30296
|
1 |
%
|
|
2 |
\begin{isabellebody}%
|
|
3 |
\def\isabellecontext{Prelim}%
|
|
4 |
%
|
|
5 |
\isadelimtheory
|
|
6 |
%
|
|
7 |
\endisadelimtheory
|
|
8 |
%
|
|
9 |
\isatagtheory
|
|
10 |
\isacommand{theory}\isamarkupfalse%
|
|
11 |
\ Prelim\isanewline
|
|
12 |
\isakeyword{imports}\ Base\isanewline
|
|
13 |
\isakeyword{begin}%
|
|
14 |
\endisatagtheory
|
|
15 |
{\isafoldtheory}%
|
|
16 |
%
|
|
17 |
\isadelimtheory
|
|
18 |
%
|
|
19 |
\endisadelimtheory
|
|
20 |
%
|
|
21 |
\isamarkupchapter{Preliminaries%
|
|
22 |
}
|
|
23 |
\isamarkuptrue%
|
|
24 |
%
|
|
25 |
\isamarkupsection{Contexts \label{sec:context}%
|
|
26 |
}
|
|
27 |
\isamarkuptrue%
|
|
28 |
%
|
|
29 |
\begin{isamarkuptext}%
|
|
30 |
A logical context represents the background that is required for
|
|
31 |
formulating statements and composing proofs. It acts as a medium to
|
|
32 |
produce formal content, depending on earlier material (declarations,
|
|
33 |
results etc.).
|
|
34 |
|
|
35 |
For example, derivations within the Isabelle/Pure logic can be
|
|
36 |
described as a judgment \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}, which means that a
|
|
37 |
proposition \isa{{\isasymphi}} is derivable from hypotheses \isa{{\isasymGamma}}
|
|
38 |
within the theory \isa{{\isasymTheta}}. There are logical reasons for
|
|
39 |
keeping \isa{{\isasymTheta}} and \isa{{\isasymGamma}} separate: theories can be
|
|
40 |
liberal about supporting type constructors and schematic
|
|
41 |
polymorphism of constants and axioms, while the inner calculus of
|
|
42 |
\isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}} is strictly limited to Simple Type Theory (with
|
|
43 |
fixed type variables in the assumptions).
|
|
44 |
|
|
45 |
\medskip Contexts and derivations are linked by the following key
|
|
46 |
principles:
|
|
47 |
|
|
48 |
\begin{itemize}
|
|
49 |
|
|
50 |
\item Transfer: monotonicity of derivations admits results to be
|
|
51 |
transferred into a \emph{larger} context, i.e.\ \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}} implies \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\isactrlsub {\isacharprime}\ {\isasymphi}} for contexts \isa{{\isasymTheta}{\isacharprime}\ {\isasymsupseteq}\ {\isasymTheta}} and \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}}.
|
|
52 |
|
|
53 |
\item Export: discharge of hypotheses admits results to be exported
|
|
54 |
into a \emph{smaller} context, i.e.\ \isa{{\isasymGamma}{\isacharprime}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymphi}}
|
|
55 |
implies \isa{{\isasymGamma}\ {\isasymturnstile}\isactrlsub {\isasymTheta}\ {\isasymDelta}\ {\isasymLongrightarrow}\ {\isasymphi}} where \isa{{\isasymGamma}{\isacharprime}\ {\isasymsupseteq}\ {\isasymGamma}} and
|
|
56 |
\isa{{\isasymDelta}\ {\isacharequal}\ {\isasymGamma}{\isacharprime}\ {\isacharminus}\ {\isasymGamma}}. Note that \isa{{\isasymTheta}} remains unchanged here,
|
|
57 |
only the \isa{{\isasymGamma}} part is affected.
|
|
58 |
|
|
59 |
\end{itemize}
|
|
60 |
|
|
61 |
\medskip By modeling the main characteristics of the primitive
|
|
62 |
\isa{{\isasymTheta}} and \isa{{\isasymGamma}} above, and abstracting over any
|
|
63 |
particular logical content, we arrive at the fundamental notions of
|
|
64 |
\emph{theory context} and \emph{proof context} in Isabelle/Isar.
|
|
65 |
These implement a certain policy to manage arbitrary \emph{context
|
|
66 |
data}. There is a strongly-typed mechanism to declare new kinds of
|
|
67 |
data at compile time.
|
|
68 |
|
|
69 |
The internal bootstrap process of Isabelle/Pure eventually reaches a
|
|
70 |
stage where certain data slots provide the logical content of \isa{{\isasymTheta}} and \isa{{\isasymGamma}} sketched above, but this does not stop there!
|
|
71 |
Various additional data slots support all kinds of mechanisms that
|
|
72 |
are not necessarily part of the core logic.
|
|
73 |
|
|
74 |
For example, there would be data for canonical introduction and
|
|
75 |
elimination rules for arbitrary operators (depending on the
|
|
76 |
object-logic and application), which enables users to perform
|
|
77 |
standard proof steps implicitly (cf.\ the \isa{rule} method
|
|
78 |
\cite{isabelle-isar-ref}).
|
|
79 |
|
|
80 |
\medskip Thus Isabelle/Isar is able to bring forth more and more
|
|
81 |
concepts successively. In particular, an object-logic like
|
|
82 |
Isabelle/HOL continues the Isabelle/Pure setup by adding specific
|
|
83 |
components for automated reasoning (classical reasoner, tableau
|
|
84 |
prover, structured induction etc.) and derived specification
|
|
85 |
mechanisms (inductive predicates, recursive functions etc.). All of
|
|
86 |
this is ultimately based on the generic data management by theory
|
|
87 |
and proof contexts introduced here.%
|
|
88 |
\end{isamarkuptext}%
|
|
89 |
\isamarkuptrue%
|
|
90 |
%
|
|
91 |
\isamarkupsubsection{Theory context \label{sec:context-theory}%
|
|
92 |
}
|
|
93 |
\isamarkuptrue%
|
|
94 |
%
|
|
95 |
\begin{isamarkuptext}%
|
|
96 |
A \emph{theory} is a data container with explicit name and unique
|
|
97 |
identifier. Theories are related by a (nominal) sub-theory
|
|
98 |
relation, which corresponds to the dependency graph of the original
|
|
99 |
construction; each theory is derived from a certain sub-graph of
|
|
100 |
ancestor theories.
|
|
101 |
|
|
102 |
The \isa{merge} operation produces the least upper bound of two
|
|
103 |
theories, which actually degenerates into absorption of one theory
|
|
104 |
into the other (due to the nominal sub-theory relation).
|
|
105 |
|
|
106 |
The \isa{begin} operation starts a new theory by importing
|
|
107 |
several parent theories and entering a special \isa{draft} mode,
|
|
108 |
which is sustained until the final \isa{end} operation. A draft
|
|
109 |
theory acts like a linear type, where updates invalidate earlier
|
|
110 |
versions. An invalidated draft is called ``stale''.
