| 14199 |      1 | (*  Title:      HOL/Auth/SET/MessageSET
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Authors:     Giampaolo Bella, Fabio Massacci, Lawrence C Paulson
 | 
|  |      4 | *)
 | 
|  |      5 | 
 | 
|  |      6 | header{*The Message Theory, Modified for SET*}
 | 
|  |      7 | 
 | 
| 16417 |      8 | theory MessageSET imports NatPair begin
 | 
| 14199 |      9 | 
 | 
|  |     10 | subsection{*General Lemmas*}
 | 
|  |     11 | 
 | 
|  |     12 | text{*Needed occasionally with @{text spy_analz_tac}, e.g. in
 | 
|  |     13 |      @{text analz_insert_Key_newK}*}
 | 
|  |     14 | 
 | 
|  |     15 | lemma Un_absorb3 [simp] : "A \<union> (B \<union> A) = B \<union> A"
 | 
|  |     16 | by blast
 | 
|  |     17 | 
 | 
|  |     18 | text{*Collapses redundant cases in the huge protocol proofs*}
 | 
|  |     19 | lemmas disj_simps = disj_comms disj_left_absorb disj_assoc 
 | 
|  |     20 | 
 | 
|  |     21 | text{*Effective with assumptions like @{term "K \<notin> range pubK"} and 
 | 
|  |     22 |    @{term "K \<notin> invKey`range pubK"}*}
 | 
|  |     23 | lemma notin_image_iff: "(y \<notin> f`I) = (\<forall>i\<in>I. f i \<noteq> y)"
 | 
|  |     24 | by blast
 | 
|  |     25 | 
 | 
|  |     26 | text{*Effective with the assumption @{term "KK \<subseteq> - (range(invKey o pubK))"} *}
 | 
|  |     27 | lemma disjoint_image_iff: "(A <= - (f`I)) = (\<forall>i\<in>I. f i \<notin> A)"
 | 
|  |     28 | by blast
 | 
|  |     29 | 
 | 
|  |     30 | 
 | 
|  |     31 | 
 | 
|  |     32 | types
 | 
|  |     33 |   key = nat
 | 
|  |     34 | 
 | 
|  |     35 | consts
 | 
|  |     36 |   all_symmetric :: bool        --{*true if all keys are symmetric*}
 | 
|  |     37 |   invKey        :: "key=>key"  --{*inverse of a symmetric key*}
 | 
|  |     38 | 
 | 
|  |     39 | specification (invKey)
 | 
|  |     40 |   invKey [simp]: "invKey (invKey K) = K"
 | 
|  |     41 |   invKey_symmetric: "all_symmetric --> invKey = id"
 | 
|  |     42 |     by (rule exI [of _ id], auto)
 | 
|  |     43 | 
 | 
|  |     44 | 
 | 
|  |     45 | text{*The inverse of a symmetric key is itself; that of a public key
 | 
|  |     46 |       is the private key and vice versa*}
 | 
|  |     47 | 
 | 
|  |     48 | constdefs
 | 
|  |     49 |   symKeys :: "key set"
 | 
|  |     50 |   "symKeys == {K. invKey K = K}"
 | 
|  |     51 | 
 | 
|  |     52 | text{*Agents. We allow any number of certification authorities, cardholders
 | 
|  |     53 |             merchants, and payment gateways.*}
 | 
|  |     54 | datatype
 | 
|  |     55 |   agent = CA nat | Cardholder nat | Merchant nat | PG nat | Spy
 | 
|  |     56 | 
 | 
|  |     57 | text{*Messages*}
 | 
|  |     58 | datatype
 | 
|  |     59 |      msg = Agent  agent	    --{*Agent names*}
 | 
|  |     60 |          | Number nat       --{*Ordinary integers, timestamps, ...*}
 | 
|  |     61 |          | Nonce  nat       --{*Unguessable nonces*}
 | 
|  |     62 |          | Pan    nat       --{*Unguessable Primary Account Numbers (??)*}
 | 
|  |     63 |          | Key    key       --{*Crypto keys*}
 | 
|  |     64 | 	 | Hash   msg       --{*Hashing*}
 | 
|  |     65 | 	 | MPair  msg msg   --{*Compound messages*}
 | 
|  |     66 | 	 | Crypt  key msg   --{*Encryption, public- or shared-key*}
 | 
|  |     67 | 
 | 
|  |     68 | 
 | 
|  |     69 | (*Concrete syntax: messages appear as {|A,B,NA|}, etc...*)
 | 
|  |     70 | syntax
 | 
|  |     71 |   "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2{|_,/ _|})")
 | 
|  |     72 | 
 | 
|  |     73 | syntax (xsymbols)
 | 
|  |     74 |   "@MTuple"      :: "['a, args] => 'a * 'b"       ("(2\<lbrace>_,/ _\<rbrace>)")
 | 
|  |     75 | 
 | 
|  |     76 | translations
 | 
|  |     77 |   "{|x, y, z|}"   == "{|x, {|y, z|}|}"
 | 
|  |     78 |   "{|x, y|}"      == "MPair x y"
 | 
|  |     79 | 
 | 
|  |     80 | 
 | 
|  |     81 | constdefs
 | 
|  |     82 |   nat_of_agent :: "agent => nat"
 | 
|  |     83 |    "nat_of_agent == agent_case (curry nat2_to_nat 0)
 | 
|  |     84 | 			       (curry nat2_to_nat 1)
 | 
|  |     85 | 			       (curry nat2_to_nat 2)
 | 
|  |     86 | 			       (curry nat2_to_nat 3)
 | 
|  |     87 | 			       (nat2_to_nat (4,0))"
 | 
|  |     88 |     --{*maps each agent to a unique natural number, for specifications*}
 | 
|  |     89 | 
 | 
|  |     90 | text{*The function is indeed injective*}
 | 
|  |     91 | lemma inj_nat_of_agent: "inj nat_of_agent"
 | 
|  |     92 | by (simp add: nat_of_agent_def inj_on_def curry_def
 | 
|  |     93 |               nat2_to_nat_inj [THEN inj_eq]  split: agent.split) 
 | 
|  |     94 | 
 | 
|  |     95 | 
 | 
|  |     96 | constdefs
 | 
|  |     97 |   (*Keys useful to decrypt elements of a message set*)
 | 
|  |     98 |   keysFor :: "msg set => key set"
 | 
|  |     99 |   "keysFor H == invKey ` {K. \<exists>X. Crypt K X \<in> H}"
 | 
|  |    100 | 
 | 
|  |    101 | subsubsection{*Inductive definition of all "parts" of a message.*}
 | 
|  |    102 | 
 | 
|  |    103 | consts  parts   :: "msg set => msg set"
 | 
|  |    104 | inductive "parts H"
 | 
|  |    105 |   intros
 | 
|  |    106 |     Inj [intro]:               "X \<in> H ==> X \<in> parts H"
 | 
|  |    107 |     Fst:         "{|X,Y|}   \<in> parts H ==> X \<in> parts H"
 | 
|  |    108 |     Snd:         "{|X,Y|}   \<in> parts H ==> Y \<in> parts H"
 | 
|  |    109 |     Body:        "Crypt K X \<in> parts H ==> X \<in> parts H"
 | 
|  |    110 | 
 | 
|  |    111 | 
 | 
|  |    112 | (*Monotonicity*)
 | 
|  |    113 | lemma parts_mono: "G<=H ==> parts(G) <= parts(H)"
 | 
|  |    114 | apply auto
 | 
|  |    115 | apply (erule parts.induct)
 | 
|  |    116 | apply (auto dest: Fst Snd Body)
 | 
|  |    117 | done
 | 
|  |    118 | 
 | 
|  |    119 | 
 | 
|  |    120 | subsubsection{*Inverse of keys*}
 | 
|  |    121 | 
 | 
|  |    122 | (*Equations hold because constructors are injective; cannot prove for all f*)
 | 
|  |    123 | lemma Key_image_eq [simp]: "(Key x \<in> Key`A) = (x\<in>A)"
