author | wenzelm |
Fri, 16 Apr 2004 04:07:10 +0200 | |
changeset 14577 | dbb95b825244 |
parent 14553 | 4740fc2da7bb |
child 14590 | 276ef51cedbf |
permissions | -rw-r--r-- |
13940 | 1 |
(* |
2 |
Title: Univariate Polynomials |
|
3 |
Id: $Id$ |
|
4 |
Author: Clemens Ballarin, started 9 December 1996 |
|
5 |
Copyright: Clemens Ballarin |
|
6 |
*) |
|
7 |
||
14577 | 8 |
header {* Univariate Polynomials *} |
13940 | 9 |
|
14577 | 10 |
theory UnivPoly = Module: |
13940 | 11 |
|
14553 | 12 |
text {* |
13 |
Polynomials are formalised as modules with additional operations for |
|
14 |
extracting coefficients from polynomials and for obtaining monomials |
|
15 |
from coefficients and exponents (record @{text "up_ring"}). |
|
16 |
The carrier set is |
|
17 |
a set of bounded functions from Nat to the coefficient domain. |
|
18 |
Bounded means that these functions return zero above a certain bound |
|
19 |
(the degree). There is a chapter on the formalisation of polynomials |
|
20 |
in my PhD thesis (http://www4.in.tum.de/\~{}ballarin/publications/), |
|
21 |
which was implemented with axiomatic type classes. This was later |
|
22 |
ported to Locales. |
|
23 |
*} |
|
24 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13940
diff
changeset
|
25 |
subsection {* The Constructor for Univariate Polynomials *} |
13940 | 26 |
|
27 |
(* Could alternatively use locale ... |
|
28 |
locale bound = cring + var bound + |
|
29 |
defines ... |
|
30 |
*) |
|
31 |
||
32 |
constdefs |
|
33 |
bound :: "['a, nat, nat => 'a] => bool" |
|
34 |
"bound z n f == (ALL i. n < i --> f i = z)" |
|
35 |
||
36 |
lemma boundI [intro!]: |
|
37 |
"[| !! m. n < m ==> f m = z |] ==> bound z n f" |
|
38 |
by (unfold bound_def) fast |
|
39 |
||
40 |
lemma boundE [elim?]: |
|
41 |
"[| bound z n f; (!! m. n < m ==> f m = z) ==> P |] ==> P" |
|
42 |
by (unfold bound_def) fast |
|
43 |
||
44 |
lemma boundD [dest]: |
|
45 |
"[| bound z n f; n < m |] ==> f m = z" |
|
46 |
by (unfold bound_def) fast |
|
47 |
||
48 |
lemma bound_below: |
|
49 |
assumes bound: "bound z m f" and nonzero: "f n ~= z" shows "n <= m" |
|
50 |
proof (rule classical) |
|
51 |
assume "~ ?thesis" |
|
52 |
then have "m < n" by arith |
|
53 |
with bound have "f n = z" .. |
|
54 |
with nonzero show ?thesis by contradiction |
|
55 |
qed |
|
56 |
||
57 |
record ('a, 'p) up_ring = "('a, 'p) module" + |
|
58 |
monom :: "['a, nat] => 'p" |
|
59 |
coeff :: "['p, nat] => 'a" |
|
60 |
||
61 |
constdefs |
|
62 |
up :: "('a, 'm) ring_scheme => (nat => 'a) set" |
|
63 |
"up R == {f. f \<in> UNIV -> carrier R & (EX n. bound (zero R) n f)}" |
|
64 |
UP :: "('a, 'm) ring_scheme => ('a, nat => 'a) up_ring" |
|
65 |
"UP R == (| |
|
66 |
carrier = up R, |
|
67 |
mult = (%p:up R. %q:up R. %n. finsum R (%i. mult R (p i) (q (n-i))) {..n}), |
|
68 |
one = (%i. if i=0 then one R else zero R), |
|
69 |
zero = (%i. zero R), |
|
70 |
add = (%p:up R. %q:up R. %i. add R (p i) (q i)), |
|
71 |
smult = (%a:carrier R. %p:up R. %i. mult R a (p i)), |
|
72 |
monom = (%a:carrier R. %n i. if i=n then a else zero R), |
|
73 |
coeff = (%p:up R. %n. p n) |)" |
|
74 |
||
75 |
text {* |
|
76 |
Properties of the set of polynomials @{term up}. |
|
77 |
*} |
|
78 |
||
79 |
lemma mem_upI [intro]: |
|
80 |
"[| !!n. f n \<in> carrier R; EX n. bound (zero R) n f |] ==> f \<in> up R" |
|
81 |
by (simp add: up_def Pi_def) |
|
82 |
||
83 |
lemma mem_upD [dest]: |
|
84 |
"f \<in> up R ==> f n \<in> carrier R" |
|
85 |
by (simp add: up_def Pi_def) |
|
86 |
||
87 |
lemma (in cring) bound_upD [dest]: |
|
88 |
"f \<in> up R ==> EX n. bound \<zero> n f" |
|
89 |
by (simp add: up_def) |
|
90 |
||
91 |
lemma (in cring) up_one_closed: |
|
92 |
"(%n. if n = 0 then \<one> else \<zero>) \<in> up R" |
|
93 |
using up_def by force |
|
94 |
||
95 |
lemma (in cring) up_smult_closed: |
|
96 |
"[| a \<in> carrier R; p \<in> up R |] ==> (%i. a \<otimes> p i) \<in> up R" |
|
97 |
by force |
|
98 |
||
99 |
lemma (in cring) up_add_closed: |
|
100 |
"[| p \<in> up R; q \<in> up R |] ==> (%i. p i \<oplus> q i) \<in> up R" |
|
101 |
proof |
|
102 |
fix n |
|
103 |
assume "p \<in> up R" and "q \<in> up R" |
|
104 |
then show "p n \<oplus> q n \<in> carrier R" |
|
105 |
by auto |
|
106 |
next |
|
107 |
assume UP: "p \<in> up R" "q \<in> up R" |
|
108 |
show "EX n. bound \<zero> n (%i. p i \<oplus> q i)" |
|
109 |
proof - |
|
110 |
from UP obtain n where boundn: "bound \<zero> n p" by fast |
|
111 |
from UP obtain m where boundm: "bound \<zero> m q" by fast |
|
112 |
have "bound \<zero> (max n m) (%i. p i \<oplus> q i)" |
|
113 |
proof |
|
114 |
fix i |
|
115 |
assume "max n m < i" |
|
116 |
with boundn and boundm and UP show "p i \<oplus> q i = \<zero>" by fastsimp |
|
117 |
qed |
|
118 |
then show ?thesis .. |
|
119 |
qed |
|
120 |
qed |
|
121 |
||
122 |
lemma (in cring) up_a_inv_closed: |
|
123 |
"p \<in> up R ==> (%i. \<ominus> (p i)) \<in> up R" |
|
124 |
proof |
|
125 |
assume R: "p \<in> up R" |
|
126 |
then obtain n where "bound \<zero> n p" by auto |
|
127 |
then have "bound \<zero> n (%i. \<ominus> p i)" by auto |
|
128 |
then show "EX n. bound \<zero> n (%i. \<ominus> p i)" by auto |
|
129 |
qed auto |
|
130 |
||
131 |
lemma (in cring) up_mult_closed: |
|
132 |
"[| p \<in> up R; q \<in> up R |] ==> |
|
133 |
(%n. finsum R (%i. p i \<otimes> q (n-i)) {..n}) \<in> up R" |
|
134 |
proof |
|
135 |
fix n |
|
136 |
assume "p \<in> up R" "q \<in> up R" |
|
137 |
then show "finsum R (%i. p i \<otimes> q (n-i)) {..n} \<in> carrier R" |
|
138 |
by (simp add: mem_upD funcsetI) |
|
139 |
next |
|
140 |
assume UP: "p \<in> up R" "q \<in> up R" |
|
141 |
show "EX n. bound \<zero> n (%n. finsum R (%i. p i \<otimes> q (n - i)) {..n})" |
|
142 |
proof - |