|
|
111 |
|
|
112 |
The \isa{checkpoint} operation produces an intermediate stepping
|
|
113 |
stone that will survive the next update: both the original and the
|
|
114 |
changed theory remain valid and are related by the sub-theory
|
|
115 |
relation. Checkpointing essentially recovers purely functional
|
|
116 |
theory values, at the expense of some extra internal bookkeeping.
|
|
117 |
|
|
118 |
The \isa{copy} operation produces an auxiliary version that has
|
|
119 |
the same data content, but is unrelated to the original: updates of
|
|
120 |
the copy do not affect the original, neither does the sub-theory
|
|
121 |
relation hold.
|
|
122 |
|
|
123 |
\medskip The example in \figref{fig:ex-theory} below shows a theory
|
|
124 |
graph derived from \isa{Pure}, with theory \isa{Length}
|
|
125 |
importing \isa{Nat} and \isa{List}. The body of \isa{Length} consists of a sequence of updates, working mostly on
|
|
126 |
drafts. Intermediate checkpoints may occur as well, due to the
|
|
127 |
history mechanism provided by the Isar top-level, cf.\
|
|
128 |
\secref{sec:isar-toplevel}.
|
|
129 |
|
|
130 |
\begin{figure}[htb]
|
|
131 |
\begin{center}
|
|
132 |
\begin{tabular}{rcccl}
|
|
133 |
& & \isa{Pure} \\
|
|
134 |
& & \isa{{\isasymdown}} \\
|
|
135 |
& & \isa{FOL} \\
|
|
136 |
& $\swarrow$ & & $\searrow$ & \\
|
|
137 |
\isa{Nat} & & & & \isa{List} \\
|
|
138 |
& $\searrow$ & & $\swarrow$ \\
|
|
139 |
& & \isa{Length} \\
|
|
140 |
& & \multicolumn{3}{l}{~~\hyperlink{keyword.imports}{\mbox{\isa{\isakeyword{imports}}}}} \\
|
|
141 |
& & \multicolumn{3}{l}{~~\hyperlink{keyword.begin}{\mbox{\isa{\isakeyword{begin}}}}} \\
|
|
142 |
& & $\vdots$~~ \\
|
|
143 |
& & \isa{{\isasymbullet}}~~ \\
|
|
144 |
& & $\vdots$~~ \\
|
|
145 |
& & \isa{{\isasymbullet}}~~ \\
|
|
146 |
& & $\vdots$~~ \\
|
|
147 |
& & \multicolumn{3}{l}{~~\hyperlink{command.end}{\mbox{\isa{\isacommand{end}}}}} \\
|
|
148 |
\end{tabular}
|
|
149 |
\caption{A theory definition depending on ancestors}\label{fig:ex-theory}
|
|
150 |
\end{center}
|
|
151 |
\end{figure}
|
|
152 |
|
|
153 |
\medskip There is a separate notion of \emph{theory reference} for
|
|
154 |
maintaining a live link to an evolving theory context: updates on
|
|
155 |
drafts are propagated automatically. Dynamic updating stops after
|
|
156 |
an explicit \isa{end} only.
|
|
157 |
|
|
158 |
Derived entities may store a theory reference in order to indicate
|
|
159 |
the context they belong to. This implicitly assumes monotonic
|
|
160 |
reasoning, because the referenced context may become larger without
|
|
161 |
further notice.%
|
|
162 |
\end{isamarkuptext}%
|
|
163 |
\isamarkuptrue%
|
|
164 |
%
|
|
165 |
\isadelimmlref
|
|
166 |
%
|
|
167 |
\endisadelimmlref
|
|
168 |
%
|
|
169 |
\isatagmlref
|
|
170 |
%
|
|
171 |
\begin{isamarkuptext}%
|
|
172 |
\begin{mldecls}
|
|
173 |
\indexdef{}{ML type}{theory}\verb|type theory| \\
|
|
174 |
\indexdef{}{ML}{Theory.subthy}\verb|Theory.subthy: theory * theory -> bool| \\
|
|
175 |
\indexdef{}{ML}{Theory.merge}\verb|Theory.merge: theory * theory -> theory| \\
|
|
176 |
\indexdef{}{ML}{Theory.checkpoint}\verb|Theory.checkpoint: theory -> theory| \\
|
|
177 |
\indexdef{}{ML}{Theory.copy}\verb|Theory.copy: theory -> theory| \\
|
|
178 |
\end{mldecls}
|
|
179 |
\begin{mldecls}
|
|
180 |
\indexdef{}{ML type}{theory\_ref}\verb|type theory_ref| \\
|
|
181 |
\indexdef{}{ML}{Theory.deref}\verb|Theory.deref: theory_ref -> theory| \\
|
|
182 |
\indexdef{}{ML}{Theory.check\_thy}\verb|Theory.check_thy: theory -> theory_ref| \\
|
|
183 |
\end{mldecls}
|
|
184 |
|
|
185 |
\begin{description}
|
|
186 |
|
|
187 |
\item \verb|theory| represents theory contexts. This is
|
|
188 |
essentially a linear type! Most operations destroy the original
|
|
189 |
version, which then becomes ``stale''.
|
|
190 |
|
|
191 |
\item \verb|Theory.subthy|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
|
|
192 |
compares theories according to the inherent graph structure of the
|
|
193 |
construction. This sub-theory relation is a nominal approximation
|
|
194 |
of inclusion (\isa{{\isasymsubseteq}}) of the corresponding content.
|
|
195 |
|
|
196 |
\item \verb|Theory.merge|~\isa{{\isacharparenleft}thy\isactrlsub {\isadigit{1}}{\isacharcomma}\ thy\isactrlsub {\isadigit{2}}{\isacharparenright}}
|
|
197 |
absorbs one theory into the other. This fails for unrelated
|
|
198 |
theories!
|
|
199 |
|
|
200 |
\item \verb|Theory.checkpoint|~\isa{thy} produces a safe
|
|
201 |
stepping stone in the linear development of \isa{thy}. The next
|
|
202 |
update will result in two related, valid theories.
|
|
203 |
|
|
204 |
\item \verb|Theory.copy|~\isa{thy} produces a variant of \isa{thy} that holds a copy of the same data. The result is not
|
|
205 |
related to the original; the original is unchanged.
|
|
206 |
|
|
207 |
\item \verb|theory_ref| represents a sliding reference to an
|
|
208 |
always valid theory; updates on the original are propagated
|
|
209 |
automatically.
|
|
210 |
|
|
211 |
\item \verb|Theory.deref|~\isa{thy{\isacharunderscore}ref} turns a \verb|theory_ref| into an \verb|theory| value. As the referenced
|
|
212 |
theory evolves monotonically over time, later invocations of \verb|Theory.deref| may refer to a larger context.
|
|
213 |
|
|
214 |
\item \verb|Theory.check_thy|~\isa{thy} produces a \verb|theory_ref| from a valid \verb|theory| value.
