST setprod (%x. t) {x. P}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1111 |
"\<Prod>x|P. t" => "CONST setprod (%x. t) {x. P}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1112 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1113 |
text {* TODO These are candidates for generalization *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1114 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1115 |
context comm_monoid_mult |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1116 |
begin |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1117 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1118 |
lemma setprod_reindex_id: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1119 |
"inj_on f B ==> setprod f B = setprod id (f ` B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1120 |
by (auto simp add: setprod.reindex) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1121 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1122 |
lemma setprod_reindex_cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1123 |
"inj_on f A ==> B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1124 |
by (frule setprod.reindex, simp) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1125 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1126 |
lemma strong_setprod_reindex_cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1127 |
assumes i: "inj_on f A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1128 |
and B: "B = f ` A" and eq: "\<And>x. x \<in> A \<Longrightarrow> g x = (h \<circ> f) x" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1129 |
shows "setprod h B = setprod g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1130 |
proof- |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1131 |
have "setprod h B = setprod (h o f) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1132 |
by (simp add: B setprod.reindex [OF i, of h]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1133 |
then show ?thesis apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1134 |
apply (rule setprod.cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1135 |
apply simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1136 |
by (simp add: eq) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1137 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1138 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1139 |
lemma setprod_Union_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1140 |
assumes "\<forall>A\<in>C. finite A" "\<forall>A\<in>C. \<forall>B\<in>C. A \<noteq> B \<longrightarrow> A Int B = {}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1141 |
shows "setprod f (Union C) = setprod (setprod f) C" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1142 |
using assms by (fact setprod.Union_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1143 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1144 |
text{*Here we can eliminate the finiteness assumptions, by cases.*} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1145 |
lemma setprod_cartesian_product: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1146 |
"(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1147 |
by (fact setprod.cartesian_product) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1148 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1149 |
lemma setprod_Un2: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1150 |
assumes "finite (A \<union> B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1151 |
shows "setprod f (A \<union> B) = setprod f (A - B) * setprod f (B - A) * setprod f (A \<inter> B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1152 |
proof - |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1153 |
have "A \<union> B = A - B \<union> (B - A) \<union> A \<inter> B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1154 |
by auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1155 |
with assms show ?thesis by simp (subst setprod.union_disjoint, auto)+ |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1156 |
qed |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1157 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1158 |
end |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1159 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1160 |
text {* TODO These are legacy *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1161 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1162 |
lemma setprod_empty: "setprod f {} = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1163 |
by (fact setprod.empty) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1164 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1165 |
lemma setprod_insert: "[| finite A; a \<notin> A |] ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1166 |
setprod f (insert a A) = f a * setprod f A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1167 |
by (fact setprod.insert) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1168 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1169 |
lemma setprod_infinite: "~ finite A ==> setprod f A = 1" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1170 |
by (fact setprod.infinite) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1171 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1172 |
lemma setprod_reindex: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1173 |
"inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1174 |
by (fact setprod.reindex) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1175 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1176 |
lemma setprod_cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1177 |
"A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1178 |
by (fact setprod.cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1179 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1180 |
lemma strong_setprod_cong: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1181 |
"A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1182 |
by (fact setprod.strong_cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1183 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1184 |
lemma setprod_Un_one: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1185 |
"\<lbrakk> finite S; finite T; \<forall>x \<in> S\<inter>T. f x = 1 \<rbrakk> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1186 |
\<Longrightarrow> setprod f (S \<union> T) = setprod f S * setprod f T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1187 |
by (fact setprod.union_inter_neutral) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1188 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1189 |
lemmas setprod_1 = setprod.neutral_const |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1190 |
lemmas setprod_1' = setprod.neutral |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1191 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1192 |
lemma setprod_Un_Int: "finite A ==> finite B |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1193 |
==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1194 |
by (fact setprod.union_inter) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1195 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1196 |
lemma setprod_Un_disjoint: "finite A ==> finite B |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1197 |
==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1198 |