 | 
|  |    124 | by auto
 | 
|  |    125 | 
 | 
|  |    126 | lemma Nonce_Key_image_eq [simp]: "(Nonce x \<notin> Key`A)"
 | 
|  |    127 | by auto
 | 
|  |    128 | 
 | 
|  |    129 | lemma Cardholder_image_eq [simp]: "(Cardholder x \<in> Cardholder`A) = (x \<in> A)"
 | 
|  |    130 | by auto
 | 
|  |    131 | 
 | 
|  |    132 | lemma CA_image_eq [simp]: "(CA x \<in> CA`A) = (x \<in> A)"
 | 
|  |    133 | by auto
 | 
|  |    134 | 
 | 
|  |    135 | lemma Pan_image_eq [simp]: "(Pan x \<in> Pan`A) = (x \<in> A)"
 | 
|  |    136 | by auto
 | 
|  |    137 | 
 | 
|  |    138 | lemma Pan_Key_image_eq [simp]: "(Pan x \<notin> Key`A)"
 | 
|  |    139 | by auto
 | 
|  |    140 | 
 | 
|  |    141 | lemma Nonce_Pan_image_eq [simp]: "(Nonce x \<notin> Pan`A)"
 | 
|  |    142 | by auto
 | 
|  |    143 | 
 | 
|  |    144 | lemma invKey_eq [simp]: "(invKey K = invKey K') = (K=K')"
 | 
|  |    145 | apply safe
 | 
|  |    146 | apply (drule_tac f = invKey in arg_cong, simp)
 | 
|  |    147 | done
 | 
|  |    148 | 
 | 
|  |    149 | 
 | 
|  |    150 | subsection{*keysFor operator*}
 | 
|  |    151 | 
 | 
|  |    152 | lemma keysFor_empty [simp]: "keysFor {} = {}"
 | 
|  |    153 | by (unfold keysFor_def, blast)
 | 
|  |    154 | 
 | 
|  |    155 | lemma keysFor_Un [simp]: "keysFor (H \<union> H') = keysFor H \<union> keysFor H'"
 | 
|  |    156 | by (unfold keysFor_def, blast)
 | 
|  |    157 | 
 | 
|  |    158 | lemma keysFor_UN [simp]: "keysFor (\<Union>i\<in>A. H i) = (\<Union>i\<in>A. keysFor (H i))"
 | 
|  |    159 | by (unfold keysFor_def, blast)
 | 
|  |    160 | 
 | 
|  |    161 | (*Monotonicity*)
 | 
|  |    162 | lemma keysFor_mono: "G\<subseteq>H ==> keysFor(G) \<subseteq> keysFor(H)"
 | 
|  |    163 | by (unfold keysFor_def, blast)
 | 
|  |    164 | 
 | 
|  |    165 | lemma keysFor_insert_Agent [simp]: "keysFor (insert (Agent A) H) = keysFor H"
 | 
|  |    166 | by (unfold keysFor_def, auto)
 | 
|  |    167 | 
 | 
|  |    168 | lemma keysFor_insert_Nonce [simp]: "keysFor (insert (Nonce N) H) = keysFor H"
 | 
|  |    169 | by (unfold keysFor_def, auto)
 | 
|  |    170 | 
 | 
|  |    171 | lemma keysFor_insert_Number [simp]: "keysFor (insert (Number N) H) = keysFor H"
 | 
|  |    172 | by (unfold keysFor_def, auto)
 | 
|  |    173 | 
 | 
|  |    174 | lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
 | 
|  |    175 | by (unfold keysFor_def, auto)
 | 
|  |    176 | 
 | 
|  |    177 | lemma keysFor_insert_Pan [simp]: "keysFor (insert (Pan A) H) = keysFor H"
 | 
|  |    178 | by (unfold keysFor_def, auto)
 | 
|  |    179 | 
 | 
|  |    180 | lemma keysFor_insert_Hash [simp]: "keysFor (insert (Hash X) H) = keysFor H"
 | 
|  |    181 | by (unfold keysFor_def, auto)
 | 
|  |    182 | 
 | 
|  |    183 | lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
 | 
|  |    184 | by (unfold keysFor_def, auto)
 | 
|  |    185 | 
 | 
|  |    186 | lemma keysFor_insert_Crypt [simp]:
 | 
|  |    187 |     "keysFor (insert (Crypt K X) H) = insert (invKey K) (keysFor H)"
 | 
|  |    188 | by (unfold keysFor_def, auto)
 | 
|  |    189 | 
 | 
|  |    190 | lemma keysFor_image_Key [simp]: "keysFor (Key`E) = {}"
 | 
|  |    191 | by (unfold keysFor_def, auto)
 | 
|  |    192 | 
 | 
|  |    193 | lemma Crypt_imp_invKey_keysFor: "Crypt K X \<in> H ==> invKey K \<in> keysFor H"
 | 
|  |    194 | by (unfold keysFor_def, blast)
 | 
|  |    195 | 
 | 
|  |    196 | 
 | 
|  |    197 | subsection{*Inductive relation "parts"*}
 | 
|  |    198 | 
 | 
|  |    199 | lemma MPair_parts:
 | 
|  |    200 |      "[| {|X,Y|} \<in> parts H;
 | 
|  |    201 |          [| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
 | 
|  |    202 | by (blast dest: parts.Fst parts.Snd)
 | 
|  |    203 | 
 | 
|  |    204 | declare MPair_parts [elim!]  parts.Body [dest!]
 | 
|  |    205 | text{*NB These two rules are UNSAFE in the formal sense, as they discard the
 | 
|  |    206 |      compound message.  They work well on THIS FILE.
 | 
|  |    207 |   @{text MPair_parts} is left as SAFE because it speeds up proofs.
 | 
|  |    208 |   The Crypt rule is normally kept UNSAFE to avoid breaking up certificates.*}
 | 
|  |    209 | 
 | 
|  |    210 | lemma parts_increasing: "H \<subseteq> parts(H)"
 | 
|  |    211 | by blast
 | 
|  |    212 | 
 | 
|  |    213 | lemmas parts_insertI = subset_insertI [THEN parts_mono, THEN subsetD, standard]
 | 
|  |    214 | 
 | 
|  |    215 | lemma parts_empty [simp]: "parts{} = {}"
 | 
|  |    216 | apply safe
 | 
|  |    217 | apply (erule parts.induct, blast+)
 | 
|  |    218 | done
 | 
|  |    219 | 
 | 
|  |    220 | lemma parts_emptyE [elim!]: "X\<in> parts{} ==> P"
 | 
|  |    221 | by simp
 | 
|  |    222 | 
 | 
|  |    223 | (*WARNING: loops if H = {Y}, therefore must not be repeated!*)
 | 
|  |    224 | lemma parts_singleton: "X\<in> parts H ==> \<exists>Y\<in>H. X\<in> parts {Y}"
 | 
|  |    225 | by (erule parts.induct, blast+)
 | 
|  |    226 | 
 | 
|  |    227 | 
 | 
|  |    228 | subsubsection{*Unions*}
 | 
|  |    229 | 
 | 
|  |    230 | lemma parts_Un_subset1: "parts(G) \<union> parts(H) \<subseteq> parts(G \<union> H)"
 | 
|  |    231 | by (intro Un_least parts_mono Un_upper1 Un_upper2)
 | 
|  |    232 | 
 | 
|  |    233 | lemma parts_Un_subset2: "parts(G \<union> H) \<subseteq> parts(G) \<union> parts(H)"
 | 
|  |    234 | apply (rule subsetI)
 | 
|  |    235 | apply (erule parts.induct, blast+)
 | 
|  |    236 | done
 | 
|  |    237 | 
 | 
|  |    238 | lemma parts_Un [simp]: "parts(G \<union> H) = parts(G) \<union> parts(H)"
 | 
|  |    239 | by (intro equalityI parts_Un_subset1 parts_Un_subset2)
 | 
|  |    240 | 
 | 
|  |    241 | lemma parts_insert: "parts (insert X H) = parts {X} \<union> parts H"
 | 
|  |    242 | apply (subst insert_is_Un [of _ H])
 | 
|  |    243 | apply (simp only: parts_Un)
 | 
|  |    244 | done
 | 
|  |    245 | 
 | 
|  |    246 | (*TWO inserts to avoid looping.  This rewrite is better than nothing.