|
143 |
from UP obtain n where boundn: "bound \<zero> n p" by fast |
|
144 |
from UP obtain m where boundm: "bound \<zero> m q" by fast |
|
145 |
have "bound \<zero> (n + m) (%n. finsum R (%i. p i \<otimes> q (n - i)) {..n})" |
|
146 |
proof |
|
147 |
fix k |
|
148 |
assume bound: "n + m < k" |
|
149 |
{ |
|
150 |
fix i |
|
151 |
have "p i \<otimes> q (k-i) = \<zero>" |
|
152 |
proof (cases "n < i") |
|
153 |
case True |
|
154 |
with boundn have "p i = \<zero>" by auto |
|
155 |
moreover from UP have "q (k-i) \<in> carrier R" by auto |
|
156 |
ultimately show ?thesis by simp |
|
157 |
next |
|
158 |
case False |
|
159 |
with bound have "m < k-i" by arith |
|
160 |
with boundm have "q (k-i) = \<zero>" by auto |
|
161 |
moreover from UP have "p i \<in> carrier R" by auto |
|
162 |
ultimately show ?thesis by simp |
|
163 |
qed |
|
164 |
} |
|
165 |
then show "finsum R (%i. p i \<otimes> q (k-i)) {..k} = \<zero>" |
|
166 |
by (simp add: Pi_def) |
|
167 |
qed |
|
168 |
then show ?thesis by fast |
|
169 |
qed |
|
170 |
qed |
|
171 |
||
172 |
subsection {* Effect of operations on coefficients *} |
|
173 |
||
174 |
locale UP = struct R + struct P + |
|
175 |
defines P_def: "P == UP R" |
|
176 |
||
177 |
locale UP_cring = UP + cring R |
|
178 |
||
179 |
locale UP_domain = UP_cring + "domain" R |
|
180 |
||
181 |
text {* |
|
182 |
Temporarily declare UP.P\_def as simp rule. |
|
183 |
*} |
|
184 |
(* TODO: use antiquotation once text (in locale) is supported. *) |
|
185 |
||
186 |
declare (in UP) P_def [simp] |
|
187 |
||
188 |
lemma (in UP_cring) coeff_monom [simp]: |
|
189 |
"a \<in> carrier R ==> |
|
190 |
coeff P (monom P a m) n = (if m=n then a else \<zero>)" |
|
191 |
proof - |
|
192 |
assume R: "a \<in> carrier R" |
|
193 |
then have "(%n. if n = m then a else \<zero>) \<in> up R" |
|
194 |
using up_def by force |
|
195 |
with R show ?thesis by (simp add: UP_def) |
|
196 |
qed |
|
197 |
||
198 |
lemma (in UP_cring) coeff_zero [simp]: |
|
199 |
"coeff P \<zero>\<^sub>2 n = \<zero>" |
|
200 |
by (auto simp add: UP_def) |
|
201 |
||
202 |
lemma (in UP_cring) coeff_one [simp]: |
|
203 |
"coeff P \<one>\<^sub>2 n = (if n=0 then \<one> else \<zero>)" |
|
204 |
using up_one_closed by (simp add: UP_def) |
|
205 |
||
206 |
lemma (in UP_cring) coeff_smult [simp]: |
|
207 |
"[| a \<in> carrier R; p \<in> carrier P |] ==> |
|
208 |
coeff P (a \<odot>\<^sub>2 p) n = a \<otimes> coeff P p n" |
|
209 |
by (simp add: UP_def up_smult_closed) |
|
210 |
||
211 |
lemma (in UP_cring) coeff_add [simp]: |
|
212 |
"[| p \<in> carrier P; q \<in> carrier P |] ==> |
|
213 |
coeff P (p \<oplus>\<^sub>2 q) n = coeff P p n \<oplus> coeff P q n" |
|
214 |
by (simp add: UP_def up_add_closed) |
|
215 |
||
216 |
lemma (in UP_cring) coeff_mult [simp]: |
|
217 |
"[| p \<in> carrier P; q \<in> carrier P |] ==> |
|
218 |
coeff P (p \<otimes>\<^sub>2 q) n = finsum R (%i. coeff P p i \<otimes> coeff P q (n-i)) {..n}" |
|
219 |
by (simp add: UP_def up_mult_closed) |
|
220 |
||
221 |
lemma (in UP) up_eqI: |
|
222 |
assumes prem: "!!n. coeff P p n = coeff P q n" |
|
223 |
and R: "p \<in> carrier P" "q \<in> carrier P" |
|
224 |
shows "p = q" |
|
225 |
proof |
|
226 |
fix x |
|
227 |
from prem and R show "p x = q x" by (simp add: UP_def) |
|
228 |
qed |
|
229 |
||
230 |
subsection {* Polynomials form a commutative ring. *} |
|
231 |
||
232 |
text {* Operations are closed over @{term "P"}. *} |
|
233 |
||
234 |
lemma (in UP_cring) UP_mult_closed [simp]: |
|
235 |
"[| p \<in> carrier P; q \<in> carrier P |] ==> p \<otimes>\<^sub>2 q \<in> carrier P" |
|
236 |
by (simp add: UP_def up_mult_closed) |
|
237 |
||
238 |
lemma (in UP_cring) UP_one_closed [simp]: |
|
239 |
"\<one>\<^sub>2 \<in> carrier P" |
|
240 |
by (simp add: UP_def up_one_closed) |
|
241 |
||
242 |
lemma (in UP_cring) UP_zero_closed [intro, simp]: |
|
243 |
"\<zero>\<^sub>2 \<in> carrier P" |
|
244 |
by (auto simp add: UP_def) |
|
245 |
||
246 |
lemma (in UP_cring) UP_a_closed [intro, simp]: |
|
247 |
"[| p \<in> carrier P; q \<in> carrier P |] ==> p \<oplus>\<^sub>2 q \<in> carrier P" |
|
248 |
by (simp add: UP_def up_add_closed) |
|
249 |
||
250 |
lemma (in UP_cring) monom_closed [simp]: |
|
251 |
"a \<in> carrier R ==> monom P a n \<in> carrier P" |
|
252 |
by (auto simp add: UP_def up_def Pi_def) |
|
253 |
||
254 |
lemma (in UP_cring) UP_smult_closed [simp]: |
|
255 |
"[| a \<in> carrier R; p \<in> carrier P |] ==> a \<odot>\<^sub>2 p \<in> carrier P" |
|
256 |
by (simp add: UP_def up_smult_closed) |
|
257 |
||
258 |
lemma (in UP) coeff_closed [simp]: |
|
259 |
"p \<in> carrier P ==> coeff P p n \<in> carrier R" |
|
260 |
by (auto simp add: UP_def) |
|
261 |
||
262 |
declare (in UP) P_def [simp del] |
|
263 |
||
264 |
text {* Algebraic ring properties *} |
|
265 |
||
266 |
lemma (in UP_cring) UP_a_assoc: |
|
267 |
assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" |
|
268 |
shows "(p \<oplus>\<^sub>2 q) \<oplus>\<^sub>2 r = p \<oplus>\<^sub>2 (q \<oplus>\<^sub>2 r)" |
|
269 |
by (rule up_eqI, simp add: a_assoc R, simp_all add: R) |
|
270 |
||
271 |
lemma (in UP_cring) UP_l_zero [simp]: |
|
272 |
assumes R: "p \<in> carrier P" |
|
273 |
shows "\<zero>\<^sub>2 \<oplus>\<^sub>2 p = p" |
|
274 |
by (rule up_eqI, simp_all add: R) |
|
275 |
||
276 |
lemma (in UP_cring) UP_l_neg_ex: |
|
277 |
assumes R: "p \<in> carrier P" |
|
278 |
shows "EX q : carrier P. q \<oplus>\<^sub>2 p = \<zero>\<^sub>2" |
|
279 |
proof - |
|
280 |
let ?q = "%i. \<ominus> (p i)" |
|
281 |
from R have closed: "?q \<in> carrier P" |
|
282 |
by (simp add: UP_def P_def up_a_inv_closed) |
|
283 |
from R have coeff: "!!n. coeff P ?q n = \<ominus> (coeff P p n)" |
|
284 |
by (simp add: UP_def P_def up_a_inv_closed) |