|
|
215 |
|
|
216 |
\end{description}%
|
|
217 |
\end{isamarkuptext}%
|
|
218 |
\isamarkuptrue%
|
|
219 |
%
|
|
220 |
\endisatagmlref
|
|
221 |
{\isafoldmlref}%
|
|
222 |
%
|
|
223 |
\isadelimmlref
|
|
224 |
%
|
|
225 |
\endisadelimmlref
|
|
226 |
%
|
|
227 |
\isamarkupsubsection{Proof context \label{sec:context-proof}%
|
|
228 |
}
|
|
229 |
\isamarkuptrue%
|
|
230 |
%
|
|
231 |
\begin{isamarkuptext}%
|
|
232 |
A proof context is a container for pure data with a back-reference
|
|
233 |
to the theory it belongs to. The \isa{init} operation creates a
|
|
234 |
proof context from a given theory. Modifications to draft theories
|
|
235 |
are propagated to the proof context as usual, but there is also an
|
|
236 |
explicit \isa{transfer} operation to force resynchronization
|
|
237 |
with more substantial updates to the underlying theory. The actual
|
|
238 |
context data does not require any special bookkeeping, thanks to the
|
|
239 |
lack of destructive features.
|
|
240 |
|
|
241 |
Entities derived in a proof context need to record inherent logical
|
|
242 |
requirements explicitly, since there is no separate context
|
|
243 |
identification as for theories. For example, hypotheses used in
|
|
244 |
primitive derivations (cf.\ \secref{sec:thms}) are recorded
|
|
245 |
separately within the sequent \isa{{\isasymGamma}\ {\isasymturnstile}\ {\isasymphi}}, just to make double
|
|
246 |
sure. Results could still leak into an alien proof context due to
|
|
247 |
programming errors, but Isabelle/Isar includes some extra validity
|
|
248 |
checks in critical positions, notably at the end of a sub-proof.
|
|
249 |
|
|
250 |
Proof contexts may be manipulated arbitrarily, although the common
|
|
251 |
discipline is to follow block structure as a mental model: a given
|
|
252 |
context is extended consecutively, and results are exported back
|
|
253 |
into the original context. Note that the Isar proof states model
|
|
254 |
block-structured reasoning explicitly, using a stack of proof
|
|
255 |
contexts internally.%
|
|
256 |
\end{isamarkuptext}%
|
|
257 |
\isamarkuptrue%
|
|
258 |
%
|
|
259 |
\isadelimmlref
|
|
260 |
%
|
|
261 |
\endisadelimmlref
|
|
262 |
%
|
|
263 |
\isatagmlref
|
|
264 |
%
|
|
265 |
\begin{isamarkuptext}%
|
|
266 |
\begin{mldecls}
|
|
267 |
\indexdef{}{ML type}{Proof.context}\verb|type Proof.context| \\
|
|
268 |
\indexdef{}{ML}{ProofContext.init}\verb|ProofContext.init: theory -> Proof.context| \\
|
|
269 |
\indexdef{}{ML}{ProofContext.theory\_of}\verb|ProofContext.theory_of: Proof.context -> theory| \\
|
|
270 |
\indexdef{}{ML}{ProofContext.transfer}\verb|ProofContext.transfer: theory -> Proof.context -> Proof.context| \\
|
|
271 |
\end{mldecls}
|
|
272 |
|
|
273 |
\begin{description}
|
|
274 |
|
|
275 |
\item \verb|Proof.context| represents proof contexts. Elements
|
|
276 |
of this type are essentially pure values, with a sliding reference
|
|
277 |
to the background theory.
|
|
278 |
|
|
279 |
\item \verb|ProofContext.init|~\isa{thy} produces a proof context
|
|
280 |
derived from \isa{thy}, initializing all data.
|
|
281 |
|
|
282 |
\item \verb|ProofContext.theory_of|~\isa{ctxt} selects the
|
|
283 |
background theory from \isa{ctxt}, dereferencing its internal
|
|
284 |
\verb|theory_ref|.
|
|
285 |
|
|
286 |
\item \verb|ProofContext.transfer|~\isa{thy\ ctxt} promotes the
|
|
287 |
background theory of \isa{ctxt} to the super theory \isa{thy}.
|
|
288 |
|
|
289 |
\end{description}%
|
|
290 |
\end{isamarkuptext}%
|
|
291 |
\isamarkuptrue%
|
|
292 |
%
|
|
293 |
\endisatagmlref
|
|
294 |
{\isafoldmlref}%
|
|
295 |
%
|
|
296 |
\isadelimmlref
|
|
297 |
%
|
|
298 |
\endisadelimmlref
|
|
299 |
%
|
|
300 |
\isamarkupsubsection{Generic contexts \label{sec:generic-context}%
|
|
301 |
}
|
|
302 |
\isamarkuptrue%
|
|
303 |
%
|
|
304 |
\begin{isamarkuptext}%
|
|
305 |
A generic context is the disjoint sum of either a theory or proof
|
|
306 |
context. Occasionally, this enables uniform treatment of generic
|
|
307 |
context data, typically extra-logical information. Operations on
|
|
308 |
generic contexts include the usual injections, partial selections,
|
|
309 |
and combinators for lifting operations on either component of the
|
|
310 |
disjoint sum.
|
|
311 |
|
|
312 |
Moreover, there are total operations \isa{theory{\isacharunderscore}of} and \isa{proof{\isacharunderscore}of} to convert a generic context into either kind: a theory
|
|
313 |
can always be selected from the sum, while a proof context might
|
|
314 |
have to be constructed by an ad-hoc \isa{init} operation.%
|
|
315 |
\end{isamarkuptext}%
|
|
316 |
\isamarkuptrue%
|
|
317 |
%
|
|
318 |
\isadelimmlref
|
|
319 |
%
|
|
320 |
\endisadelimmlref
|
|
321 |
%
|
|
322 |
\isatagmlref
|
|
323 |
%
|
|
324 |
\begin{isamarkuptext}%
|
|
325 |
\begin{mldecls}
|
|
326 |
\indexdef{}{ML type}{Context.generic}\verb|type Context.generic| \\
|
|
327 |
\indexdef{}{ML}{Context.theory\_of}\verb|Context.theory_of: Context.generic -> theory| \\
|
|
328 |
\indexdef{}{ML}{Context.proof\_of}\verb|Context.proof_of: Context.generic -> Proof.context| \\
|
|
329 |
\end{mldecls}
|
|
330 |
|
|
331 |
\begin{description}
|
|
332 |
|
|
333 |
\item \verb|Context.generic| is the direct sum of \verb|theory| and \verb|Proof.context|, with the datatype
|
|
334 |
constructors \verb|Context.Theory| and \verb|Context.Proof|.
|
|
335 |
|
|
336 |
\item \verb|Context.theory_of|~\isa{context} always produces a
|
|
337 |
theory from the generic \isa{context}, using \verb|ProofContext.theory_of| as required.
|
|
338 |
|
|
339 |
\item \verb|Context.proof_of|~\isa{context} always produces a
|
|
340 |
proof context from the generic \isa{context}, using \verb|ProofContext.init| as required (note that this re-initializes the
|
|
341 |
context data with each invocation).