 | 
|  |    247 |   Not suitable for Addsimps: its behaviour can be strange.*)
 | 
|  |    248 | lemma parts_insert2:
 | 
|  |    249 |      "parts (insert X (insert Y H)) = parts {X} \<union> parts {Y} \<union> parts H"
 | 
|  |    250 | apply (simp add: Un_assoc)
 | 
|  |    251 | apply (simp add: parts_insert [symmetric])
 | 
|  |    252 | done
 | 
|  |    253 | 
 | 
|  |    254 | lemma parts_UN_subset1: "(\<Union>x\<in>A. parts(H x)) \<subseteq> parts(\<Union>x\<in>A. H x)"
 | 
|  |    255 | by (intro UN_least parts_mono UN_upper)
 | 
|  |    256 | 
 | 
|  |    257 | lemma parts_UN_subset2: "parts(\<Union>x\<in>A. H x) \<subseteq> (\<Union>x\<in>A. parts(H x))"
 | 
|  |    258 | apply (rule subsetI)
 | 
|  |    259 | apply (erule parts.induct, blast+)
 | 
|  |    260 | done
 | 
|  |    261 | 
 | 
|  |    262 | lemma parts_UN [simp]: "parts(\<Union>x\<in>A. H x) = (\<Union>x\<in>A. parts(H x))"
 | 
|  |    263 | by (intro equalityI parts_UN_subset1 parts_UN_subset2)
 | 
|  |    264 | 
 | 
|  |    265 | (*Added to simplify arguments to parts, analz and synth.
 | 
|  |    266 |   NOTE: the UN versions are no longer used!*)
 | 
|  |    267 | 
 | 
|  |    268 | 
 | 
|  |    269 | text{*This allows @{text blast} to simplify occurrences of
 | 
|  |    270 |   @{term "parts(G\<union>H)"} in the assumption.*}
 | 
|  |    271 | declare parts_Un [THEN equalityD1, THEN subsetD, THEN UnE, elim!]
 | 
|  |    272 | 
 | 
|  |    273 | 
 | 
|  |    274 | lemma parts_insert_subset: "insert X (parts H) \<subseteq> parts(insert X H)"
 | 
|  |    275 | by (blast intro: parts_mono [THEN [2] rev_subsetD])
 | 
|  |    276 | 
 | 
|  |    277 | subsubsection{*Idempotence and transitivity*}
 | 
|  |    278 | 
 | 
|  |    279 | lemma parts_partsD [dest!]: "X\<in> parts (parts H) ==> X\<in> parts H"
 | 
|  |    280 | by (erule parts.induct, blast+)
 | 
|  |    281 | 
 | 
|  |    282 | lemma parts_idem [simp]: "parts (parts H) = parts H"
 | 
|  |    283 | by blast
 | 
|  |    284 | 
 | 
|  |    285 | lemma parts_trans: "[| X\<in> parts G;  G \<subseteq> parts H |] ==> X\<in> parts H"
 | 
|  |    286 | by (drule parts_mono, blast)
 | 
|  |    287 | 
 | 
|  |    288 | (*Cut*)
 | 
|  |    289 | lemma parts_cut:
 | 
|  |    290 |      "[| Y\<in> parts (insert X G);  X\<in> parts H |] ==> Y\<in> parts (G \<union> H)"
 | 
|  |    291 | by (erule parts_trans, auto)
 | 
|  |    292 | 
 | 
|  |    293 | lemma parts_cut_eq [simp]: "X\<in> parts H ==> parts (insert X H) = parts H"
 | 
|  |    294 | by (force dest!: parts_cut intro: parts_insertI)
 | 
|  |    295 | 
 | 
|  |    296 | 
 | 
|  |    297 | subsubsection{*Rewrite rules for pulling out atomic messages*}
 | 
|  |    298 | 
 | 
|  |    299 | lemmas parts_insert_eq_I = equalityI [OF subsetI parts_insert_subset]
 | 
|  |    300 | 
 | 
|  |    301 | 
 | 
|  |    302 | lemma parts_insert_Agent [simp]:
 | 
|  |    303 |      "parts (insert (Agent agt) H) = insert (Agent agt) (parts H)"
 | 
|  |    304 | apply (rule parts_insert_eq_I)
 | 
|  |    305 | apply (erule parts.induct, auto)
 | 
|  |    306 | done
 | 
|  |    307 | 
 | 
|  |    308 | lemma parts_insert_Nonce [simp]:
 | 
|  |    309 |      "parts (insert (Nonce N) H) = insert (Nonce N) (parts H)"
 | 
|  |    310 | apply (rule parts_insert_eq_I)
 | 
|  |    311 | apply (erule parts.induct, auto)
 | 
|  |    312 | done
 | 
|  |    313 | 
 | 
|  |    314 | lemma parts_insert_Number [simp]:
 | 
|  |    315 |      "parts (insert (Number N) H) = insert (Number N) (parts H)"
 | 
|  |    316 | apply (rule parts_insert_eq_I)
 | 
|  |    317 | apply (erule parts.induct, auto)
 | 
|  |    318 | done
 | 
|  |    319 | 
 | 
|  |    320 | lemma parts_insert_Key [simp]:
 | 
|  |    321 |      "parts (insert (Key K) H) = insert (Key K) (parts H)"
 | 
|  |    322 | apply (rule parts_insert_eq_I)
 | 
|  |    323 | apply (erule parts.induct, auto)
 | 
|  |    324 | done
 | 
|  |    325 | 
 | 
|  |    326 | lemma parts_insert_Pan [simp]:
 | 
|  |    327 |      "parts (insert (Pan A) H) = insert (Pan A) (parts H)"
 | 
|  |    328 | apply (rule parts_insert_eq_I)
 | 
|  |    329 | apply (erule parts.induct, auto)
 | 
|  |    330 | done
 | 
|  |    331 | 
 | 
|  |    332 | lemma parts_insert_Hash [simp]:
 | 
|  |    333 |      "parts (insert (Hash X) H) = insert (Hash X) (parts H)"
 | 
|  |    334 | apply (rule parts_insert_eq_I)
 | 
|  |    335 | apply (erule parts.induct, auto)
 | 
|  |    336 | done
 | 
|  |    337 | 
 | 
|  |    338 | lemma parts_insert_Crypt [simp]:
 | 
|  |    339 |      "parts (insert (Crypt K X) H) =
 | 
|  |    340 |           insert (Crypt K X) (parts (insert X H))"
 | 
|  |    341 | apply (rule equalityI)
 | 
|  |    342 | apply (rule subsetI)
 | 
|  |    343 | apply (erule parts.induct, auto)
 | 
|  |    344 | apply (erule parts.induct)
 | 
|  |    345 | apply (blast intro: parts.Body)+
 | 
|  |    346 | done
 | 
|  |    347 | 
 | 
|  |    348 | lemma parts_insert_MPair [simp]:
 | 
|  |    349 |      "parts (insert {|X,Y|} H) =
 | 
|  |    350 |           insert {|X,Y|} (parts (insert X (insert Y H)))"
 | 
|  |    351 | apply (rule equalityI)
 | 
|  |    352 | apply (rule subsetI)
 | 
|  |    353 | apply (erule parts.induct, auto)
 | 
|  |    354 | apply (erule parts.induct)
 | 
|  |    355 | apply (blast intro: parts.Fst parts.Snd)+
 | 
|  |    356 | done
 | 
|  |    357 | 
 | 
|  |    358 | lemma parts_image_Key [simp]: "parts (Key`N) = Key`N"
 | 
|  |    359 | apply auto
 | 
|  |    360 | apply (erule parts.induct, auto)
 | 
|  |    361 | done
 | 
|  |    362 | 
 | 
|  |    363 | lemma parts_image_Pan [simp]: "parts (Pan`A) = Pan`A"
 | 
|  |    364 | apply auto
 | 
|  |    365 | apply (erule parts.induct, auto)
 | 
|  |    366 | done
 | 
|  |    367 | 
 | 
|  |    368 | 
 | 
|  |    369 | (*In any message, there is an upper bound N on its greatest nonce.*)
 | 
|  |    370 | lemma msg_Nonce_supply: "\<exists>N. \<forall>n. N\<le>n --> Nonce n \<notin> parts {msg}"
 | 
|  |    371 | apply (induct_tac "msg")
 | 
|  |    372 | apply (simp_all (no_asm_simp) add: exI parts_insert2)
 | 
|  |    373 | (*MPair case: blast_tac works out the necessary sum itself!*)
 | 
|  |    374 | prefer 2 apply (blast elim!: add_leE)
 | 
|  |    375 | (*Nonce case*)
 | 
|  |    376 | apply (rule_tac x = "N + Suc nat" in exI)
 | 
|  |    377 | apply (auto elim!: add_leE)
 | 
|  |    378 | done
 | 
|  |    379 | 
 | 
|  |    380 | (* Ditto, for numbers.*)
 | 
|  |    381 | lemma msg_Number_supply: "\<exists>N. \<forall>n. N<=n --> Number n \<notin> parts {msg}"