|
285 |
show ?thesis |
|
286 |
proof |
|
287 |
show "?q \<oplus>\<^sub>2 p = \<zero>\<^sub>2" |
|
288 |
by (auto intro!: up_eqI simp add: R closed coeff R.l_neg) |
|
289 |
qed (rule closed) |
|
290 |
qed |
|
291 |
||
292 |
lemma (in UP_cring) UP_a_comm: |
|
293 |
assumes R: "p \<in> carrier P" "q \<in> carrier P" |
|
294 |
shows "p \<oplus>\<^sub>2 q = q \<oplus>\<^sub>2 p" |
|
295 |
by (rule up_eqI, simp add: a_comm R, simp_all add: R) |
|
296 |
||
297 |
ML_setup {* |
|
298 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
299 |
simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} |
|
300 |
||
301 |
lemma (in UP_cring) UP_m_assoc: |
|
302 |
assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" |
|
303 |
shows "(p \<otimes>\<^sub>2 q) \<otimes>\<^sub>2 r = p \<otimes>\<^sub>2 (q \<otimes>\<^sub>2 r)" |
|
304 |
proof (rule up_eqI) |
|
305 |
fix n |
|
306 |
{ |
|
307 |
fix k and a b c :: "nat=>'a" |
|
308 |
assume R: "a \<in> UNIV -> carrier R" "b \<in> UNIV -> carrier R" |
|
309 |
"c \<in> UNIV -> carrier R" |
|
310 |
then have "k <= n ==> |
|
311 |
finsum R (%j. finsum R (%i. a i \<otimes> b (j-i)) {..j} \<otimes> c (n-j)) {..k} = |
|
312 |
finsum R (%j. a j \<otimes> finsum R (%i. b i \<otimes> c (n-j-i)) {..k-j}) {..k}" |
|
313 |
(is "_ ==> ?eq k") |
|
314 |
proof (induct k) |
|
315 |
case 0 then show ?case by (simp add: Pi_def m_assoc) |
|
316 |
next |
|
317 |
case (Suc k) |
|
318 |
then have "k <= n" by arith |
|
319 |
then have "?eq k" by (rule Suc) |
|
320 |
with R show ?case |
|
321 |
by (simp cong: finsum_cong |
|
322 |
add: Suc_diff_le Pi_def l_distr r_distr m_assoc) |
|
323 |
(simp cong: finsum_cong add: Pi_def a_ac finsum_ldistr m_assoc) |
|
324 |
qed |
|
325 |
} |
|
326 |
with R show "coeff P ((p \<otimes>\<^sub>2 q) \<otimes>\<^sub>2 r) n = coeff P (p \<otimes>\<^sub>2 (q \<otimes>\<^sub>2 r)) n" |
|
327 |
by (simp add: Pi_def) |
|
328 |
qed (simp_all add: R) |
|
329 |
||
330 |
ML_setup {* |
|
331 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
332 |
simpset_of thy setsubgoaler asm_simp_tac; thy)) *} |
|
333 |
||
334 |
lemma (in UP_cring) UP_l_one [simp]: |
|
335 |
assumes R: "p \<in> carrier P" |
|
336 |
shows "\<one>\<^sub>2 \<otimes>\<^sub>2 p = p" |
|
337 |
proof (rule up_eqI) |
|
338 |
fix n |
|
339 |
show "coeff P (\<one>\<^sub>2 \<otimes>\<^sub>2 p) n = coeff P p n" |
|
340 |
proof (cases n) |
|
341 |
case 0 with R show ?thesis by simp |
|
342 |
next |
|
343 |
case Suc with R show ?thesis |
|
344 |
by (simp del: finsum_Suc add: finsum_Suc2 Pi_def) |
|
345 |
qed |
|
346 |
qed (simp_all add: R) |
|
347 |
||
348 |
lemma (in UP_cring) UP_l_distr: |
|
349 |
assumes R: "p \<in> carrier P" "q \<in> carrier P" "r \<in> carrier P" |
|
350 |
shows "(p \<oplus>\<^sub>2 q) \<otimes>\<^sub>2 r = (p \<otimes>\<^sub>2 r) \<oplus>\<^sub>2 (q \<otimes>\<^sub>2 r)" |
|
351 |
by (rule up_eqI) (simp add: l_distr R Pi_def, simp_all add: R) |
|
352 |
||
353 |
lemma (in UP_cring) UP_m_comm: |
|
354 |
assumes R: "p \<in> carrier P" "q \<in> carrier P" |
|
355 |
shows "p \<otimes>\<^sub>2 q = q \<otimes>\<^sub>2 p" |
|
356 |
proof (rule up_eqI) |
|
357 |
fix n |
|
358 |
{ |
|
359 |
fix k and a b :: "nat=>'a" |
|
360 |
assume R: "a \<in> UNIV -> carrier R" "b \<in> UNIV -> carrier R" |
|
361 |
then have "k <= n ==> |
|
362 |
finsum R (%i. a i \<otimes> b (n-i)) {..k} = |
|
363 |
finsum R (%i. a (k-i) \<otimes> b (i+n-k)) {..k}" |
|
364 |
(is "_ ==> ?eq k") |
|
365 |
proof (induct k) |
|
366 |
case 0 then show ?case by (simp add: Pi_def) |
|
367 |
next |
|
368 |
case (Suc k) then show ?case |
|
369 |
by (subst finsum_Suc2) (simp add: Pi_def a_comm)+ |
|
370 |
qed |
|
371 |
} |
|
372 |
note l = this |
|
373 |
from R show "coeff P (p \<otimes>\<^sub>2 q) n = coeff P (q \<otimes>\<^sub>2 p) n" |
|
374 |
apply (simp add: Pi_def) |
|
375 |
apply (subst l) |
|
376 |
apply (auto simp add: Pi_def) |
|
377 |
apply (simp add: m_comm) |
|
378 |
done |
|
379 |
qed (simp_all add: R) |
|
380 |
||
381 |
theorem (in UP_cring) UP_cring: |
|
382 |
"cring P" |
|
383 |
by (auto intro!: cringI abelian_groupI comm_monoidI UP_a_assoc UP_l_zero |
|
384 |
UP_l_neg_ex UP_a_comm UP_m_assoc UP_l_one UP_m_comm UP_l_distr) |
|
385 |
||
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
386 |
lemma (in UP_cring) UP_ring: (* preliminary *) |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
387 |
"ring P" |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
388 |
by (auto intro: ring.intro cring.axioms UP_cring) |
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
389 |
|
13940 | 390 |
lemma (in UP_cring) UP_a_inv_closed [intro, simp]: |
391 |
"p \<in> carrier P ==> \<ominus>\<^sub>2 p \<in> carrier P" |
|
392 |
by (rule abelian_group.a_inv_closed |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
393 |
[OF ring.is_abelian_group [OF UP_ring]]) |
13940 | 394 |
|
395 |
lemma (in UP_cring) coeff_a_inv [simp]: |
|
396 |
assumes R: "p \<in> carrier P" |
|
397 |
shows "coeff P (\<ominus>\<^sub>2 p) n = \<ominus> (coeff P p n)" |
|
398 |
proof - |
|
399 |
from R coeff_closed UP_a_inv_closed have |
|
400 |
"coeff P (\<ominus>\<^sub>2 p) n = \<ominus> coeff P p n \<oplus> (coeff P p n \<oplus> coeff P (\<ominus>\<^sub>2 p) n)" |
|
401 |
by algebra |
|
402 |
also from R have "... = \<ominus> (coeff P p n)" |
|
403 |
by (simp del: coeff_add add: coeff_add [THEN sym] |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
404 |
abelian_group.r_neg [OF ring.is_abelian_group [OF UP_ring]]) |
13940 | 405 |
finally show ?thesis . |
406 |
qed |
|
407 |
||
408 |
text {* |
|
409 |
Instantiation of lemmas from @{term cring}. |
|
410 |
*} |
|
411 |
||
412 |
lemma (in UP_cring) UP_monoid: |
|
413 |