|
|
342 |
|
|
343 |
\end{description}%
|
|
344 |
\end{isamarkuptext}%
|
|
345 |
\isamarkuptrue%
|
|
346 |
%
|
|
347 |
\endisatagmlref
|
|
348 |
{\isafoldmlref}%
|
|
349 |
%
|
|
350 |
\isadelimmlref
|
|
351 |
%
|
|
352 |
\endisadelimmlref
|
|
353 |
%
|
|
354 |
\isamarkupsubsection{Context data \label{sec:context-data}%
|
|
355 |
}
|
|
356 |
\isamarkuptrue%
|
|
357 |
%
|
|
358 |
\begin{isamarkuptext}%
|
|
359 |
The main purpose of theory and proof contexts is to manage arbitrary
|
|
360 |
data. New data types can be declared incrementally at compile time.
|
|
361 |
There are separate declaration mechanisms for any of the three kinds
|
|
362 |
of contexts: theory, proof, generic.
|
|
363 |
|
|
364 |
\paragraph{Theory data} may refer to destructive entities, which are
|
|
365 |
maintained in direct correspondence to the linear evolution of
|
|
366 |
theory values, including explicit copies.\footnote{Most existing
|
|
367 |
instances of destructive theory data are merely historical relics
|
|
368 |
(e.g.\ the destructive theorem storage, and destructive hints for
|
|
369 |
the Simplifier and Classical rules).} A theory data declaration
|
|
370 |
needs to implement the following SML signature:
|
|
371 |
|
|
372 |
\medskip
|
|
373 |
\begin{tabular}{ll}
|
|
374 |
\isa{{\isasymtype}\ T} & representing type \\
|
|
375 |
\isa{{\isasymval}\ empty{\isacharcolon}\ T} & empty default value \\
|
|
376 |
\isa{{\isasymval}\ copy{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & refresh impure data \\
|
|
377 |
\isa{{\isasymval}\ extend{\isacharcolon}\ T\ {\isasymrightarrow}\ T} & re-initialize on import \\
|
|
378 |
\isa{{\isasymval}\ merge{\isacharcolon}\ T\ {\isasymtimes}\ T\ {\isasymrightarrow}\ T} & join on import \\
|
|
379 |
\end{tabular}
|
|
380 |
\medskip
|
|
381 |
|
|
382 |
\noindent The \isa{empty} value acts as initial default for
|
|
383 |
\emph{any} theory that does not declare actual data content; \isa{copy} maintains persistent integrity for impure data, it is just
|
|
384 |
the identity for pure values; \isa{extend} is acts like a
|
|
385 |
unitary version of \isa{merge}, both operations should also
|
|
386 |
include the functionality of \isa{copy} for impure data.
|
|
387 |
|
|
388 |
\paragraph{Proof context data} is purely functional. A declaration
|
|
389 |
needs to implement the following SML signature:
|
|
390 |
|
|
391 |
\medskip
|
|
392 |
\begin{tabular}{ll}
|
|
393 |
\isa{{\isasymtype}\ T} & representing type \\
|
|
394 |
\isa{{\isasymval}\ init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} & produce initial value \\
|
|
395 |
\end{tabular}
|
|
396 |
\medskip
|
|
397 |
|
|
398 |
\noindent The \isa{init} operation is supposed to produce a pure
|
|
399 |
value from the given background theory.
|
|
400 |
|
|
401 |
\paragraph{Generic data} provides a hybrid interface for both theory
|
|
402 |
and proof data. The declaration is essentially the same as for
|
|
403 |
(pure) theory data, without \isa{copy}. The \isa{init}
|
|
404 |
operation for proof contexts merely selects the current data value
|
|
405 |
from the background theory.
|
|
406 |
|
|
407 |
\bigskip A data declaration of type \isa{T} results in the
|
|
408 |
following interface:
|
|
409 |
|
|
410 |
\medskip
|
|
411 |
\begin{tabular}{ll}
|
|
412 |
\isa{init{\isacharcolon}\ theory\ {\isasymrightarrow}\ T} \\
|
|
413 |
\isa{get{\isacharcolon}\ context\ {\isasymrightarrow}\ T} \\
|
|
414 |
\isa{put{\isacharcolon}\ T\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
|
|
415 |
\isa{map{\isacharcolon}\ {\isacharparenleft}T\ {\isasymrightarrow}\ T{\isacharparenright}\ {\isasymrightarrow}\ context\ {\isasymrightarrow}\ context} \\
|
|
416 |
\end{tabular}
|
|
417 |
\medskip
|
|
418 |
|
|
419 |
\noindent Here \isa{init} is only applicable to impure theory
|
|
420 |
data to install a fresh copy persistently (destructive update on
|
|
421 |
uninitialized has no permanent effect). The other operations provide
|
|
422 |
access for the particular kind of context (theory, proof, or generic
|
|
423 |
context). Note that this is a safe interface: there is no other way
|
|
424 |
to access the corresponding data slot of a context. By keeping
|
|
425 |
these operations private, a component may maintain abstract values
|
|
426 |
authentically, without other components interfering.%
|
|
427 |
\end{isamarkuptext}%
|
|
428 |
\isamarkuptrue%
|
|
429 |
%
|
|
430 |
\isadelimmlref
|
|
431 |
%
|
|
432 |
\endisadelimmlref
|
|
433 |
%
|
|
434 |
\isatagmlref
|
|
435 |
%
|
|
436 |
\begin{isamarkuptext}%
|
|
437 |
\begin{mldecls}
|
|
438 |
\indexdef{}{ML functor}{TheoryDataFun}\verb|functor TheoryDataFun| \\
|
|
439 |
\indexdef{}{ML functor}{ProofDataFun}\verb|functor ProofDataFun| \\
|
|
440 |
\indexdef{}{ML functor}{GenericDataFun}\verb|functor GenericDataFun| \\
|
|
441 |
\end{mldecls}
|
|
442 |
|
|
443 |
\begin{description}
|
|
444 |
|
|
445 |
\item \verb|TheoryDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} declares data for
|
|
446 |
type \verb|theory| according to the specification provided as
|
|
447 |
argument structure. The resulting structure provides data init and
|
|
448 |
access operations as described above.
|
|
449 |
|
|
450 |
\item \verb|ProofDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
|
|
451 |
\verb|TheoryDataFun| for type \verb|Proof.context|.
|
|
452 |
|
|
453 |
\item \verb|GenericDataFun|\isa{{\isacharparenleft}spec{\isacharparenright}} is analogous to
|
|
454 |
\verb|TheoryDataFun| for type \verb|Context.generic|.