 | 
|  |    382 | apply (induct_tac "msg")
 | 
|  |    383 | apply (simp_all (no_asm_simp) add: exI parts_insert2)
 | 
|  |    384 | prefer 2 apply (blast elim!: add_leE)
 | 
|  |    385 | apply (rule_tac x = "N + Suc nat" in exI, auto)
 | 
|  |    386 | done
 | 
|  |    387 | 
 | 
|  |    388 | subsection{*Inductive relation "analz"*}
 | 
|  |    389 | 
 | 
|  |    390 | text{*Inductive definition of "analz" -- what can be broken down from a set of
 | 
|  |    391 |     messages, including keys.  A form of downward closure.  Pairs can
 | 
|  |    392 |     be taken apart; messages decrypted with known keys.*}
 | 
|  |    393 | 
 | 
|  |    394 | consts  analz   :: "msg set => msg set"
 | 
|  |    395 | inductive "analz H"
 | 
|  |    396 |   intros
 | 
|  |    397 |     Inj [intro,simp] :    "X \<in> H ==> X \<in> analz H"
 | 
|  |    398 |     Fst:     "{|X,Y|} \<in> analz H ==> X \<in> analz H"
 | 
|  |    399 |     Snd:     "{|X,Y|} \<in> analz H ==> Y \<in> analz H"
 | 
|  |    400 |     Decrypt [dest]:
 | 
|  |    401 |              "[|Crypt K X \<in> analz H; Key(invKey K): analz H|] ==> X \<in> analz H"
 | 
|  |    402 | 
 | 
|  |    403 | 
 | 
|  |    404 | (*Monotonicity; Lemma 1 of Lowe's paper*)
 | 
|  |    405 | lemma analz_mono: "G<=H ==> analz(G) <= analz(H)"
 | 
|  |    406 | apply auto
 | 
|  |    407 | apply (erule analz.induct)
 | 
|  |    408 | apply (auto dest: Fst Snd)
 | 
|  |    409 | done
 | 
|  |    410 | 
 | 
|  |    411 | text{*Making it safe speeds up proofs*}
 | 
|  |    412 | lemma MPair_analz [elim!]:
 | 
|  |    413 |      "[| {|X,Y|} \<in> analz H;
 | 
|  |    414 |              [| X \<in> analz H; Y \<in> analz H |] ==> P
 | 
|  |    415 |           |] ==> P"
 | 
|  |    416 | by (blast dest: analz.Fst analz.Snd)
 | 
|  |    417 | 
 | 
|  |    418 | lemma analz_increasing: "H \<subseteq> analz(H)"
 | 
|  |    419 | by blast
 | 
|  |    420 | 
 | 
|  |    421 | lemma analz_subset_parts: "analz H \<subseteq> parts H"
 | 
|  |    422 | apply (rule subsetI)
 | 
|  |    423 | apply (erule analz.induct, blast+)
 | 
|  |    424 | done
 | 
|  |    425 | 
 | 
|  |    426 | lemmas analz_into_parts = analz_subset_parts [THEN subsetD, standard]
 | 
|  |    427 | 
 | 
|  |    428 | lemmas not_parts_not_analz = analz_subset_parts [THEN contra_subsetD, standard]
 | 
|  |    429 | 
 | 
|  |    430 | 
 | 
|  |    431 | lemma parts_analz [simp]: "parts (analz H) = parts H"
 | 
|  |    432 | apply (rule equalityI)
 | 
|  |    433 | apply (rule analz_subset_parts [THEN parts_mono, THEN subset_trans], simp)
 | 
|  |    434 | apply (blast intro: analz_increasing [THEN parts_mono, THEN subsetD])
 | 
|  |    435 | done
 | 
|  |    436 | 
 | 
|  |    437 | lemma analz_parts [simp]: "analz (parts H) = parts H"
 | 
|  |    438 | apply auto
 | 
|  |    439 | apply (erule analz.induct, auto)
 | 
|  |    440 | done
 | 
|  |    441 | 
 | 
|  |    442 | lemmas analz_insertI = subset_insertI [THEN analz_mono, THEN [2] rev_subsetD, standard]
 | 
|  |    443 | 
 | 
|  |    444 | subsubsection{*General equational properties*}
 | 
|  |    445 | 
 | 
|  |    446 | lemma analz_empty [simp]: "analz{} = {}"
 | 
|  |    447 | apply safe
 | 
|  |    448 | apply (erule analz.induct, blast+)
 | 
|  |    449 | done
 | 
|  |    450 | 
 | 
|  |    451 | (*Converse fails: we can analz more from the union than from the
 | 
|  |    452 |   separate parts, as a key in one might decrypt a message in the other*)
 | 
|  |    453 | lemma analz_Un: "analz(G) \<union> analz(H) \<subseteq> analz(G \<union> H)"
 | 
|  |    454 | by (intro Un_least analz_mono Un_upper1 Un_upper2)
 | 
|  |    455 | 
 | 
|  |    456 | lemma analz_insert: "insert X (analz H) \<subseteq> analz(insert X H)"
 | 
|  |    457 | by (blast intro: analz_mono [THEN [2] rev_subsetD])
 | 
|  |    458 | 
 | 
|  |    459 | subsubsection{*Rewrite rules for pulling out atomic messages*}
 | 
|  |    460 | 
 | 
|  |    461 | lemmas analz_insert_eq_I = equalityI [OF subsetI analz_insert]
 | 
|  |    462 | 
 | 
|  |    463 | lemma analz_insert_Agent [simp]:
 | 
|  |    464 |      "analz (insert (Agent agt) H) = insert (Agent agt) (analz H)"
 | 
|  |    465 | apply (rule analz_insert_eq_I)
 | 
|  |    466 | apply (erule analz.induct, auto)
 | 
|  |    467 | done
 | 
|  |    468 | 
 | 
|  |    469 | lemma analz_insert_Nonce [simp]:
 | 
|  |    470 |      "analz (insert (Nonce N) H) = insert (Nonce N) (analz H)"
 | 
|  |    471 | apply (rule analz_insert_eq_I)
 | 
|  |    472 | apply (erule analz.induct, auto)
 | 
|  |    473 | done
 | 
|  |    474 | 
 | 
|  |    475 | lemma analz_insert_Number [simp]:
 | 
|  |    476 |      "analz (insert (Number N) H) = insert (Number N) (analz H)"
 | 
|  |    477 | apply (rule analz_insert_eq_I)
 | 
|  |    478 | apply (erule analz.induct, auto)
 | 
|  |    479 | done
 | 
|  |    480 | 
 | 
|  |    481 | lemma analz_insert_Hash [simp]:
 | 
|  |    482 |      "analz (insert (Hash X) H) = insert (Hash X) (analz H)"
 | 
|  |    483 | apply (rule analz_insert_eq_I)
 | 
|  |    484 | apply (erule analz.induct, auto)
 | 
|  |    485 | done
 | 
|  |    486 | 
 | 
|  |    487 | (*Can only pull out Keys if they are not needed to decrypt the rest*)
 | 
|  |    488 | lemma analz_insert_Key [simp]:
 | 
|  |    489 |     "K \<notin> keysFor (analz H) ==>
 | 
|  |    490 |           analz (insert (Key K) H) = insert (Key K) (analz H)"
 | 
|  |    491 | apply (unfold keysFor_def)
 | 
|  |    492 | apply (rule analz_insert_eq_I)
 | 
|  |    493 | apply (erule analz.induct, auto)
 | 
|  |    494 | done
 | 
|  |    495 | 
 | 
|  |    496 | lemma analz_insert_MPair [simp]:
 | 
|  |    497 |      "analz (insert {|X,Y|} H) =
 | 
|  |    498 |           insert {|X,Y|} (analz (insert X (insert Y H)))"
 | 
|  |    499 | apply (rule equalityI)
 | 
|  |    500 | apply (rule subsetI)
 | 
|  |    501 | apply (erule analz.induct, auto)
 | 
|  |    502 | apply (erule analz.induct)
 | 
|  |    503 | apply (blast intro: analz.Fst analz.Snd)+
 | 
|  |    504 | done
 | 
|  |    505 | 
 | 
|  |    506 | (*Can pull out enCrypted message if the Key is not known*)
 | 
|  |    507 | lemma analz_insert_Crypt:
 | 
|  |    508 |      "Key (invKey K) \<notin> analz H
 | 
|  |    509 |       ==> analz (insert (Crypt K X) H) = insert (Crypt K X) (analz H)"
 | 
|  |    510 | apply (rule analz_insert_eq_I)
 | 
|  |    511 | apply (erule analz.induct, auto)
 | 
|  |    512 | done
 | 
|  |    513 | 
 | 
|  |    514 | lemma analz_insert_Pan [simp]:
 | 