"monoid P" |
|
414 |
by (fast intro!: cring.is_comm_monoid comm_monoid.axioms monoid.intro |
|
415 |
UP_cring) |
|
416 |
(* TODO: provide cring.is_monoid *) |
|
417 |
||
418 |
lemma (in UP_cring) UP_comm_semigroup: |
|
419 |
"comm_semigroup P" |
|
420 |
by (fast intro!: cring.is_comm_monoid comm_monoid.axioms comm_semigroup.intro |
|
421 |
UP_cring) |
|
422 |
||
423 |
lemma (in UP_cring) UP_comm_monoid: |
|
424 |
"comm_monoid P" |
|
425 |
by (fast intro!: cring.is_comm_monoid UP_cring) |
|
426 |
||
427 |
lemma (in UP_cring) UP_abelian_monoid: |
|
428 |
"abelian_monoid P" |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
429 |
by (fast intro!: abelian_group.axioms ring.is_abelian_group UP_ring) |
13940 | 430 |
|
431 |
lemma (in UP_cring) UP_abelian_group: |
|
432 |
"abelian_group P" |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
433 |
by (fast intro!: ring.is_abelian_group UP_ring) |
13940 | 434 |
|
435 |
lemmas (in UP_cring) UP_r_one [simp] = |
|
436 |
monoid.r_one [OF UP_monoid] |
|
437 |
||
438 |
lemmas (in UP_cring) UP_nat_pow_closed [intro, simp] = |
|
439 |
monoid.nat_pow_closed [OF UP_monoid] |
|
440 |
||
441 |
lemmas (in UP_cring) UP_nat_pow_0 [simp] = |
|
442 |
monoid.nat_pow_0 [OF UP_monoid] |
|
443 |
||
444 |
lemmas (in UP_cring) UP_nat_pow_Suc [simp] = |
|
445 |
monoid.nat_pow_Suc [OF UP_monoid] |
|
446 |
||
447 |
lemmas (in UP_cring) UP_nat_pow_one [simp] = |
|
448 |
monoid.nat_pow_one [OF UP_monoid] |
|
449 |
||
450 |
lemmas (in UP_cring) UP_nat_pow_mult = |
|
451 |
monoid.nat_pow_mult [OF UP_monoid] |
|
452 |
||
453 |
lemmas (in UP_cring) UP_nat_pow_pow = |
|
454 |
monoid.nat_pow_pow [OF UP_monoid] |
|
455 |
||
456 |
lemmas (in UP_cring) UP_m_lcomm = |
|
457 |
comm_semigroup.m_lcomm [OF UP_comm_semigroup] |
|
458 |
||
459 |
lemmas (in UP_cring) UP_m_ac = UP_m_assoc UP_m_comm UP_m_lcomm |
|
460 |
||
461 |
lemmas (in UP_cring) UP_nat_pow_distr = |
|
462 |
comm_monoid.nat_pow_distr [OF UP_comm_monoid] |
|
463 |
||
464 |
lemmas (in UP_cring) UP_a_lcomm = abelian_monoid.a_lcomm [OF UP_abelian_monoid] |
|
465 |
||
466 |
lemmas (in UP_cring) UP_r_zero [simp] = |
|
467 |
abelian_monoid.r_zero [OF UP_abelian_monoid] |
|
468 |
||
469 |
lemmas (in UP_cring) UP_a_ac = UP_a_assoc UP_a_comm UP_a_lcomm |
|
470 |
||
471 |
lemmas (in UP_cring) UP_finsum_empty [simp] = |
|
472 |
abelian_monoid.finsum_empty [OF UP_abelian_monoid] |
|
473 |
||
474 |
lemmas (in UP_cring) UP_finsum_insert [simp] = |
|
475 |
abelian_monoid.finsum_insert [OF UP_abelian_monoid] |
|
476 |
||
477 |
lemmas (in UP_cring) UP_finsum_zero [simp] = |
|
478 |
abelian_monoid.finsum_zero [OF UP_abelian_monoid] |
|
479 |
||
480 |
lemmas (in UP_cring) UP_finsum_closed [simp] = |
|
481 |
abelian_monoid.finsum_closed [OF UP_abelian_monoid] |
|
482 |
||
483 |
lemmas (in UP_cring) UP_finsum_Un_Int = |
|
484 |
abelian_monoid.finsum_Un_Int [OF UP_abelian_monoid] |
|
485 |
||
486 |
lemmas (in UP_cring) UP_finsum_Un_disjoint = |
|
487 |
abelian_monoid.finsum_Un_disjoint [OF UP_abelian_monoid] |
|
488 |
||
489 |
lemmas (in UP_cring) UP_finsum_addf = |
|
490 |
abelian_monoid.finsum_addf [OF UP_abelian_monoid] |
|
491 |
||
492 |
lemmas (in UP_cring) UP_finsum_cong' = |
|
493 |
abelian_monoid.finsum_cong' [OF UP_abelian_monoid] |
|
494 |
||
495 |
lemmas (in UP_cring) UP_finsum_0 [simp] = |
|
496 |
abelian_monoid.finsum_0 [OF UP_abelian_monoid] |
|
497 |
||
498 |
lemmas (in UP_cring) UP_finsum_Suc [simp] = |
|
499 |
abelian_monoid.finsum_Suc [OF UP_abelian_monoid] |
|
500 |
||
501 |
lemmas (in UP_cring) UP_finsum_Suc2 = |
|
502 |
abelian_monoid.finsum_Suc2 [OF UP_abelian_monoid] |
|
503 |
||
504 |
lemmas (in UP_cring) UP_finsum_add [simp] = |
|
505 |
abelian_monoid.finsum_add [OF UP_abelian_monoid] |
|
506 |
||
507 |
lemmas (in UP_cring) UP_finsum_cong = |
|
508 |
abelian_monoid.finsum_cong [OF UP_abelian_monoid] |
|
509 |
||
510 |
lemmas (in UP_cring) UP_minus_closed [intro, simp] = |
|
511 |
abelian_group.minus_closed [OF UP_abelian_group] |
|
512 |
||
513 |
lemmas (in UP_cring) UP_a_l_cancel [simp] = |
|
514 |
abelian_group.a_l_cancel [OF UP_abelian_group] |
|
515 |
||
516 |
lemmas (in UP_cring) UP_a_r_cancel [simp] = |
|
517 |
abelian_group.a_r_cancel [OF UP_abelian_group] |
|
518 |
||
519 |
lemmas (in UP_cring) UP_l_neg = |
|
520 |
abelian_group.l_neg [OF UP_abelian_group] |
|
521 |
||
522 |
lemmas (in UP_cring) UP_r_neg = |
|
523 |
abelian_group.r_neg [OF UP_abelian_group] |
|
524 |
||
525 |
lemmas (in UP_cring) UP_minus_zero [simp] = |
|
526 |
abelian_group.minus_zero [OF UP_abelian_group] |
|
527 |
||
528 |
lemmas (in UP_cring) UP_minus_minus [simp] = |
|
529 |
abelian_group.minus_minus [OF UP_abelian_group] |
|
530 |
||
531 |
lemmas (in UP_cring) UP_minus_add = |
|
532 |
abelian_group.minus_add [OF UP_abelian_group] |
|
533 |
||
534 |
lemmas (in UP_cring) UP_r_neg2 = |
|
535 |
abelian_group.r_neg2 [OF UP_abelian_group] |
|
536 |
||
537 |
lemmas (in UP_cring) UP_r_neg1 = |
|
538 |
abelian_group.r_neg1 [OF UP_abelian_group] |
|
539 |
||
540 |
lemmas (in UP_cring) UP_r_distr = |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
541 |
ring.r_distr [OF UP_ring] |
13940 | 542 |
|
543 |
lemmas (in UP_cring) UP_l_null [simp] = |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
544 |
ring.l_null [OF UP_ring] |
13940 | 545 |
|
546 |
lemmas (in UP_cring) UP_r_null [simp] = |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
547 |
ring.r_null [OF UP_ring] |
13940 | 548 |
|
549 |
lemmas (in UP_cring) UP_l_minus = |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
550 |
ring.l_minus [OF UP_ring] |
13940 | 551 |
|
552 |
lemmas (in UP_cring) UP_r_minus = |
|
14399
dc677b35e54f
New lemmas about inversion of restricted functions.