|
|
455 |
|
|
456 |
\end{description}%
|
|
457 |
\end{isamarkuptext}%
|
|
458 |
\isamarkuptrue%
|
|
459 |
%
|
|
460 |
\endisatagmlref
|
|
461 |
{\isafoldmlref}%
|
|
462 |
%
|
|
463 |
\isadelimmlref
|
|
464 |
%
|
|
465 |
\endisadelimmlref
|
|
466 |
%
|
|
467 |
\isamarkupsection{Names \label{sec:names}%
|
|
468 |
}
|
|
469 |
\isamarkuptrue%
|
|
470 |
%
|
|
471 |
\begin{isamarkuptext}%
|
|
472 |
In principle, a name is just a string, but there are various
|
|
473 |
convention for encoding additional structure. For example, ``\isa{Foo{\isachardot}bar{\isachardot}baz}'' is considered as a qualified name consisting of
|
|
474 |
three basic name components. The individual constituents of a name
|
|
475 |
may have further substructure, e.g.\ the string
|
|
476 |
``\verb,\,\verb,<alpha>,'' encodes as a single symbol.%
|
|
477 |
\end{isamarkuptext}%
|
|
478 |
\isamarkuptrue%
|
|
479 |
%
|
|
480 |
\isamarkupsubsection{Strings of symbols%
|
|
481 |
}
|
|
482 |
\isamarkuptrue%
|
|
483 |
%
|
|
484 |
\begin{isamarkuptext}%
|
|
485 |
A \emph{symbol} constitutes the smallest textual unit in Isabelle
|
|
486 |
--- raw characters are normally not encountered at all. Isabelle
|
|
487 |
strings consist of a sequence of symbols, represented as a packed
|
|
488 |
string or a list of strings. Each symbol is in itself a small
|
|
489 |
string, which has either one of the following forms:
|
|
490 |
|
|
491 |
\begin{enumerate}
|
|
492 |
|
|
493 |
\item a single ASCII character ``\isa{c}'', for example
|
|
494 |
``\verb,a,'',
|
|
495 |
|
|
496 |
\item a regular symbol ``\verb,\,\verb,<,\isa{ident}\verb,>,'',
|
|
497 |
for example ``\verb,\,\verb,<alpha>,'',
|
|
498 |
|
|
499 |
\item a control symbol ``\verb,\,\verb,<^,\isa{ident}\verb,>,'',
|
|
500 |
for example ``\verb,\,\verb,<^bold>,'',
|
|
501 |
|
|
502 |
\item a raw symbol ``\verb,\,\verb,<^raw:,\isa{text}\verb,>,''
|
|
503 |
where \isa{text} constists of printable characters excluding
|
|
504 |
``\verb,.,'' and ``\verb,>,'', for example
|
|
505 |
``\verb,\,\verb,<^raw:$\sum_{i = 1}^n$>,'',
|
|
506 |
|
|
507 |
\item a numbered raw control symbol ``\verb,\,\verb,<^raw,\isa{n}\verb,>, where \isa{n} consists of digits, for example
|
|
508 |
``\verb,\,\verb,<^raw42>,''.
|
|
509 |
|
|
510 |
\end{enumerate}
|
|
511 |
|
|
512 |
\noindent The \isa{ident} syntax for symbol names is \isa{letter\ {\isacharparenleft}letter\ {\isacharbar}\ digit{\isacharparenright}\isactrlsup {\isacharasterisk}}, where \isa{letter\ {\isacharequal}\ A{\isachardot}{\isachardot}Za{\isachardot}{\isachardot}z} and \isa{digit\ {\isacharequal}\ {\isadigit{0}}{\isachardot}{\isachardot}{\isadigit{9}}}. There are infinitely many
|
|
513 |
regular symbols and control symbols, but a fixed collection of
|
|
514 |
standard symbols is treated specifically. For example,
|
|
515 |
``\verb,\,\verb,<alpha>,'' is classified as a letter, which means it
|
|
516 |
may occur within regular Isabelle identifiers.
|
|
517 |
|
|
518 |
Since the character set underlying Isabelle symbols is 7-bit ASCII
|
|
519 |
and 8-bit characters are passed through transparently, Isabelle may
|
|
520 |
also process Unicode/UCS data in UTF-8 encoding. Unicode provides
|
|
521 |
its own collection of mathematical symbols, but there is no built-in
|
|
522 |
link to the standard collection of Isabelle.
|
|
523 |
|
|
524 |
\medskip Output of Isabelle symbols depends on the print mode
|
|
525 |
(\secref{print-mode}). For example, the standard {\LaTeX} setup of
|
|
526 |
the Isabelle document preparation system would present
|
|
527 |
``\verb,\,\verb,<alpha>,'' as \isa{{\isasymalpha}}, and
|
|
528 |
``\verb,\,\verb,<^bold>,\verb,\,\verb,<alpha>,'' as \isa{\isactrlbold {\isasymalpha}}.%
|
|
529 |
\end{isamarkuptext}%
|
|
530 |
\isamarkuptrue%
|
|
531 |
%
|
|
532 |
\isadelimmlref
|
|
533 |
%
|
|
534 |
\endisadelimmlref
|
|
535 |
%
|
|
536 |
\isatagmlref
|
|
537 |
%
|
|
538 |
\begin{isamarkuptext}%
|
|
539 |
\begin{mldecls}
|
|
540 |
\indexdef{}{ML type}{Symbol.symbol}\verb|type Symbol.symbol| \\
|
|
541 |
\indexdef{}{ML}{Symbol.explode}\verb|Symbol.explode: string -> Symbol.symbol list| \\
|
|
542 |
\indexdef{}{ML}{Symbol.is\_letter}\verb|Symbol.is_letter: Symbol.symbol -> bool| \\
|
|
543 |
\indexdef{}{ML}{Symbol.is\_digit}\verb|Symbol.is_digit: Symbol.symbol -> bool| \\
|
|
544 |
\indexdef{}{ML}{Symbol.is\_quasi}\verb|Symbol.is_quasi: Symbol.symbol -> bool| \\
|
|
545 |
\indexdef{}{ML}{Symbol.is\_blank}\verb|Symbol.is_blank: Symbol.symbol -> bool| \\
|
|
546 |
\end{mldecls}
|
|
547 |
\begin{mldecls}
|
|
548 |
\indexdef{}{ML type}{Symbol.sym}\verb|type Symbol.sym| \\
|
|
549 |
\indexdef{}{ML}{Symbol.decode}\verb|Symbol.decode: Symbol.symbol -> Symbol.sym| \\
|
|
550 |
\end{mldecls}
|
|
551 |
|
|
552 |
\begin{description}
|
|
553 |
|
|
554 |
\item \verb|Symbol.symbol| represents individual Isabelle
|
|
555 |
symbols; this is an alias for \verb|string|.
|
|
556 |
|
|
557 |
\item \verb|Symbol.explode|~\isa{str} produces a symbol list
|
|
558 |
from the packed form. This function supercedes \verb|String.explode| for virtually all purposes of manipulating text in
|
|
559 |
Isabelle!
|
|
560 |
|
|
561 |
\item \verb|Symbol.is_letter|, \verb|Symbol.is_digit|, \verb|Symbol.is_quasi|, \verb|Symbol.is_blank| classify standard
|
|
562 |
symbols according to fixed syntactic conventions of Isabelle, cf.\
|
|
563 |
\cite{isabelle-isar-ref}.