|  |    515 |      "analz (insert (Pan A) H) = insert (Pan A) (analz H)"
 | 
|  |    516 | apply (rule analz_insert_eq_I)
 | 
|  |    517 | apply (erule analz.induct, auto)
 | 
|  |    518 | done
 | 
|  |    519 | 
 | 
|  |    520 | lemma lemma1: "Key (invKey K) \<in> analz H ==>
 | 
|  |    521 |                analz (insert (Crypt K X) H) \<subseteq>
 | 
|  |    522 |                insert (Crypt K X) (analz (insert X H))"
 | 
|  |    523 | apply (rule subsetI)
 | 
|  |    524 | apply (erule_tac xa = x in analz.induct, auto)
 | 
|  |    525 | done
 | 
|  |    526 | 
 | 
|  |    527 | lemma lemma2: "Key (invKey K) \<in> analz H ==>
 | 
|  |    528 |                insert (Crypt K X) (analz (insert X H)) \<subseteq>
 | 
|  |    529 |                analz (insert (Crypt K X) H)"
 | 
|  |    530 | apply auto
 | 
|  |    531 | apply (erule_tac xa = x in analz.induct, auto)
 | 
|  |    532 | apply (blast intro: analz_insertI analz.Decrypt)
 | 
|  |    533 | done
 | 
|  |    534 | 
 | 
|  |    535 | lemma analz_insert_Decrypt:
 | 
|  |    536 |      "Key (invKey K) \<in> analz H ==>
 | 
|  |    537 |                analz (insert (Crypt K X) H) =
 | 
|  |    538 |                insert (Crypt K X) (analz (insert X H))"
 | 
|  |    539 | by (intro equalityI lemma1 lemma2)
 | 
|  |    540 | 
 | 
|  |    541 | (*Case analysis: either the message is secure, or it is not!
 | 
|  |    542 |   Effective, but can cause subgoals to blow up!
 | 
|  |    543 |   Use with split_if;  apparently split_tac does not cope with patterns
 | 
|  |    544 |   such as "analz (insert (Crypt K X) H)" *)
 | 
|  |    545 | lemma analz_Crypt_if [simp]:
 | 
|  |    546 |      "analz (insert (Crypt K X) H) =
 | 
|  |    547 |           (if (Key (invKey K) \<in> analz H)
 | 
|  |    548 |            then insert (Crypt K X) (analz (insert X H))
 | 
|  |    549 |            else insert (Crypt K X) (analz H))"
 | 
|  |    550 | by (simp add: analz_insert_Crypt analz_insert_Decrypt)
 | 
|  |    551 | 
 | 
|  |    552 | 
 | 
|  |    553 | (*This rule supposes "for the sake of argument" that we have the key.*)
 | 
|  |    554 | lemma analz_insert_Crypt_subset:
 | 
|  |    555 |      "analz (insert (Crypt K X) H) \<subseteq>
 | 
|  |    556 |            insert (Crypt K X) (analz (insert X H))"
 | 
|  |    557 | apply (rule subsetI)
 | 
|  |    558 | apply (erule analz.induct, auto)
 | 
|  |    559 | done
 | 
|  |    560 | 
 | 
|  |    561 | lemma analz_image_Key [simp]: "analz (Key`N) = Key`N"
 | 
|  |    562 | apply auto
 | 
|  |    563 | apply (erule analz.induct, auto)
 | 
|  |    564 | done
 | 
|  |    565 | 
 | 
|  |    566 | lemma analz_image_Pan [simp]: "analz (Pan`A) = Pan`A"
 | 
|  |    567 | apply auto
 | 
|  |    568 | apply (erule analz.induct, auto)
 | 
|  |    569 | done
 | 
|  |    570 | 
 | 
|  |    571 | 
 | 
|  |    572 | subsubsection{*Idempotence and transitivity*}
 | 
|  |    573 | 
 | 
|  |    574 | lemma analz_analzD [dest!]: "X\<in> analz (analz H) ==> X\<in> analz H"
 | 
|  |    575 | by (erule analz.induct, blast+)
 | 
|  |    576 | 
 | 
|  |    577 | lemma analz_idem [simp]: "analz (analz H) = analz H"
 | 
|  |    578 | by blast
 | 
|  |    579 | 
 | 
|  |    580 | lemma analz_trans: "[| X\<in> analz G;  G \<subseteq> analz H |] ==> X\<in> analz H"
 | 
|  |    581 | by (drule analz_mono, blast)
 | 
|  |    582 | 
 | 
|  |    583 | (*Cut; Lemma 2 of Lowe*)
 | 
|  |    584 | lemma analz_cut: "[| Y\<in> analz (insert X H);  X\<in> analz H |] ==> Y\<in> analz H"
 | 
|  |    585 | by (erule analz_trans, blast)
 | 
|  |    586 | 
 | 
|  |    587 | (*Cut can be proved easily by induction on
 | 
|  |    588 |    "Y: analz (insert X H) ==> X: analz H --> Y: analz H"
 | 
|  |    589 | *)
 | 
|  |    590 | 
 | 
|  |    591 | (*This rewrite rule helps in the simplification of messages that involve
 | 
|  |    592 |   the forwarding of unknown components (X).  Without it, removing occurrences
 | 
|  |    593 |   of X can be very complicated. *)
 | 
|  |    594 | lemma analz_insert_eq: "X\<in> analz H ==> analz (insert X H) = analz H"
 | 
|  |    595 | by (blast intro: analz_cut analz_insertI)
 | 
|  |    596 | 
 | 
|  |    597 | 
 | 
|  |    598 | text{*A congruence rule for "analz"*}
 | 
|  |    599 | 
 | 
|  |    600 | lemma analz_subset_cong:
 | 
|  |    601 |      "[| analz G \<subseteq> analz G'; analz H \<subseteq> analz H'
 | 
|  |    602 |                |] ==> analz (G \<union> H) \<subseteq> analz (G' \<union> H')"
 | 
|  |    603 | apply clarify
 | 
|  |    604 | apply (erule analz.induct)
 | 
|  |    605 | apply (best intro: analz_mono [THEN subsetD])+
 | 
|  |    606 | done
 | 
|  |    607 | 
 | 
|  |    608 | lemma analz_cong:
 | 
|  |    609 |      "[| analz G = analz G'; analz H = analz H'
 | 
|  |    610 |                |] ==> analz (G \<union> H) = analz (G' \<union> H')"
 | 
|  |    611 | by (intro equalityI analz_subset_cong, simp_all)
 | 
|  |    612 | 
 | 
|  |    613 | lemma analz_insert_cong:
 | 
|  |    614 |      "analz H = analz H' ==> analz(insert X H) = analz(insert X H')"
 | 
|  |    615 | by (force simp only: insert_def intro!: analz_cong)
 | 
|  |    616 | 
 | 
|  |    617 | (*If there are no pairs or encryptions then analz does nothing*)
 | 
|  |    618 | lemma analz_trivial:
 | 
|  |    619 |      "[| \<forall>X Y. {|X,Y|} \<notin> H;  \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
 | 
|  |    620 | apply safe
 | 
|  |    621 | apply (erule analz.induct, blast+)
 | 
|  |    622 | done
 | 
|  |    623 | 
 | 
|  |    624 | (*These two are obsolete (with a single Spy) but cost little to prove...*)
 | 
|  |    625 | lemma analz_UN_analz_lemma:
 | 
|  |    626 |      "X\<in> analz (\<Union>i\<in>A. analz (H i)) ==> X\<in> analz (\<Union>i\<in>A. H i)"
 | 
|  |    627 | apply (erule analz.induct)
 | 
|  |    628 | apply (blast intro: analz_mono [THEN [2] rev_subsetD])+
 | 
|  |    629 | done
 | 
|  |    630 | 
 | 
|  |    631 | lemma analz_UN_analz [simp]: "analz (\<Union>i\<in>A. analz (H i)) = analz (\<Union>i\<in>A. H i)"
 | 
|  |    632 | by (blast intro: analz_UN_analz_lemma analz_mono [THEN [2] rev_subsetD])
 | 
|  |    633 | 
 | 
|  |    634 | 
 | 
|  |    635 | subsection{*Inductive relation "synth"*}
 | 
|  |    636 | 
 | 
|  |    637 | text{*Inductive definition of "synth" -- what can be built up from a set of
 | 
|  |    638 |     messages.  A form of upward closure.  Pairs can be built, messages
 | 
|  |    639 |     encrypted with known keys.  Agent names are public domain.