ballarin
parents:
13975
diff
changeset
|
553 |
ring.r_minus [OF UP_ring] |
13940 | 554 |
|
555 |
lemmas (in UP_cring) UP_finsum_ldistr = |
|
556 |
cring.finsum_ldistr [OF UP_cring] |
|
557 |
||
558 |
lemmas (in UP_cring) UP_finsum_rdistr = |
|
559 |
cring.finsum_rdistr [OF UP_cring] |
|
560 |
||
561 |
subsection {* Polynomials form an Algebra *} |
|
562 |
||
563 |
lemma (in UP_cring) UP_smult_l_distr: |
|
564 |
"[| a \<in> carrier R; b \<in> carrier R; p \<in> carrier P |] ==> |
|
565 |
(a \<oplus> b) \<odot>\<^sub>2 p = a \<odot>\<^sub>2 p \<oplus>\<^sub>2 b \<odot>\<^sub>2 p" |
|
566 |
by (rule up_eqI) (simp_all add: R.l_distr) |
|
567 |
||
568 |
lemma (in UP_cring) UP_smult_r_distr: |
|
569 |
"[| a \<in> carrier R; p \<in> carrier P; q \<in> carrier P |] ==> |
|
570 |
a \<odot>\<^sub>2 (p \<oplus>\<^sub>2 q) = a \<odot>\<^sub>2 p \<oplus>\<^sub>2 a \<odot>\<^sub>2 q" |
|
571 |
by (rule up_eqI) (simp_all add: R.r_distr) |
|
572 |
||
573 |
lemma (in UP_cring) UP_smult_assoc1: |
|
574 |
"[| a \<in> carrier R; b \<in> carrier R; p \<in> carrier P |] ==> |
|
575 |
(a \<otimes> b) \<odot>\<^sub>2 p = a \<odot>\<^sub>2 (b \<odot>\<^sub>2 p)" |
|
576 |
by (rule up_eqI) (simp_all add: R.m_assoc) |
|
577 |
||
578 |
lemma (in UP_cring) UP_smult_one [simp]: |
|
579 |
"p \<in> carrier P ==> \<one> \<odot>\<^sub>2 p = p" |
|
580 |
by (rule up_eqI) simp_all |
|
581 |
||
582 |
lemma (in UP_cring) UP_smult_assoc2: |
|
583 |
"[| a \<in> carrier R; p \<in> carrier P; q \<in> carrier P |] ==> |
|
584 |
(a \<odot>\<^sub>2 p) \<otimes>\<^sub>2 q = a \<odot>\<^sub>2 (p \<otimes>\<^sub>2 q)" |
|
585 |
by (rule up_eqI) (simp_all add: R.finsum_rdistr R.m_assoc Pi_def) |
|
586 |
||
587 |
text {* |
|
588 |
Instantiation of lemmas from @{term algebra}. |
|
589 |
*} |
|
590 |
||
591 |
(* TODO: move to CRing.thy, really a fact missing from the locales package *) |
|
592 |
||
593 |
lemma (in cring) cring: |
|
594 |
"cring R" |
|
595 |
by (fast intro: cring.intro prems) |
|
596 |
||
597 |
lemma (in UP_cring) UP_algebra: |
|
598 |
"algebra R P" |
|
599 |
by (auto intro: algebraI cring UP_cring UP_smult_l_distr UP_smult_r_distr |
|
600 |
UP_smult_assoc1 UP_smult_assoc2) |
|
601 |
||
602 |
lemmas (in UP_cring) UP_smult_l_null [simp] = |
|
603 |
algebra.smult_l_null [OF UP_algebra] |
|
604 |
||
605 |
lemmas (in UP_cring) UP_smult_r_null [simp] = |
|
606 |
algebra.smult_r_null [OF UP_algebra] |
|
607 |
||
608 |
lemmas (in UP_cring) UP_smult_l_minus = |
|
609 |
algebra.smult_l_minus [OF UP_algebra] |
|
610 |
||
611 |
lemmas (in UP_cring) UP_smult_r_minus = |
|
612 |
algebra.smult_r_minus [OF UP_algebra] |
|
613 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13940
diff
changeset
|
614 |
subsection {* Further lemmas involving monomials *} |
13940 | 615 |
|
616 |
lemma (in UP_cring) monom_zero [simp]: |
|
617 |
"monom P \<zero> n = \<zero>\<^sub>2" |
|
618 |
by (simp add: UP_def P_def) |
|
619 |
||
620 |
ML_setup {* |
|
621 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
622 |
simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} |
|
623 |
||
624 |
lemma (in UP_cring) monom_mult_is_smult: |
|
625 |
assumes R: "a \<in> carrier R" "p \<in> carrier P" |
|
626 |
shows "monom P a 0 \<otimes>\<^sub>2 p = a \<odot>\<^sub>2 p" |
|
627 |
proof (rule up_eqI) |
|
628 |
fix n |
|
629 |
have "coeff P (p \<otimes>\<^sub>2 monom P a 0) n = coeff P (a \<odot>\<^sub>2 p) n" |
|
630 |
proof (cases n) |
|
631 |
case 0 with R show ?thesis by (simp add: R.m_comm) |
|
632 |
next |
|
633 |
case Suc with R show ?thesis |
|
634 |
by (simp cong: finsum_cong add: R.r_null Pi_def) |
|
635 |
(simp add: m_comm) |
|
636 |
qed |
|
637 |
with R show "coeff P (monom P a 0 \<otimes>\<^sub>2 p) n = coeff P (a \<odot>\<^sub>2 p) n" |
|
638 |
by (simp add: UP_m_comm) |
|
639 |
qed (simp_all add: R) |
|
640 |
||
641 |
ML_setup {* |
|
642 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
643 |
simpset_of thy setsubgoaler asm_simp_tac; thy)) *} |
|
644 |
||
645 |
lemma (in UP_cring) monom_add [simp]: |
|
646 |
"[| a \<in> carrier R; b \<in> carrier R |] ==> |
|
647 |
monom P (a \<oplus> b) n = monom P a n \<oplus>\<^sub>2 monom P b n" |
|
648 |
by (rule up_eqI) simp_all |
|
649 |
||
650 |
ML_setup {* |
|
651 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
652 |
simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} |
|
653 |
||
654 |
lemma (in UP_cring) monom_one_Suc: |
|
655 |
"monom P \<one> (Suc n) = monom P \<one> n \<otimes>\<^sub>2 monom P \<one> 1" |
|
656 |
proof (rule up_eqI) |
|
657 |
fix k |
|
658 |
show "coeff P (monom P \<one> (Suc n)) k = coeff P (monom P \<one> n \<otimes>\<^sub>2 monom P \<one> 1) k" |
|
659 |
proof (cases "k = Suc n") |
|
660 |
case True show ?thesis |
|
661 |
proof - |
|
662 |
from True have less_add_diff: |
|
663 |
"!!i. [| n < i; i <= n + m |] ==> n + m - i < m" by arith |
|
664 |
from True have "coeff P (monom P \<one> (Suc n)) k = \<one>" by simp |
|
665 |
also from True |
|
666 |
have "... = finsum R (%i. coeff P (monom P \<one> n) i \<otimes> |
|
667 |
coeff P (monom P \<one> 1) (k - i)) ({..n(} Un {n})" |
|
668 |
by (simp cong: finsum_cong add: finsum_Un_disjoint Pi_def) |
|
669 |
also have "... = finsum R (%i. coeff P (monom P \<one> n) i \<otimes> |
|
670 |
coeff P (monom P \<one> 1) (k - i)) {..n}" |
|
671 |
by (simp only: ivl_disj_un_singleton) |
|
672 |
also from True have "... = finsum R (%i. coeff P (monom P \<one> n) i \<otimes> |
|
673 |
coeff P (monom P \<one> 1) (k - i)) ({..n} Un {)n..k})" |
|
674 |
by (simp cong: finsum_cong add: finsum_Un_disjoint ivl_disj_int_one |
|
675 |
order_less_imp_not_eq Pi_def) |
|
676 |
also from True have "... = coeff P (monom P \<one> n \<otimes>\<^sub>2 monom P \<one> 1) k" |
|
677 |
by (simp add: ivl_disj_un_one) |
|
678 |
finally show ?thesis . |
|
679 |
qed |
|
680 |
next |
|
681 |
case False |
|
682 |
note neq = False |
|
683 |
let ?s = |
|
684 |
"(\<lambda>i. (if n = i then \<one> else \<zero>) \<otimes> (if Suc 0 = k - i then \<one> else \<zero>))" |
|
685 |
from neq have "coeff P (monom P \<one> (Suc n)) k = \<zero>" by simp |
|
686 |
also have "... = finsum R ?s {..k}" |
|
687 |
proof - |
|
688 |
have f1: "finsum R ?s {..n(} = \<zero>" by (simp cong: finsum_cong add: Pi_def) |
|
689 |
from neq have f2: "finsum R ?s {n} = \<zero>" |
|
690 |