|
|
564 |
|
|
565 |
\item \verb|Symbol.sym| is a concrete datatype that represents
|
|
566 |
the different kinds of symbols explicitly, with constructors \verb|Symbol.Char|, \verb|Symbol.Sym|, \verb|Symbol.Ctrl|, \verb|Symbol.Raw|.
|
|
567 |
|
|
568 |
\item \verb|Symbol.decode| converts the string representation of a
|
|
569 |
symbol into the datatype version.
|
|
570 |
|
|
571 |
\end{description}%
|
|
572 |
\end{isamarkuptext}%
|
|
573 |
\isamarkuptrue%
|
|
574 |
%
|
|
575 |
\endisatagmlref
|
|
576 |
{\isafoldmlref}%
|
|
577 |
%
|
|
578 |
\isadelimmlref
|
|
579 |
%
|
|
580 |
\endisadelimmlref
|
|
581 |
%
|
|
582 |
\isamarkupsubsection{Basic names \label{sec:basic-names}%
|
|
583 |
}
|
|
584 |
\isamarkuptrue%
|
|
585 |
%
|
|
586 |
\begin{isamarkuptext}%
|
|
587 |
A \emph{basic name} essentially consists of a single Isabelle
|
|
588 |
identifier. There are conventions to mark separate classes of basic
|
|
589 |
names, by attaching a suffix of underscores: one underscore means
|
|
590 |
\emph{internal name}, two underscores means \emph{Skolem name},
|
|
591 |
three underscores means \emph{internal Skolem name}.
|
|
592 |
|
|
593 |
For example, the basic name \isa{foo} has the internal version
|
|
594 |
\isa{foo{\isacharunderscore}}, with Skolem versions \isa{foo{\isacharunderscore}{\isacharunderscore}} and \isa{foo{\isacharunderscore}{\isacharunderscore}{\isacharunderscore}}, respectively.
|
|
595 |
|
|
596 |
These special versions provide copies of the basic name space, apart
|
|
597 |
from anything that normally appears in the user text. For example,
|
|
598 |
system generated variables in Isar proof contexts are usually marked
|
|
599 |
as internal, which prevents mysterious name references like \isa{xaa} to appear in the text.
|
|
600 |
|
|
601 |
\medskip Manipulating binding scopes often requires on-the-fly
|
|
602 |
renamings. A \emph{name context} contains a collection of already
|
|
603 |
used names. The \isa{declare} operation adds names to the
|
|
604 |
context.
|
|
605 |
|
|
606 |
The \isa{invents} operation derives a number of fresh names from
|
|
607 |
a given starting point. For example, the first three names derived
|
|
608 |
from \isa{a} are \isa{a}, \isa{b}, \isa{c}.
|
|
609 |
|
|
610 |
The \isa{variants} operation produces fresh names by
|
|
611 |
incrementing tentative names as base-26 numbers (with digits \isa{a{\isachardot}{\isachardot}z}) until all clashes are resolved. For example, name \isa{foo} results in variants \isa{fooa}, \isa{foob}, \isa{fooc}, \dots, \isa{fooaa}, \isa{fooab} etc.; each renaming
|
|
612 |
step picks the next unused variant from this sequence.%
|
|
613 |
\end{isamarkuptext}%
|
|
614 |
\isamarkuptrue%
|
|
615 |
%
|
|
616 |
\isadelimmlref
|
|
617 |
%
|
|
618 |
\endisadelimmlref
|
|
619 |
%
|
|
620 |
\isatagmlref
|
|
621 |
%
|
|
622 |
\begin{isamarkuptext}%
|
|
623 |
\begin{mldecls}
|
|
624 |
\indexdef{}{ML}{Name.internal}\verb|Name.internal: string -> string| \\
|
|
625 |
\indexdef{}{ML}{Name.skolem}\verb|Name.skolem: string -> string| \\
|
|
626 |
\end{mldecls}
|
|
627 |
\begin{mldecls}
|
|
628 |
\indexdef{}{ML type}{Name.context}\verb|type Name.context| \\
|
|
629 |
\indexdef{}{ML}{Name.context}\verb|Name.context: Name.context| \\
|
|
630 |
\indexdef{}{ML}{Name.declare}\verb|Name.declare: string -> Name.context -> Name.context| \\
|
|
631 |
\indexdef{}{ML}{Name.invents}\verb|Name.invents: Name.context -> string -> int -> string list| \\
|
|
632 |
\indexdef{}{ML}{Name.variants}\verb|Name.variants: string list -> Name.context -> string list * Name.context| \\
|
|
633 |
\end{mldecls}
|
|
634 |
|
|
635 |
\begin{description}
|
|
636 |
|
|
637 |
\item \verb|Name.internal|~\isa{name} produces an internal name
|
|
638 |
by adding one underscore.
|
|
639 |
|
|
640 |
\item \verb|Name.skolem|~\isa{name} produces a Skolem name by
|
|
641 |
adding two underscores.
|
|
642 |
|
|
643 |
\item \verb|Name.context| represents the context of already used
|
|
644 |
names; the initial value is \verb|Name.context|.
|
|
645 |
|
|
646 |
\item \verb|Name.declare|~\isa{name} enters a used name into the
|
|
647 |
context.
|
|
648 |
|
|
649 |
\item \verb|Name.invents|~\isa{context\ name\ n} produces \isa{n} fresh names derived from \isa{name}.
|
|
650 |
|
|
651 |
\item \verb|Name.variants|~\isa{names\ context} produces fresh
|
|
652 |
variants of \isa{names}; the result is entered into the context.
|
|
653 |
|
|
654 |
\end{description}%
|
|
655 |
\end{isamarkuptext}%
|
|
656 |
\isamarkuptrue%
|
|
657 |
%
|
|
658 |
\endisatagmlref
|
|
659 |
{\isafoldmlref}%
|
|
660 |
%
|
|
661 |
\isadelimmlref
|
|
662 |
%
|
|
663 |
\endisadelimmlref
|
|
664 |
%
|
|
665 |
\isamarkupsubsection{Indexed names%
|
|
666 |
}
|
|
667 |
\isamarkuptrue%
|
|
668 |
%
|
|
669 |
\begin{isamarkuptext}%
|
|
670 |
An \emph{indexed name} (or \isa{indexname}) is a pair of a basic
|
|
671 |
name and a natural number. This representation allows efficient
|
|
672 |
renaming by incrementing the second component only. The canonical
|
|
673 |
way to rename two collections of indexnames apart from each other is
|
|
674 |
this: determine the maximum index \isa{maxidx} of the first
|
|
675 |
collection, then increment all indexes of the second collection by
|
|
676 |
\isa{maxidx\ {\isacharplus}\ {\isadigit{1}}}; the maximum index of an empty collection is
|
|
677 |
\isa{{\isacharminus}{\isadigit{1}}}.