 | 
|  |    640 |     Numbers can be guessed, but Nonces cannot be.*}
 | 
|  |    641 | 
 | 
|  |    642 | consts  synth   :: "msg set => msg set"
 | 
|  |    643 | inductive "synth H"
 | 
|  |    644 |   intros
 | 
|  |    645 |     Inj    [intro]:   "X \<in> H ==> X \<in> synth H"
 | 
|  |    646 |     Agent  [intro]:   "Agent agt \<in> synth H"
 | 
|  |    647 |     Number [intro]:   "Number n  \<in> synth H"
 | 
|  |    648 |     Hash   [intro]:   "X \<in> synth H ==> Hash X \<in> synth H"
 | 
|  |    649 |     MPair  [intro]:   "[|X \<in> synth H;  Y \<in> synth H|] ==> {|X,Y|} \<in> synth H"
 | 
|  |    650 |     Crypt  [intro]:   "[|X \<in> synth H;  Key(K) \<in> H|] ==> Crypt K X \<in> synth H"
 | 
|  |    651 | 
 | 
|  |    652 | (*Monotonicity*)
 | 
|  |    653 | lemma synth_mono: "G<=H ==> synth(G) <= synth(H)"
 | 
|  |    654 | apply auto
 | 
|  |    655 | apply (erule synth.induct)
 | 
|  |    656 | apply (auto dest: Fst Snd Body)
 | 
|  |    657 | done
 | 
|  |    658 | 
 | 
|  |    659 | (*NO Agent_synth, as any Agent name can be synthesized.  Ditto for Number*)
 | 
|  |    660 | inductive_cases Nonce_synth [elim!]: "Nonce n \<in> synth H"
 | 
|  |    661 | inductive_cases Key_synth   [elim!]: "Key K \<in> synth H"
 | 
|  |    662 | inductive_cases Hash_synth  [elim!]: "Hash X \<in> synth H"
 | 
|  |    663 | inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
 | 
|  |    664 | inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
 | 
|  |    665 | inductive_cases Pan_synth   [elim!]: "Pan A \<in> synth H"
 | 
|  |    666 | 
 | 
|  |    667 | 
 | 
|  |    668 | lemma synth_increasing: "H \<subseteq> synth(H)"
 | 
|  |    669 | by blast
 | 
|  |    670 | 
 | 
|  |    671 | subsubsection{*Unions*}
 | 
|  |    672 | 
 | 
|  |    673 | (*Converse fails: we can synth more from the union than from the
 | 
|  |    674 |   separate parts, building a compound message using elements of each.*)
 | 
|  |    675 | lemma synth_Un: "synth(G) \<union> synth(H) \<subseteq> synth(G \<union> H)"
 | 
|  |    676 | by (intro Un_least synth_mono Un_upper1 Un_upper2)
 | 
|  |    677 | 
 | 
|  |    678 | lemma synth_insert: "insert X (synth H) \<subseteq> synth(insert X H)"
 | 
|  |    679 | by (blast intro: synth_mono [THEN [2] rev_subsetD])
 | 
|  |    680 | 
 | 
|  |    681 | subsubsection{*Idempotence and transitivity*}
 | 
|  |    682 | 
 | 
|  |    683 | lemma synth_synthD [dest!]: "X\<in> synth (synth H) ==> X\<in> synth H"
 | 
|  |    684 | by (erule synth.induct, blast+)
 | 
|  |    685 | 
 | 
|  |    686 | lemma synth_idem: "synth (synth H) = synth H"
 | 
|  |    687 | by blast
 | 
|  |    688 | 
 | 
|  |    689 | lemma synth_trans: "[| X\<in> synth G;  G \<subseteq> synth H |] ==> X\<in> synth H"
 | 
|  |    690 | by (drule synth_mono, blast)
 | 
|  |    691 | 
 | 
|  |    692 | (*Cut; Lemma 2 of Lowe*)
 | 
|  |    693 | lemma synth_cut: "[| Y\<in> synth (insert X H);  X\<in> synth H |] ==> Y\<in> synth H"
 | 
|  |    694 | by (erule synth_trans, blast)
 | 
|  |    695 | 
 | 
|  |    696 | lemma Agent_synth [simp]: "Agent A \<in> synth H"
 | 
|  |    697 | by blast
 | 
|  |    698 | 
 | 
|  |    699 | lemma Number_synth [simp]: "Number n \<in> synth H"
 | 
|  |    700 | by blast
 | 
|  |    701 | 
 | 
|  |    702 | lemma Nonce_synth_eq [simp]: "(Nonce N \<in> synth H) = (Nonce N \<in> H)"
 | 
|  |    703 | by blast
 | 
|  |    704 | 
 | 
|  |    705 | lemma Key_synth_eq [simp]: "(Key K \<in> synth H) = (Key K \<in> H)"
 | 
|  |    706 | by blast
 | 
|  |    707 | 
 | 
|  |    708 | lemma Crypt_synth_eq [simp]: "Key K \<notin> H ==> (Crypt K X \<in> synth H) = (Crypt K X \<in> H)"
 | 
|  |    709 | by blast
 | 
|  |    710 | 
 | 
|  |    711 | lemma Pan_synth_eq [simp]: "(Pan A \<in> synth H) = (Pan A \<in> H)"
 | 
|  |    712 | by blast
 | 
|  |    713 | 
 | 
|  |    714 | lemma keysFor_synth [simp]:
 | 
|  |    715 |     "keysFor (synth H) = keysFor H \<union> invKey`{K. Key K \<in> H}"
 | 
|  |    716 | by (unfold keysFor_def, blast)
 | 
|  |    717 | 
 | 
|  |    718 | 
 | 
|  |    719 | subsubsection{*Combinations of parts, analz and synth*}
 | 
|  |    720 | 
 | 
|  |    721 | lemma parts_synth [simp]: "parts (synth H) = parts H \<union> synth H"
 | 
|  |    722 | apply (rule equalityI)
 | 
|  |    723 | apply (rule subsetI)
 | 
|  |    724 | apply (erule parts.induct)
 | 
|  |    725 | apply (blast intro: synth_increasing [THEN parts_mono, THEN subsetD]
 | 
|  |    726 |                     parts.Fst parts.Snd parts.Body)+
 | 
|  |    727 | done
 | 
|  |    728 | 
 | 
|  |    729 | lemma analz_analz_Un [simp]: "analz (analz G \<union> H) = analz (G \<union> H)"
 | 
|  |    730 | apply (intro equalityI analz_subset_cong)+
 | 
|  |    731 | apply simp_all
 | 
|  |    732 | done
 | 
|  |    733 | 
 | 
|  |    734 | lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
 | 
|  |    735 | apply (rule equalityI)
 | 
|  |    736 | apply (rule subsetI)
 | 
|  |    737 | apply (erule analz.induct)
 | 
|  |    738 | prefer 5 apply (blast intro: analz_mono [THEN [2] rev_subsetD])
 | 
|  |    739 | apply (blast intro: analz.Fst analz.Snd analz.Decrypt)+
 | 
|  |    740 | done
 | 
|  |    741 | 
 | 
|  |    742 | lemma analz_synth [simp]: "analz (synth H) = analz H \<union> synth H"
 | 
|  |    743 | apply (cut_tac H = "{}" in analz_synth_Un)
 | 
|  |    744 | apply (simp (no_asm_use))
 | 
|  |    745 | done
 | 
|  |    746 | 
 | 
|  |    747 | 
 | 
|  |    748 | subsubsection{*For reasoning about the Fake rule in traces*}