by (simp cong: finsum_cong add: Pi_def) arith |
|
691 |
have f3: "n < k ==> finsum R ?s {)n..k} = \<zero>" |
|
692 |
by (simp cong: finsum_cong add: order_less_imp_not_eq Pi_def) |
|
693 |
show ?thesis |
|
694 |
proof (cases "k < n") |
|
695 |
case True then show ?thesis by (simp cong: finsum_cong add: Pi_def) |
|
696 |
next |
|
697 |
case False then have n_le_k: "n <= k" by arith |
|
698 |
show ?thesis |
|
699 |
proof (cases "n = k") |
|
700 |
case True |
|
701 |
then have "\<zero> = finsum R ?s ({..n(} \<union> {n})" |
|
702 |
by (simp cong: finsum_cong add: finsum_Un_disjoint |
|
703 |
ivl_disj_int_singleton Pi_def) |
|
704 |
also from True have "... = finsum R ?s {..k}" |
|
705 |
by (simp only: ivl_disj_un_singleton) |
|
706 |
finally show ?thesis . |
|
707 |
next |
|
708 |
case False with n_le_k have n_less_k: "n < k" by arith |
|
709 |
with neq have "\<zero> = finsum R ?s ({..n(} \<union> {n})" |
|
710 |
by (simp add: finsum_Un_disjoint f1 f2 |
|
711 |
ivl_disj_int_singleton Pi_def del: Un_insert_right) |
|
712 |
also have "... = finsum R ?s {..n}" |
|
713 |
by (simp only: ivl_disj_un_singleton) |
|
714 |
also from n_less_k neq have "... = finsum R ?s ({..n} \<union> {)n..k})" |
|
715 |
by (simp add: finsum_Un_disjoint f3 ivl_disj_int_one Pi_def) |
|
716 |
also from n_less_k have "... = finsum R ?s {..k}" |
|
717 |
by (simp only: ivl_disj_un_one) |
|
718 |
finally show ?thesis . |
|
719 |
qed |
|
720 |
qed |
|
721 |
qed |
|
722 |
also have "... = coeff P (monom P \<one> n \<otimes>\<^sub>2 monom P \<one> 1) k" by simp |
|
723 |
finally show ?thesis . |
|
724 |
qed |
|
725 |
qed (simp_all) |
|
726 |
||
727 |
ML_setup {* |
|
728 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
729 |
simpset_of thy setsubgoaler asm_simp_tac; thy)) *} |
|
730 |
||
731 |
lemma (in UP_cring) monom_mult_smult: |
|
732 |
"[| a \<in> carrier R; b \<in> carrier R |] ==> monom P (a \<otimes> b) n = a \<odot>\<^sub>2 monom P b n" |
|
733 |
by (rule up_eqI) simp_all |
|
734 |
||
735 |
lemma (in UP_cring) monom_one [simp]: |
|
736 |
"monom P \<one> 0 = \<one>\<^sub>2" |
|
737 |
by (rule up_eqI) simp_all |
|
738 |
||
739 |
lemma (in UP_cring) monom_one_mult: |
|
740 |
"monom P \<one> (n + m) = monom P \<one> n \<otimes>\<^sub>2 monom P \<one> m" |
|
741 |
proof (induct n) |
|
742 |
case 0 show ?case by simp |
|
743 |
next |
|
744 |
case Suc then show ?case |
|
745 |
by (simp only: add_Suc monom_one_Suc) (simp add: UP_m_ac) |
|
746 |
qed |
|
747 |
||
748 |
lemma (in UP_cring) monom_mult [simp]: |
|
749 |
assumes R: "a \<in> carrier R" "b \<in> carrier R" |
|
750 |
shows "monom P (a \<otimes> b) (n + m) = monom P a n \<otimes>\<^sub>2 monom P b m" |
|
751 |
proof - |
|
752 |
from R have "monom P (a \<otimes> b) (n + m) = monom P (a \<otimes> b \<otimes> \<one>) (n + m)" by simp |
|
753 |
also from R have "... = a \<otimes> b \<odot>\<^sub>2 monom P \<one> (n + m)" |
|
754 |
by (simp add: monom_mult_smult del: r_one) |
|
755 |
also have "... = a \<otimes> b \<odot>\<^sub>2 (monom P \<one> n \<otimes>\<^sub>2 monom P \<one> m)" |
|
756 |
by (simp only: monom_one_mult) |
|
757 |
also from R have "... = a \<odot>\<^sub>2 (b \<odot>\<^sub>2 (monom P \<one> n \<otimes>\<^sub>2 monom P \<one> m))" |
|
758 |
by (simp add: UP_smult_assoc1) |
|
759 |
also from R have "... = a \<odot>\<^sub>2 (b \<odot>\<^sub>2 (monom P \<one> m \<otimes>\<^sub>2 monom P \<one> n))" |
|
760 |
by (simp add: UP_m_comm) |
|
761 |
also from R have "... = a \<odot>\<^sub>2 ((b \<odot>\<^sub>2 monom P \<one> m) \<otimes>\<^sub>2 monom P \<one> n)" |
|
762 |
by (simp add: UP_smult_assoc2) |
|
763 |
also from R have "... = a \<odot>\<^sub>2 (monom P \<one> n \<otimes>\<^sub>2 (b \<odot>\<^sub>2 monom P \<one> m))" |
|
764 |
by (simp add: UP_m_comm) |
|
765 |
also from R have "... = (a \<odot>\<^sub>2 monom P \<one> n) \<otimes>\<^sub>2 (b \<odot>\<^sub>2 monom P \<one> m)" |
|
766 |
by (simp add: UP_smult_assoc2) |
|
767 |
also from R have "... = monom P (a \<otimes> \<one>) n \<otimes>\<^sub>2 monom P (b \<otimes> \<one>) m" |
|
768 |
by (simp add: monom_mult_smult del: r_one) |
|
769 |
also from R have "... = monom P a n \<otimes>\<^sub>2 monom P b m" by simp |
|
770 |
finally show ?thesis . |
|
771 |
qed |
|
772 |
||
773 |
lemma (in UP_cring) monom_a_inv [simp]: |
|
774 |
"a \<in> carrier R ==> monom P (\<ominus> a) n = \<ominus>\<^sub>2 monom P a n" |
|
775 |
by (rule up_eqI) simp_all |
|
776 |
||
777 |
lemma (in UP_cring) monom_inj: |
|
778 |
"inj_on (%a. monom P a n) (carrier R)" |
|
779 |
proof (rule inj_onI) |
|
780 |
fix x y |
|
781 |
assume R: "x \<in> carrier R" "y \<in> carrier R" and eq: "monom P x n = monom P y n" |
|
782 |
then have "coeff P (monom P x n) n = coeff P (monom P y n) n" by simp |
|
783 |
with R show "x = y" by simp |
|
784 |
qed |
|
785 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13940
diff
changeset
|
786 |
subsection {* The degree function *} |
13940 | 787 |
|
788 |
constdefs |
|
789 |
deg :: "[('a, 'm) ring_scheme, nat => 'a] => nat" |
|
790 |
"deg R p == LEAST n. bound (zero R) n (coeff (UP R) p)" |
|
791 |
||
792 |
lemma (in UP_cring) deg_aboveI: |
|
793 |
"[| (!!m. n < m ==> coeff P p m = \<zero>); p \<in> carrier P |] ==> deg R p <= n" |
|
794 |
by (unfold deg_def P_def) (fast intro: Least_le) |
|
795 |
(* |
|
796 |
lemma coeff_bound_ex: "EX n. bound n (coeff p)" |
|
797 |
proof - |
|
798 |
have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) |
|
799 |
then obtain n where "bound n (coeff p)" by (unfold UP_def) fast |
|
800 |
then show ?thesis .. |
|
801 |
qed |
|
802 |
||
803 |
lemma bound_coeff_obtain: |
|
804 |
assumes prem: "(!!n. bound n (coeff p) ==> P)" shows "P" |
|
805 |
proof - |
|
806 |
have "(%n. coeff p n) : UP" by (simp add: coeff_def Rep_UP) |
|
807 |
then obtain n where "bound n (coeff p)" by (unfold UP_def) fast |
|
808 |
with prem show P . |
|
809 |
qed |
|
810 |
*) |
|
811 |
lemma (in UP_cring) deg_aboveD: |
|
812 |
"[| deg R p < m; p \<in> carrier P |] ==> coeff P p m = \<zero>" |
|
813 |
proof - |
|
814 |
assume R: "p \<in> carrier P" and "deg R p < m" |
|
815 |
from R obtain n where "bound \<zero> n (coeff P p)" |
|
816 |
by (auto simp add: UP_def P_def) |
|
817 |
then have "bound \<zero> (deg R p) (coeff P p)" |
|
818 |
by (auto simp: deg_def P_def dest: LeastI) |
|
819 |
then show ?thesis by (rule boundD) |