|
|
678 |
|
|
679 |
Occasionally, basic names and indexed names are injected into the
|
|
680 |
same pair type: the (improper) indexname \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}} is used
|
|
681 |
to encode basic names.
|
|
682 |
|
|
683 |
\medskip Isabelle syntax observes the following rules for
|
|
684 |
representing an indexname \isa{{\isacharparenleft}x{\isacharcomma}\ i{\isacharparenright}} as a packed string:
|
|
685 |
|
|
686 |
\begin{itemize}
|
|
687 |
|
|
688 |
\item \isa{{\isacharquery}x} if \isa{x} does not end with a digit and \isa{i\ {\isacharequal}\ {\isadigit{0}}},
|
|
689 |
|
|
690 |
\item \isa{{\isacharquery}xi} if \isa{x} does not end with a digit,
|
|
691 |
|
|
692 |
\item \isa{{\isacharquery}x{\isachardot}i} otherwise.
|
|
693 |
|
|
694 |
\end{itemize}
|
|
695 |
|
|
696 |
Indexnames may acquire large index numbers over time. Results are
|
|
697 |
normalized towards \isa{{\isadigit{0}}} at certain checkpoints, notably at
|
|
698 |
the end of a proof. This works by producing variants of the
|
|
699 |
corresponding basic name components. For example, the collection
|
|
700 |
\isa{{\isacharquery}x{\isadigit{1}}{\isacharcomma}\ {\isacharquery}x{\isadigit{7}}{\isacharcomma}\ {\isacharquery}x{\isadigit{4}}{\isadigit{2}}} becomes \isa{{\isacharquery}x{\isacharcomma}\ {\isacharquery}xa{\isacharcomma}\ {\isacharquery}xb}.%
|
|
701 |
\end{isamarkuptext}%
|
|
702 |
\isamarkuptrue%
|
|
703 |
%
|
|
704 |
\isadelimmlref
|
|
705 |
%
|
|
706 |
\endisadelimmlref
|
|
707 |
%
|
|
708 |
\isatagmlref
|
|
709 |
%
|
|
710 |
\begin{isamarkuptext}%
|
|
711 |
\begin{mldecls}
|
|
712 |
\indexdef{}{ML type}{indexname}\verb|type indexname| \\
|
|
713 |
\end{mldecls}
|
|
714 |
|
|
715 |
\begin{description}
|
|
716 |
|
|
717 |
\item \verb|indexname| represents indexed names. This is an
|
|
718 |
abbreviation for \verb|string * int|. The second component is
|
|
719 |
usually non-negative, except for situations where \isa{{\isacharparenleft}x{\isacharcomma}\ {\isacharminus}{\isadigit{1}}{\isacharparenright}}
|
|
720 |
is used to embed basic names into this type.
|
|
721 |
|
|
722 |
\end{description}%
|
|
723 |
\end{isamarkuptext}%
|
|
724 |
\isamarkuptrue%
|
|
725 |
%
|
|
726 |
\endisatagmlref
|
|
727 |
{\isafoldmlref}%
|
|
728 |
%
|
|
729 |
\isadelimmlref
|
|
730 |
%
|
|
731 |
\endisadelimmlref
|
|
732 |
%
|
|
733 |
\isamarkupsubsection{Qualified names and name spaces%
|
|
734 |
}
|
|
735 |
\isamarkuptrue%
|
|
736 |
%
|
|
737 |
\begin{isamarkuptext}%
|
|
738 |
A \emph{qualified name} consists of a non-empty sequence of basic
|
|
739 |
name components. The packed representation uses a dot as separator,
|
|
740 |
as in ``\isa{A{\isachardot}b{\isachardot}c}''. The last component is called \emph{base}
|
|
741 |
name, the remaining prefix \emph{qualifier} (which may be empty).
|
|
742 |
The idea of qualified names is to encode nested structures by
|
|
743 |
recording the access paths as qualifiers. For example, an item
|
|
744 |
named ``\isa{A{\isachardot}b{\isachardot}c}'' may be understood as a local entity \isa{c}, within a local structure \isa{b}, within a global
|
|
745 |
structure \isa{A}. Typically, name space hierarchies consist of
|
|
746 |
1--2 levels of qualification, but this need not be always so.
|
|
747 |
|
|
748 |
The empty name is commonly used as an indication of unnamed
|
|
749 |
entities, whenever this makes any sense. The basic operations on
|
|
750 |
qualified names are smart enough to pass through such improper names
|
|
751 |
unchanged.
|
|
752 |
|
|
753 |
\medskip A \isa{naming} policy tells how to turn a name
|
|
754 |
specification into a fully qualified internal name (by the \isa{full} operation), and how fully qualified names may be accessed
|
|
755 |
externally. For example, the default naming policy is to prefix an
|
|
756 |
implicit path: \isa{full\ x} produces \isa{path{\isachardot}x}, and the
|
|
757 |
standard accesses for \isa{path{\isachardot}x} include both \isa{x} and
|
|
758 |
\isa{path{\isachardot}x}. Normally, the naming is implicit in the theory or
|
|
759 |
proof context; there are separate versions of the corresponding.
|
|
760 |
|
|
761 |
\medskip A \isa{name\ space} manages a collection of fully
|
|
762 |
internalized names, together with a mapping between external names
|
|
763 |
and internal names (in both directions). The corresponding \isa{intern} and \isa{extern} operations are mostly used for
|
|
764 |
parsing and printing only! The \isa{declare} operation augments
|
|
765 |
a name space according to the accesses determined by the naming
|
|
766 |
policy.
|
|
767 |
|
|
768 |
\medskip As a general principle, there is a separate name space for
|
|
769 |
each kind of formal entity, e.g.\ logical constant, type
|
|
770 |
constructor, type class, theorem. It is usually clear from the
|
|
771 |
occurrence in concrete syntax (or from the scope) which kind of
|
|
772 |
entity a name refers to. For example, the very same name \isa{c} may be used uniformly for a constant, type constructor, and
|
|
773 |
type class.
|
|
774 |
|
|
775 |
There are common schemes to name theorems systematically, according
|
|
776 |
to the name of the main logical entity involved, e.g.\ \isa{c{\isachardot}intro} for a canonical theorem related to constant \isa{c}.