 | 
|  |    749 | 
 | 
|  |    750 | lemma parts_insert_subset_Un: "X\<in> G ==> parts(insert X H) \<subseteq> parts G \<union> parts H"
 | 
|  |    751 | by (rule subset_trans [OF parts_mono parts_Un_subset2], blast)
 | 
|  |    752 | 
 | 
|  |    753 | (*More specifically for Fake.  Very occasionally we could do with a version
 | 
|  |    754 |   of the form  parts{X} \<subseteq> synth (analz H) \<union> parts H *)
 | 
|  |    755 | lemma Fake_parts_insert: "X \<in> synth (analz H) ==>
 | 
|  |    756 |       parts (insert X H) \<subseteq> synth (analz H) \<union> parts H"
 | 
|  |    757 | apply (drule parts_insert_subset_Un)
 | 
|  |    758 | apply (simp (no_asm_use))
 | 
|  |    759 | apply blast
 | 
|  |    760 | done
 | 
|  |    761 | 
 | 
|  |    762 | lemma Fake_parts_insert_in_Un:
 | 
|  |    763 |      "[|Z \<in> parts (insert X H);  X: synth (analz H)|] 
 | 
|  |    764 |       ==> Z \<in>  synth (analz H) \<union> parts H";
 | 
|  |    765 | by (blast dest: Fake_parts_insert [THEN subsetD, dest])
 | 
|  |    766 | 
 | 
|  |    767 | (*H is sometimes (Key ` KK \<union> spies evs), so can't put G=H*)
 | 
|  |    768 | lemma Fake_analz_insert:
 | 
|  |    769 |      "X\<in> synth (analz G) ==>
 | 
|  |    770 |       analz (insert X H) \<subseteq> synth (analz G) \<union> analz (G \<union> H)"
 | 
|  |    771 | apply (rule subsetI)
 | 
|  |    772 | apply (subgoal_tac "x \<in> analz (synth (analz G) \<union> H) ")
 | 
|  |    773 | prefer 2 apply (blast intro: analz_mono [THEN [2] rev_subsetD] analz_mono [THEN synth_mono, THEN [2] rev_subsetD])
 | 
|  |    774 | apply (simp (no_asm_use))
 | 
|  |    775 | apply blast
 | 
|  |    776 | done
 | 
|  |    777 | 
 | 
|  |    778 | lemma analz_conj_parts [simp]:
 | 
|  |    779 |      "(X \<in> analz H & X \<in> parts H) = (X \<in> analz H)"
 | 
|  |    780 | by (blast intro: analz_subset_parts [THEN subsetD])
 | 
|  |    781 | 
 | 
|  |    782 | lemma analz_disj_parts [simp]:
 | 
|  |    783 |      "(X \<in> analz H | X \<in> parts H) = (X \<in> parts H)"
 | 
|  |    784 | by (blast intro: analz_subset_parts [THEN subsetD])
 | 
|  |    785 | 
 | 
|  |    786 | (*Without this equation, other rules for synth and analz would yield
 | 
|  |    787 |   redundant cases*)
 | 
|  |    788 | lemma MPair_synth_analz [iff]:
 | 
|  |    789 |      "({|X,Y|} \<in> synth (analz H)) =
 | 
|  |    790 |       (X \<in> synth (analz H) & Y \<in> synth (analz H))"
 | 
|  |    791 | by blast
 | 
|  |    792 | 
 | 
|  |    793 | lemma Crypt_synth_analz:
 | 
|  |    794 |      "[| Key K \<in> analz H;  Key (invKey K) \<in> analz H |]
 | 
|  |    795 |        ==> (Crypt K X \<in> synth (analz H)) = (X \<in> synth (analz H))"
 | 
|  |    796 | by blast
 | 
|  |    797 | 
 | 
|  |    798 | 
 | 
|  |    799 | lemma Hash_synth_analz [simp]:
 | 
|  |    800 |      "X \<notin> synth (analz H)
 | 
|  |    801 |       ==> (Hash{|X,Y|} \<in> synth (analz H)) = (Hash{|X,Y|} \<in> analz H)"
 | 
|  |    802 | by blast
 | 
|  |    803 | 
 | 
|  |    804 | 
 | 
|  |    805 | (*We do NOT want Crypt... messages broken up in protocols!!*)
 | 
|  |    806 | declare parts.Body [rule del]
 | 
|  |    807 | 
 | 
|  |    808 | 
 | 
|  |    809 | text{*Rewrites to push in Key and Crypt messages, so that other messages can
 | 
|  |    810 |     be pulled out using the @{text analz_insert} rules*}
 | 
|  |    811 | ML
 | 
|  |    812 | {*
 | 
|  |    813 | fun insComm x y = inst "x" x (inst "y" y insert_commute);
 | 
|  |    814 | 
 | 
|  |    815 | bind_thms ("pushKeys",
 | 
|  |    816 |            map (insComm "Key ?K")
 | 
|  |    817 |                    ["Agent ?C", "Nonce ?N", "Number ?N", "Pan ?PAN",
 | 
|  |    818 | 		    "Hash ?X", "MPair ?X ?Y", "Crypt ?X ?K'"]);
 | 
|  |    819 | 
 | 
|  |    820 | bind_thms ("pushCrypts",
 | 
|  |    821 |            map (insComm "Crypt ?X ?K")
 | 
|  |    822 |                      ["Agent ?C", "Nonce ?N", "Number ?N", "Pan ?PAN",
 | 
|  |    823 | 		      "Hash ?X'", "MPair ?X' ?Y"]);
 | 
|  |    824 | *}
 | 
|  |    825 | 
 | 
|  |    826 | text{*Cannot be added with @{text "[simp]"} -- messages should not always be
 | 
|  |    827 |   re-ordered.*}
 | 
|  |    828 | lemmas pushes = pushKeys pushCrypts
 | 
|  |    829 | 
 | 
|  |    830 | 
 | 
|  |    831 | subsection{*Tactics useful for many protocol proofs*}
 | 
| 14218 |    832 | (*<*)
 | 
| 14199 |    833 | ML
 | 
|  |    834 | {*
 | 
|  |    835 | val analz_increasing = thm "analz_increasing";
 | 
|  |    836 | val analz_subset_parts = thm "analz_subset_parts";
 | 
|  |    837 | val parts_analz = thm "parts_analz";
 | 
|  |    838 | val analz_parts = thm "analz_parts";
 | 
|  |    839 | val analz_insertI = thm "analz_insertI";
 | 
|  |    840 | val Fake_parts_insert = thm "Fake_parts_insert";
 | 
|  |    841 | val Fake_analz_insert = thm "Fake_analz_insert";
 | 
|  |    842 | 
 | 
|  |    843 | (*Prove base case (subgoal i) and simplify others.  A typical base case
 | 
|  |    844 |   concerns  Crypt K X \<notin> Key`shrK`bad  and cannot be proved by rewriting
 | 
|  |    845 |   alone.*)
 | 
|  |    846 | fun prove_simple_subgoals_tac i =
 | 
| 22843 |    847 |     force_tac (claset(), simpset() addsimps [@{thm image_eq_UN}]) i THEN
 | 
| 14199 |    848 |     ALLGOALS Asm_simp_tac
 | 
|  |    849 | 
 | 
|  |    850 | (*Analysis of Fake cases.  Also works for messages that forward unknown parts,
 | 
|  |    851 |   but this application is no longer necessary if analz_insert_eq is used.