|
820 |
qed |
|
821 |
||
822 |
lemma (in UP_cring) deg_belowI: |
|
823 |
assumes non_zero: "n ~= 0 ==> coeff P p n ~= \<zero>" |
|
824 |
and R: "p \<in> carrier P" |
|
825 |
shows "n <= deg R p" |
|
826 |
-- {* Logically, this is a slightly stronger version of |
|
827 |
@{thm [source] deg_aboveD} *} |
|
828 |
proof (cases "n=0") |
|
829 |
case True then show ?thesis by simp |
|
830 |
next |
|
831 |
case False then have "coeff P p n ~= \<zero>" by (rule non_zero) |
|
832 |
then have "~ deg R p < n" by (fast dest: deg_aboveD intro: R) |
|
833 |
then show ?thesis by arith |
|
834 |
qed |
|
835 |
||
836 |
lemma (in UP_cring) lcoeff_nonzero_deg: |
|
837 |
assumes deg: "deg R p ~= 0" and R: "p \<in> carrier P" |
|
838 |
shows "coeff P p (deg R p) ~= \<zero>" |
|
839 |
proof - |
|
840 |
from R obtain m where "deg R p <= m" and m_coeff: "coeff P p m ~= \<zero>" |
|
841 |
proof - |
|
842 |
have minus: "!!(n::nat) m. n ~= 0 ==> (n - Suc 0 < m) = (n <= m)" |
|
843 |
by arith |
|
844 |
(* TODO: why does proof not work with "1" *) |
|
845 |
from deg have "deg R p - 1 < (LEAST n. bound \<zero> n (coeff P p))" |
|
846 |
by (unfold deg_def P_def) arith |
|
847 |
then have "~ bound \<zero> (deg R p - 1) (coeff P p)" by (rule not_less_Least) |
|
848 |
then have "EX m. deg R p - 1 < m & coeff P p m ~= \<zero>" |
|
849 |
by (unfold bound_def) fast |
|
850 |
then have "EX m. deg R p <= m & coeff P p m ~= \<zero>" by (simp add: deg minus) |
|
851 |
then show ?thesis by auto |
|
852 |
qed |
|
853 |
with deg_belowI R have "deg R p = m" by fastsimp |
|
854 |
with m_coeff show ?thesis by simp |
|
855 |
qed |
|
856 |
||
857 |
lemma (in UP_cring) lcoeff_nonzero_nonzero: |
|
858 |
assumes deg: "deg R p = 0" and nonzero: "p ~= \<zero>\<^sub>2" and R: "p \<in> carrier P" |
|
859 |
shows "coeff P p 0 ~= \<zero>" |
|
860 |
proof - |
|
861 |
have "EX m. coeff P p m ~= \<zero>" |
|
862 |
proof (rule classical) |
|
863 |
assume "~ ?thesis" |
|
864 |
with R have "p = \<zero>\<^sub>2" by (auto intro: up_eqI) |
|
865 |
with nonzero show ?thesis by contradiction |
|
866 |
qed |
|
867 |
then obtain m where coeff: "coeff P p m ~= \<zero>" .. |
|
868 |
then have "m <= deg R p" by (rule deg_belowI) |
|
869 |
then have "m = 0" by (simp add: deg) |
|
870 |
with coeff show ?thesis by simp |
|
871 |
qed |
|
872 |
||
873 |
lemma (in UP_cring) lcoeff_nonzero: |
|
874 |
assumes neq: "p ~= \<zero>\<^sub>2" and R: "p \<in> carrier P" |
|
875 |
shows "coeff P p (deg R p) ~= \<zero>" |
|
876 |
proof (cases "deg R p = 0") |
|
877 |
case True with neq R show ?thesis by (simp add: lcoeff_nonzero_nonzero) |
|
878 |
next |
|
879 |
case False with neq R show ?thesis by (simp add: lcoeff_nonzero_deg) |
|
880 |
qed |
|
881 |
||
882 |
lemma (in UP_cring) deg_eqI: |
|
883 |
"[| !!m. n < m ==> coeff P p m = \<zero>; |
|
884 |
!!n. n ~= 0 ==> coeff P p n ~= \<zero>; p \<in> carrier P |] ==> deg R p = n" |
|
885 |
by (fast intro: le_anti_sym deg_aboveI deg_belowI) |
|
886 |
||
887 |
(* Degree and polynomial operations *) |
|
888 |
||
889 |
lemma (in UP_cring) deg_add [simp]: |
|
890 |
assumes R: "p \<in> carrier P" "q \<in> carrier P" |
|
891 |
shows "deg R (p \<oplus>\<^sub>2 q) <= max (deg R p) (deg R q)" |
|
892 |
proof (cases "deg R p <= deg R q") |
|
893 |
case True show ?thesis |
|
894 |
by (rule deg_aboveI) (simp_all add: True R deg_aboveD) |
|
895 |
next |
|
896 |
case False show ?thesis |
|
897 |
by (rule deg_aboveI) (simp_all add: False R deg_aboveD) |
|
898 |
qed |
|
899 |
||
900 |
lemma (in UP_cring) deg_monom_le: |
|
901 |
"a \<in> carrier R ==> deg R (monom P a n) <= n" |
|
902 |
by (intro deg_aboveI) simp_all |
|
903 |
||
904 |
lemma (in UP_cring) deg_monom [simp]: |
|
905 |
"[| a ~= \<zero>; a \<in> carrier R |] ==> deg R (monom P a n) = n" |
|
906 |
by (fastsimp intro: le_anti_sym deg_aboveI deg_belowI) |
|
907 |
||
908 |
lemma (in UP_cring) deg_const [simp]: |
|
909 |
assumes R: "a \<in> carrier R" shows "deg R (monom P a 0) = 0" |
|
910 |
proof (rule le_anti_sym) |
|
911 |
show "deg R (monom P a 0) <= 0" by (rule deg_aboveI) (simp_all add: R) |
|
912 |
next |
|
913 |
show "0 <= deg R (monom P a 0)" by (rule deg_belowI) (simp_all add: R) |
|
914 |
qed |
|
915 |
||
916 |
lemma (in UP_cring) deg_zero [simp]: |
|
917 |
"deg R \<zero>\<^sub>2 = 0" |
|
918 |
proof (rule le_anti_sym) |
|
919 |
show "deg R \<zero>\<^sub>2 <= 0" by (rule deg_aboveI) simp_all |
|
920 |
next |
|
921 |
show "0 <= deg R \<zero>\<^sub>2" by (rule deg_belowI) simp_all |
|
922 |
qed |
|
923 |
||
924 |
lemma (in UP_cring) deg_one [simp]: |
|
925 |
"deg R \<one>\<^sub>2 = 0" |
|
926 |
proof (rule le_anti_sym) |
|
927 |
show "deg R \<one>\<^sub>2 <= 0" by (rule deg_aboveI) simp_all |
|
928 |
next |
|
929 |
show "0 <= deg R \<one>\<^sub>2" by (rule deg_belowI) simp_all |
|
930 |
qed |
|
931 |
||
932 |
lemma (in UP_cring) deg_uminus [simp]: |
|
933 |
assumes R: "p \<in> carrier P" shows "deg R (\<ominus>\<^sub>2 p) = deg R p" |
|
934 |
proof (rule le_anti_sym) |
|
935 |
show "deg R (\<ominus>\<^sub>2 p) <= deg R p" by (simp add: deg_aboveI deg_aboveD R) |
|
936 |
next |
|
937 |
show "deg R p <= deg R (\<ominus>\<^sub>2 p)" |
|
938 |
by (simp add: deg_belowI lcoeff_nonzero_deg |
|
939 |
inj_on_iff [OF a_inv_inj, of _ "\<zero>", simplified] R) |
|
940 |
qed |
|
941 |
||
942 |
lemma (in UP_domain) deg_smult_ring: |
|
943 |
"[| a \<in> carrier R; p \<in> carrier P |] ==> |
|
944 |
deg R (a \<odot>\<^sub>2 p) <= (if a = \<zero> then 0 else deg R p)" |
|
945 |
by (cases "a = \<zero>") (simp add: deg_aboveI deg_aboveD)+ |
|
946 |
||
947 |
lemma (in UP_domain) deg_smult [simp]: |
|
948 |
assumes R: "a \<in> carrier R" "p \<in> carrier P" |
|
949 |
shows "deg R (a \<odot>\<^sub>2 p) = (if a = \<zero> then 0 else deg R p)" |
|
950 |
proof (rule le_anti_sym) |
|
951 |
show "deg R (a \<odot>\<^sub>2 p) <= (if a = \<zero> then 0 else deg R p)" |
|
952 |
by (rule deg_smult_ring) |
|
953 |
next |
|
954 |
show "(if a = \<zero> then 0 else deg R p) <= deg R (a \<odot>\<^sub>2 p)" |
|
955 |
proof (cases "a = \<zero>") |
|
956 |
qed (simp, simp add: deg_belowI lcoeff_nonzero_deg integral_iff R) |
|
957 |
qed |
|
958 |
||
959 |
lemma (in UP_cring) deg_mult_cring: |
|
960 |
assumes R: "p \<in> carrier P" "q \<in> carrier P" |
|
961 |
shows "deg R (p \<otimes>\<^sub>2 q) <= deg R p + deg R q" |
|
962 |