by (fact setprod.union_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1199 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1200 |
lemma setprod_subset_diff: "\<lbrakk> B \<subseteq> A; finite A \<rbrakk> \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1201 |
setprod f A = setprod f (A - B) * setprod f B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1202 |
by (fact setprod.subset_diff) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1203 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1204 |
lemma setprod_mono_one_left: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1205 |
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. f i = 1 \<rbrakk> \<Longrightarrow> setprod f S = setprod f T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1206 |
by (fact setprod.mono_neutral_left) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1207 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1208 |
lemmas setprod_mono_one_right = setprod.mono_neutral_right |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1209 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1210 |
lemma setprod_mono_one_cong_left: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1211 |
"\<lbrakk> finite T; S \<subseteq> T; \<forall>i \<in> T - S. g i = 1; \<And>x. x \<in> S \<Longrightarrow> f x = g x \<rbrakk> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1212 |
\<Longrightarrow> setprod f S = setprod g T" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1213 |
by (fact setprod.mono_neutral_cong_left) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1214 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1215 |
lemmas setprod_mono_one_cong_right = setprod.mono_neutral_cong_right |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1216 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1217 |
lemma setprod_delta: "finite S \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1218 |
setprod (\<lambda>k. if k=a then b k else 1) S = (if a \<in> S then b a else 1)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1219 |
by (fact setprod.delta) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1220 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1221 |
lemma setprod_delta': "finite S \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1222 |
setprod (\<lambda>k. if a = k then b k else 1) S = (if a\<in> S then b a else 1)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1223 |
by (fact setprod.delta') |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1224 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1225 |
lemma setprod_UN_disjoint: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1226 |
"finite I ==> (ALL i:I. finite (A i)) ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1227 |
(ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1228 |
setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1229 |
by (fact setprod.UNION_disjoint) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1230 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1231 |
lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1232 |
(\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1233 |
(\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1234 |
by (fact setprod.Sigma) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1235 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1236 |
lemma setprod_timesf: "setprod (\<lambda>x. f x * g x) A = setprod f A * setprod g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1237 |
by (fact setprod.distrib) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1238 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1239 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1240 |
subsubsection {* Properties in more restricted classes of structures *} |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1241 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1242 |
lemma setprod_zero: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1243 |
"finite A ==> EX x: A. f x = (0::'a::comm_semiring_1) ==> setprod f A = 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1244 |
apply (induct set: finite, force, clarsimp) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1245 |
apply (erule disjE, auto) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1246 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1247 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1248 |
lemma setprod_zero_iff[simp]: "finite A ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1249 |
(setprod f A = (0::'a::{comm_semiring_1,no_zero_divisors})) = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1250 |
(EX x: A. f x = 0)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1251 |
by (erule finite_induct, auto simp:no_zero_divisors) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1252 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1253 |
lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1254 |
(setprod f (A Un B) :: 'a ::{field}) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1255 |
= setprod f A * setprod f B / setprod f (A Int B)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1256 |
by (subst setprod_Un_Int [symmetric], auto) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1257 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1258 |
lemma setprod_nonneg [rule_format]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1259 |
"(ALL x: A. (0::'a::linordered_semidom) \<le> f x) --> 0 \<le> setprod f A" |
56536 | 1260 |
by (cases "finite A", induct set: finite, simp_all) |
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1261 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1262 |
lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::linordered_semidom) < f x) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1263 |
--> 0 < setprod f A" |
56544 | 1264 |
by (cases "finite A", induct set: finite, simp_all) |
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1265 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1266 |
lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1267 |
(setprod f (A - {a}) :: 'a :: {field}) = |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1268 |
(if a:A then setprod f A / f a else setprod f A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1269 |
by (erule finite_induct) (auto simp add: insert_Diff_if) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1270 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1271 |
lemma setprod_inversef: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1272 |
fixes f :: "'b \<Rightarrow> 'a::field_inverse_zero" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1273 |
shows "finite A ==> setprod (inverse \<circ> f) A = inverse (setprod f A)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1274 |
by (erule finite_induct) auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1275 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1276 |
lemma setprod_dividef: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1277 |
fixes f :: "'b \<Rightarrow> 'a::field_inverse_zero" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1278 |
shows "finite A |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1279 |
==> setprod (%x. f x / g x) A = setprod f A / setprod g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1280 |
apply (subgoal_tac |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1281 |
"setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1282 |
apply (erule ssubst) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1283 |
apply (subst divide_inverse) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1284 |
apply (subst setprod_timesf) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1285 |
apply (subst setprod_inversef, assumption+, rule refl) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1286 |
apply (rule setprod_cong, rule refl) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1287 |
apply (subst divide_inverse, auto) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1288 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1289 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1290 |
lemma setprod_dvd_setprod [rule_format]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1291 |
"(ALL x : A. f x dvd g x) \<longrightarrow> setprod f A dvd setprod g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1292 |
apply (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1293 |
apply (induct set: finite) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1294 |
apply (auto simp add: dvd_def) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1295 |
apply (rule_tac x = "k * ka" in exI) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1296 |
apply (simp add: algebra_simps) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1297 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1298 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1299 |
lemma setprod_dvd_setprod_subset: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1300 |
"finite B \<Longrightarrow> A <= B \<Longrightarrow> setprod f A dvd setprod f B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1301 |
apply (subgoal_tac "setprod f B = setprod f A * setprod f (B - A)") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1302 |
apply (unfold dvd_def, blast) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1303 |
apply (subst setprod_Un_disjoint [symmetric]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1304 |
apply (auto elim: finite_subset intro: setprod_cong) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1305 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1306 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1307 |
lemma setprod_dvd_setprod_subset2: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1308 |
"finite B \<Longrightarrow> A <= B \<Longrightarrow> ALL x : A. (f x::'a::comm_semiring_1) dvd g x \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1309 |
setprod f A dvd setprod g B" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1310 |
apply (rule dvd_trans) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1311 |
apply (rule setprod_dvd_setprod, erule (1) bspec) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1312 |
apply (erule (1) setprod_dvd_setprod_subset) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1313 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1314 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1315 |
lemma dvd_setprod: "finite A \<Longrightarrow> i:A \<Longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1316 |
(f i ::'a::comm_semiring_1) dvd setprod f A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1317 |
by (induct set: finite) (auto intro: dvd_mult) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1318 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1319 |
lemma dvd_setsum [rule_format]: "(ALL i : A. d dvd f i) \<longrightarrow> |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1320 |
(d::'a::comm_semiring_1) dvd (SUM x : A. f x)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1321 |
apply (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1322 |
apply (induct set: finite) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1323 |
apply auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1324 |
done |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1325 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1326 |
lemma setprod_mono: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1327 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>linordered_semidom" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1328 |
assumes "\<forall>i\<in>A. 0 \<le> f i \<and> f i \<le> g i" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1329 |
shows "setprod f A \<le> setprod g A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1330 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1331 |
case True |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1332 |
hence ?thesis "setprod f A \<ge> 0" using subset_refl[of A] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1333 |
proof (induct A rule: finite_subset_induct) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1334 |
case (insert a F) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1335 |
thus "setprod f (insert a F) \<le> setprod g (insert a F)" "0 \<le> setprod f (insert a F)" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1336 |
unfolding setprod_insert[OF insert(1,3)] |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1337 |
using assms[rule_format,OF insert(2)] insert |
56536 | 1338 |
by (auto intro: mult_mono) |
54744
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1339 |
qed auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1340 |
thus ?thesis by simp |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1341 |
qed auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1342 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1343 |
lemma abs_setprod: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1344 |
fixes f :: "'a \<Rightarrow> 'b\<Colon>{linordered_field,abs}" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1345 |
shows "abs (setprod f A) = setprod (\<lambda>x. abs (f x)) A" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1346 |
proof (cases "finite A") |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1347 |
case True thus ?thesis |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1348 |
by induct (auto simp add: field_simps abs_mult) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1349 |
qed auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1350 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1351 |
lemma setprod_eq_1_iff [simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1352 |
"finite F ==> setprod f F = 1 \<longleftrightarrow> (ALL a:F. f a = (1::nat))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1353 |
by (induct set: finite) auto |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1354 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1355 |
lemma setprod_pos_nat: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1356 |
"finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1357 |
using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1358 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1359 |
lemma setprod_pos_nat_iff[simp]: |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1360 |
"finite S ==> (setprod f S > 0) = (ALL x : S. f x > (0::nat))" |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1361 |
using setprod_zero_iff by(simp del:neq0_conv add:neq0_conv[symmetric]) |
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1362 |
|
1e7f2d296e19
more algebraic terminology for theories about big operators
haftmann
parents:
diff
changeset
|
1363 |
end |