| author | blanchet | 
| Thu, 06 Sep 2012 11:34:05 +0200 | |
| changeset 49177 | db8ce685073f | 
| parent 44890 | 22f665a2e91c | 
| child 58889 | 5b7a9633cfa8 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/ex/While_Combinator_Example.thy | 
| 37760 | 2 | Author: Tobias Nipkow | 
| 3 | Copyright 2000 TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 6 | header {* An application of the While combinator *}
 | |
| 7 | ||
| 8 | theory While_Combinator_Example | |
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
40786diff
changeset | 9 | imports "~~/src/HOL/Library/While_Combinator" | 
| 37760 | 10 | begin | 
| 11 | ||
| 12 | text {* Computation of the @{term lfp} on finite sets via 
 | |
| 13 | iteration. *} | |
| 14 | ||
| 15 | theorem lfp_conv_while: | |
| 16 | "[| mono f; finite U; f U = U |] ==> | |
| 17 |     lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
 | |
| 18 | apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and | |
| 19 | r = "((Pow U \<times> UNIV) \<times> (Pow U \<times> UNIV)) \<inter> | |
| 20 | inv_image finite_psubset (op - U o fst)" in while_rule) | |
| 21 | apply (subst lfp_unfold) | |
| 22 | apply assumption | |
| 23 | apply (simp add: monoD) | |
| 24 | apply (subst lfp_unfold) | |
| 25 | apply assumption | |
| 26 | apply clarsimp | |
| 27 | apply (blast dest: monoD) | |
| 44890 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 nipkow parents: 
41959diff
changeset | 28 | apply (fastforce intro!: lfp_lowerbound) | 
| 37760 | 29 | apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset]) | 
| 30 | apply (clarsimp simp add: finite_psubset_def order_less_le) | |
| 40786 
0a54cfc9add3
gave more standard finite set rules simp and intro attribute
 nipkow parents: 
37760diff
changeset | 31 | apply (blast dest: monoD) | 
| 37760 | 32 | done | 
| 33 | ||
| 34 | ||
| 35 | subsection {* Example *}
 | |
| 36 | ||
| 37 | text{* Cannot use @{thm[source]set_eq_subset} because it leads to
 | |
| 38 | looping because the antisymmetry simproc turns the subset relationship | |
| 39 | back into equality. *} | |
| 40 | ||
| 41 | theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
 | |
| 42 |   P {0, 4, 2}"
 | |
| 43 | proof - | |
| 44 | have seteq: "!!A B. (A = B) = ((!a : A. a:B) & (!b:B. b:A))" | |
| 45 | by blast | |
| 46 |   have aux: "!!f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
 | |
| 47 | apply blast | |
| 48 | done | |
| 49 | show ?thesis | |
| 50 |     apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
 | |
| 51 | apply (rule monoI) | |
| 52 | apply blast | |
| 53 | apply simp | |
| 54 | apply (simp add: aux set_eq_subset) | |
| 55 |     txt {* The fixpoint computation is performed purely by rewriting: *}
 | |
| 56 | apply (simp add: while_unfold aux seteq del: subset_empty) | |
| 57 | done | |
| 58 | qed | |
| 59 | ||
| 60 | end |