|
|
777 |
This technique of mapping names from one space into another requires
|
|
778 |
some care in order to avoid conflicts. In particular, theorem names
|
|
779 |
derived from a type constructor or type class are better suffixed in
|
|
780 |
addition to the usual qualification, e.g.\ \isa{c{\isacharunderscore}type{\isachardot}intro}
|
|
781 |
and \isa{c{\isacharunderscore}class{\isachardot}intro} for theorems related to type \isa{c}
|
|
782 |
and class \isa{c}, respectively.%
|
|
783 |
\end{isamarkuptext}%
|
|
784 |
\isamarkuptrue%
|
|
785 |
%
|
|
786 |
\isadelimmlref
|
|
787 |
%
|
|
788 |
\endisadelimmlref
|
|
789 |
%
|
|
790 |
\isatagmlref
|
|
791 |
%
|
|
792 |
\begin{isamarkuptext}%
|
|
793 |
\begin{mldecls}
|
30365
|
794 |
\indexdef{}{ML}{Long\_Name.base\_name}\verb|Long_Name.base_name: string -> string| \\
|
|
795 |
\indexdef{}{ML}{Long\_Name.qualifier}\verb|Long_Name.qualifier: string -> string| \\
|
|
796 |
\indexdef{}{ML}{Long\_Name.append}\verb|Long_Name.append: string -> string -> string| \\
|
|
797 |
\indexdef{}{ML}{Long\_Name.implode}\verb|Long_Name.implode: string list -> string| \\
|
|
798 |
\indexdef{}{ML}{Long\_Name.explode}\verb|Long_Name.explode: string -> string list| \\
|
30296
|
799 |
\end{mldecls}
|
|
800 |
\begin{mldecls}
|
|
801 |
\indexdef{}{ML type}{NameSpace.naming}\verb|type NameSpace.naming| \\
|
|
802 |
\indexdef{}{ML}{NameSpace.default\_naming}\verb|NameSpace.default_naming: NameSpace.naming| \\
|
|
803 |
\indexdef{}{ML}{NameSpace.add\_path}\verb|NameSpace.add_path: string -> NameSpace.naming -> NameSpace.naming| \\
|
|
804 |
\indexdef{}{ML}{NameSpace.full\_name}\verb|NameSpace.full_name: NameSpace.naming -> binding -> string| \\
|
|
805 |
\end{mldecls}
|
|
806 |
\begin{mldecls}
|
|
807 |
\indexdef{}{ML type}{NameSpace.T}\verb|type NameSpace.T| \\
|
|
808 |
\indexdef{}{ML}{NameSpace.empty}\verb|NameSpace.empty: NameSpace.T| \\
|
|
809 |
\indexdef{}{ML}{NameSpace.merge}\verb|NameSpace.merge: NameSpace.T * NameSpace.T -> NameSpace.T| \\
|
|
810 |
\indexdef{}{ML}{NameSpace.declare}\verb|NameSpace.declare: NameSpace.naming -> binding -> NameSpace.T ->|\isasep\isanewline%
|
|
811 |
\verb| string * NameSpace.T| \\
|
|
812 |
\indexdef{}{ML}{NameSpace.intern}\verb|NameSpace.intern: NameSpace.T -> string -> string| \\
|
|
813 |
\indexdef{}{ML}{NameSpace.extern}\verb|NameSpace.extern: NameSpace.T -> string -> string| \\
|
|
814 |
\end{mldecls}
|
|
815 |
|
|
816 |
\begin{description}
|
|
817 |
|
30365
|
818 |
\item \verb|Long_Name.base_name|~\isa{name} returns the base name of a
|
30296
|
819 |
qualified name.
|
|
820 |
|
30365
|
821 |
\item \verb|Long_Name.qualifier|~\isa{name} returns the qualifier
|
30296
|
822 |
of a qualified name.
|
|
823 |
|
30365
|
824 |
\item \verb|Long_Name.append|~\isa{name\isactrlisub {\isadigit{1}}\ name\isactrlisub {\isadigit{2}}}
|
30296
|
825 |
appends two qualified names.
|
|
826 |
|
30365
|
827 |
\item \verb|Long_Name.implode|~\isa{names} and \verb|Long_Name.explode|~\isa{name} convert between the packed string
|
30296
|
828 |
representation and the explicit list form of qualified names.
|
|
829 |
|
|
830 |
\item \verb|NameSpace.naming| represents the abstract concept of
|
|
831 |
a naming policy.
|
|
832 |
|
|
833 |
\item \verb|NameSpace.default_naming| is the default naming policy.
|
|
834 |
In a theory context, this is usually augmented by a path prefix
|
|
835 |
consisting of the theory name.
|
|
836 |
|
|
837 |
\item \verb|NameSpace.add_path|~\isa{path\ naming} augments the
|
|
838 |
naming policy by extending its path component.
|
|
839 |
|
|
840 |
\item \verb|NameSpace.full_name|~\isa{naming\ binding} turns a
|
|
841 |
name binding (usually a basic name) into the fully qualified
|
|
842 |
internal name, according to the given naming policy.
|
|
843 |
|
|
844 |
\item \verb|NameSpace.T| represents name spaces.
|
|
845 |
|
|
846 |
\item \verb|NameSpace.empty| and \verb|NameSpace.merge|~\isa{{\isacharparenleft}space\isactrlisub {\isadigit{1}}{\isacharcomma}\ space\isactrlisub {\isadigit{2}}{\isacharparenright}} are the canonical operations for
|
|
847 |
maintaining name spaces according to theory data management
|
|
848 |
(\secref{sec:context-data}).
|
|
849 |
|
|
850 |
\item \verb|NameSpace.declare|~\isa{naming\ bindings\ space} enters a
|
|
851 |
name binding as fully qualified internal name into the name space,
|
|
852 |
with external accesses determined by the naming policy.
|
|
853 |
|
|
854 |
\item \verb|NameSpace.intern|~\isa{space\ name} internalizes a
|
|
855 |
(partially qualified) external name.
|
|
856 |
|
|
857 |
This operation is mostly for parsing! Note that fully qualified
|
|
858 |
names stemming from declarations are produced via \verb|NameSpace.full_name| and \verb|NameSpace.declare|
|
|
859 |
(or their derivatives for \verb|theory| and
|
|
860 |
\verb|Proof.context|).
|
|
861 |
|
|
862 |
\item \verb|NameSpace.extern|~\isa{space\ name} externalizes a
|
|
863 |
(fully qualified) internal name.
|
|
864 |
|
|
865 |
This operation is mostly for printing! User code should not rely on
|
|
866 |
the precise result too much.
|
|
867 |
|
|
868 |
\end{description}%
|
|
869 |
\end{isamarkuptext}%
|
|
870 |
\isamarkuptrue%
|
|
871 |
%
|
|
872 |
\endisatagmlref
|
|
873 |
{\isafoldmlref}%
|
|
874 |
%
|
|
875 |
\isadelimmlref
|
|
876 |
%
|
|
877 |
\endisadelimmlref
|
|
878 |
%
|
|
879 |
\isadelimtheory
|
|
880 |
%
|
|
881 |
\endisadelimtheory
|
|
882 |
%
|
|
883 |
\isatagtheory
|
|
884 |
\isacommand{end}\isamarkupfalse%
|
|
885 |
%
|
|
886 |
\endisatagtheory
|
|
887 |
{\isafoldtheory}%
|
|
888 |
%
|
|
889 |
\isadelimtheory
|
|
890 |
%
|
|
891 |
\endisadelimtheory
|
|
892 |
\isanewline
|
|
893 |
\end{isabellebody}%
|
|
894 |
%%% Local Variables:
|
|
895 |
%%% mode: latex
|
|
896 |
%%% TeX-master: "root"
|
|
897 |
%%% End:
|