 | 
|  |    852 |   Abstraction over i is ESSENTIAL: it delays the dereferencing of claset
 | 
|  |    853 |   DEPENDS UPON "X" REFERRING TO THE FRADULENT MESSAGE *)
 | 
|  |    854 | 
 | 
|  |    855 | (*Apply rules to break down assumptions of the form
 | 
|  |    856 |   Y \<in> parts(insert X H)  and  Y \<in> analz(insert X H)
 | 
|  |    857 | *)
 | 
|  |    858 | val Fake_insert_tac =
 | 
|  |    859 |     dresolve_tac [impOfSubs Fake_analz_insert,
 | 
|  |    860 |                   impOfSubs Fake_parts_insert] THEN'
 | 
|  |    861 |     eresolve_tac [asm_rl, thm"synth.Inj"];
 | 
|  |    862 | 
 | 
|  |    863 | fun Fake_insert_simp_tac ss i =
 | 
|  |    864 |     REPEAT (Fake_insert_tac i) THEN asm_full_simp_tac ss i;
 | 
|  |    865 | 
 | 
|  |    866 | fun atomic_spy_analz_tac (cs,ss) = SELECT_GOAL
 | 
|  |    867 |     (Fake_insert_simp_tac ss 1
 | 
|  |    868 |      THEN
 | 
|  |    869 |      IF_UNSOLVED (Blast.depth_tac
 | 
|  |    870 | 		  (cs addIs [analz_insertI,
 | 
|  |    871 | 				   impOfSubs analz_subset_parts]) 4 1))
 | 
|  |    872 | 
 | 
|  |    873 | (*The explicit claset and simpset arguments help it work with Isar*)
 | 
|  |    874 | fun gen_spy_analz_tac (cs,ss) i =
 | 
|  |    875 |   DETERM
 | 
|  |    876 |    (SELECT_GOAL
 | 
|  |    877 |      (EVERY
 | 
|  |    878 |       [  (*push in occurrences of X...*)
 | 
|  |    879 |        (REPEAT o CHANGED)
 | 
|  |    880 |            (res_inst_tac [("x1","X")] (insert_commute RS ssubst) 1),
 | 
|  |    881 |        (*...allowing further simplifications*)
 | 
|  |    882 |        simp_tac ss 1,
 | 
|  |    883 |        REPEAT (FIRSTGOAL (resolve_tac [allI,impI,notI,conjI,iffI])),
 | 
|  |    884 |        DEPTH_SOLVE (atomic_spy_analz_tac (cs,ss) 1)]) i)
 | 
|  |    885 | 
 | 
|  |    886 | fun spy_analz_tac i = gen_spy_analz_tac (claset(), simpset()) i
 | 
|  |    887 | *}
 | 
| 14218 |    888 | (*>*)
 | 
|  |    889 | 
 | 
| 14199 |    890 | 
 | 
|  |    891 | (*By default only o_apply is built-in.  But in the presence of eta-expansion
 | 
|  |    892 |   this means that some terms displayed as (f o g) will be rewritten, and others
 | 
|  |    893 |   will not!*)
 | 
|  |    894 | declare o_def [simp]
 | 
|  |    895 | 
 | 
|  |    896 | 
 | 
|  |    897 | lemma Crypt_notin_image_Key [simp]: "Crypt K X \<notin> Key ` A"
 | 
|  |    898 | by auto
 | 
|  |    899 | 
 | 
|  |    900 | lemma Hash_notin_image_Key [simp] :"Hash X \<notin> Key ` A"
 | 
|  |    901 | by auto
 | 
|  |    902 | 
 | 
|  |    903 | lemma synth_analz_mono: "G<=H ==> synth (analz(G)) <= synth (analz(H))"
 | 
|  |    904 | by (simp add: synth_mono analz_mono)
 | 
|  |    905 | 
 | 
|  |    906 | lemma Fake_analz_eq [simp]:
 | 
|  |    907 |      "X \<in> synth(analz H) ==> synth (analz (insert X H)) = synth (analz H)"
 | 
|  |    908 | apply (drule Fake_analz_insert[of _ _ "H"])
 | 
|  |    909 | apply (simp add: synth_increasing[THEN Un_absorb2])
 | 
|  |    910 | apply (drule synth_mono)
 | 
|  |    911 | apply (simp add: synth_idem)
 | 
|  |    912 | apply (blast intro: synth_analz_mono [THEN [2] rev_subsetD])
 | 
|  |    913 | done
 | 
|  |    914 | 
 | 
|  |    915 | text{*Two generalizations of @{text analz_insert_eq}*}
 | 
|  |    916 | lemma gen_analz_insert_eq [rule_format]:
 | 
|  |    917 |      "X \<in> analz H ==> ALL G. H \<subseteq> G --> analz (insert X G) = analz G";
 | 
|  |    918 | by (blast intro: analz_cut analz_insertI analz_mono [THEN [2] rev_subsetD])
 | 
|  |    919 | 
 | 
|  |    920 | lemma synth_analz_insert_eq [rule_format]:
 | 
|  |    921 |      "X \<in> synth (analz H)
 | 
|  |    922 |       ==> ALL G. H \<subseteq> G --> (Key K \<in> analz (insert X G)) = (Key K \<in> analz G)";
 | 
|  |    923 | apply (erule synth.induct)
 | 
|  |    924 | apply (simp_all add: gen_analz_insert_eq subset_trans [OF _ subset_insertI])
 | 
|  |    925 | done
 | 
|  |    926 | 
 | 
|  |    927 | lemma Fake_parts_sing:
 | 
|  |    928 |      "X \<in> synth (analz H) ==> parts{X} \<subseteq> synth (analz H) \<union> parts H";
 | 
|  |    929 | apply (rule subset_trans)
 | 
|  |    930 |  apply (erule_tac [2] Fake_parts_insert)
 | 
|  |    931 | apply (simp add: parts_mono)
 | 
|  |    932 | done
 | 
|  |    933 | 
 | 
|  |    934 | lemmas Fake_parts_sing_imp_Un = Fake_parts_sing [THEN [2] rev_subsetD]
 | 
|  |    935 | 
 | 
|  |    936 | method_setup spy_analz = {*
 | 
|  |    937 |     Method.ctxt_args (fn ctxt =>
 | 
| 21588 |    938 |         Method.SIMPLE_METHOD' (gen_spy_analz_tac (local_clasimpset_of ctxt))) *}
 | 
| 14199 |    939 |     "for proving the Fake case when analz is involved"
 | 
|  |    940 | 
 | 
|  |    941 | method_setup atomic_spy_analz = {*
 | 
|  |    942 |     Method.ctxt_args (fn ctxt =>
 | 
| 21588 |    943 |         Method.SIMPLE_METHOD' (atomic_spy_analz_tac (local_clasimpset_of ctxt))) *}
 | 
| 14199 |    944 |     "for debugging spy_analz"
 | 
|  |    945 | 
 | 
|  |    946 | method_setup Fake_insert_simp = {*
 | 
|  |    947 |     Method.ctxt_args (fn ctxt =>
 | 
| 21588 |    948 |         Method.SIMPLE_METHOD' (Fake_insert_simp_tac (local_simpset_of ctxt))) *}
 | 
| 14199 |    949 |     "for debugging spy_analz"
 | 
|  |    950 | 
 | 
|  |    951 | end
 |