proof (rule deg_aboveI) |
|
963 |
fix m |
|
964 |
assume boundm: "deg R p + deg R q < m" |
|
965 |
{ |
|
966 |
fix k i |
|
967 |
assume boundk: "deg R p + deg R q < k" |
|
968 |
then have "coeff P p i \<otimes> coeff P q (k - i) = \<zero>" |
|
969 |
proof (cases "deg R p < i") |
|
970 |
case True then show ?thesis by (simp add: deg_aboveD R) |
|
971 |
next |
|
972 |
case False with boundk have "deg R q < k - i" by arith |
|
973 |
then show ?thesis by (simp add: deg_aboveD R) |
|
974 |
qed |
|
975 |
} |
|
976 |
with boundm R show "coeff P (p \<otimes>\<^sub>2 q) m = \<zero>" by simp |
|
977 |
qed (simp add: R) |
|
978 |
||
979 |
ML_setup {* |
|
980 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
981 |
simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} |
|
982 |
||
983 |
lemma (in UP_domain) deg_mult [simp]: |
|
984 |
"[| p ~= \<zero>\<^sub>2; q ~= \<zero>\<^sub>2; p \<in> carrier P; q \<in> carrier P |] ==> |
|
985 |
deg R (p \<otimes>\<^sub>2 q) = deg R p + deg R q" |
|
986 |
proof (rule le_anti_sym) |
|
987 |
assume "p \<in> carrier P" " q \<in> carrier P" |
|
988 |
show "deg R (p \<otimes>\<^sub>2 q) <= deg R p + deg R q" by (rule deg_mult_cring) |
|
989 |
next |
|
990 |
let ?s = "(%i. coeff P p i \<otimes> coeff P q (deg R p + deg R q - i))" |
|
991 |
assume R: "p \<in> carrier P" "q \<in> carrier P" and nz: "p ~= \<zero>\<^sub>2" "q ~= \<zero>\<^sub>2" |
|
992 |
have less_add_diff: "!!(k::nat) n m. k < n ==> m < n + m - k" by arith |
|
993 |
show "deg R p + deg R q <= deg R (p \<otimes>\<^sub>2 q)" |
|
994 |
proof (rule deg_belowI, simp add: R) |
|
995 |
have "finsum R ?s {.. deg R p + deg R q} |
|
996 |
= finsum R ?s ({.. deg R p(} Un {deg R p .. deg R p + deg R q})" |
|
997 |
by (simp only: ivl_disj_un_one) |
|
998 |
also have "... = finsum R ?s {deg R p .. deg R p + deg R q}" |
|
999 |
by (simp cong: finsum_cong add: finsum_Un_disjoint ivl_disj_int_one |
|
1000 |
deg_aboveD less_add_diff R Pi_def) |
|
1001 |
also have "...= finsum R ?s ({deg R p} Un {)deg R p .. deg R p + deg R q})" |
|
1002 |
by (simp only: ivl_disj_un_singleton) |
|
1003 |
also have "... = coeff P p (deg R p) \<otimes> coeff P q (deg R q)" |
|
1004 |
by (simp cong: finsum_cong add: finsum_Un_disjoint |
|
1005 |
ivl_disj_int_singleton deg_aboveD R Pi_def) |
|
1006 |
finally have "finsum R ?s {.. deg R p + deg R q} |
|
1007 |
= coeff P p (deg R p) \<otimes> coeff P q (deg R q)" . |
|
1008 |
with nz show "finsum R ?s {.. deg R p + deg R q} ~= \<zero>" |
|
1009 |
by (simp add: integral_iff lcoeff_nonzero R) |
|
1010 |
qed (simp add: R) |
|
1011 |
qed |
|
1012 |
||
1013 |
lemma (in UP_cring) coeff_finsum: |
|
1014 |
assumes fin: "finite A" |
|
1015 |
shows "p \<in> A -> carrier P ==> |
|
1016 |
coeff P (finsum P p A) k == finsum R (%i. coeff P (p i) k) A" |
|
1017 |
using fin by induct (auto simp: Pi_def) |
|
1018 |
||
1019 |
ML_setup {* |
|
1020 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
1021 |
simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} |
|
1022 |
||
1023 |
lemma (in UP_cring) up_repr: |
|
1024 |
assumes R: "p \<in> carrier P" |
|
1025 |
shows "finsum P (%i. monom P (coeff P p i) i) {..deg R p} = p" |
|
1026 |
proof (rule up_eqI) |
|
1027 |
let ?s = "(%i. monom P (coeff P p i) i)" |
|
1028 |
fix k |
|
1029 |
from R have RR: "!!i. (if i = k then coeff P p i else \<zero>) \<in> carrier R" |
|
1030 |
by simp |
|
1031 |
show "coeff P (finsum P ?s {..deg R p}) k = coeff P p k" |
|
1032 |
proof (cases "k <= deg R p") |
|
1033 |
case True |
|
1034 |
hence "coeff P (finsum P ?s {..deg R p}) k = |
|
1035 |
coeff P (finsum P ?s ({..k} Un {)k..deg R p})) k" |
|
1036 |
by (simp only: ivl_disj_un_one) |
|
1037 |
also from True |
|
1038 |
have "... = coeff P (finsum P ?s {..k}) k" |
|
1039 |
by (simp cong: finsum_cong add: finsum_Un_disjoint |
|
1040 |
ivl_disj_int_one order_less_imp_not_eq2 coeff_finsum R RR Pi_def) |
|
1041 |
also |
|
1042 |
have "... = coeff P (finsum P ?s ({..k(} Un {k})) k" |
|
1043 |
by (simp only: ivl_disj_un_singleton) |
|
1044 |
also have "... = coeff P p k" |
|
1045 |
by (simp cong: finsum_cong add: setsum_Un_disjoint |
|
1046 |
ivl_disj_int_singleton coeff_finsum deg_aboveD R RR Pi_def) |
|
1047 |
finally show ?thesis . |
|
1048 |
next |
|
1049 |
case False |
|
1050 |
hence "coeff P (finsum P ?s {..deg R p}) k = |
|
1051 |
coeff P (finsum P ?s ({..deg R p(} Un {deg R p})) k" |
|
1052 |
by (simp only: ivl_disj_un_singleton) |
|
1053 |
also from False have "... = coeff P p k" |
|
1054 |
by (simp cong: finsum_cong add: setsum_Un_disjoint ivl_disj_int_singleton |
|
1055 |
coeff_finsum deg_aboveD R Pi_def) |
|
1056 |
finally show ?thesis . |
|
1057 |
qed |
|
1058 |
qed (simp_all add: R Pi_def) |
|
1059 |
||
1060 |
lemma (in UP_cring) up_repr_le: |
|
1061 |
"[| deg R p <= n; p \<in> carrier P |] ==> |
|
1062 |
finsum P (%i. monom P (coeff P p i) i) {..n} = p" |
|
1063 |
proof - |
|
1064 |
let ?s = "(%i. monom P (coeff P p i) i)" |
|
1065 |
assume R: "p \<in> carrier P" and "deg R p <= n" |
|
1066 |
then have "finsum P ?s {..n} = finsum P ?s ({..deg R p} Un {)deg R p..n})" |
|
1067 |
by (simp only: ivl_disj_un_one) |
|
1068 |
also have "... = finsum P ?s {..deg R p}" |
|
1069 |
by (simp cong: UP_finsum_cong add: UP_finsum_Un_disjoint ivl_disj_int_one |
|
1070 |
deg_aboveD R Pi_def) |
|
1071 |
also have "... = p" by (rule up_repr) |
|
1072 |
finally show ?thesis . |
|
1073 |
qed |
|
1074 |
||
1075 |
ML_setup {* |
|
1076 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
1077 |
simpset_of thy setsubgoaler asm_simp_tac; thy)) *} |
|
1078 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13940
diff
changeset
|
1079 |
subsection {* Polynomials over an integral domain form an integral domain *} |
13940 | 1080 |
|
1081 |
lemma domainI: |
|
1082 |
assumes cring: "cring R" |
|
1083 |
and one_not_zero: "one R ~= zero R" |
|
1084 |
and integral: "!!a b. [| mult R a b = zero R; a \<in> carrier R; |
|
1085 |
b \<in> carrier R |] ==> a = zero R | b = zero R" |
|
1086 |
shows "domain R" |
|
1087 |
by (auto intro!: domain.intro domain_axioms.intro cring.axioms prems |
|
1088 |
del: disjCI) |
|
1089 |
||
1090 |
lemma (in UP_domain) UP_one_not_zero: |
|
1091 |
"\<one>\<^sub>2 ~= \<zero>\<^sub>2" |
|
1092 |
proof |
|
1093 |
assume "\<one>\<^sub>2 = \<zero>\<^sub>2" |
|
1094 |
hence "coeff P \<one>\<^sub>2 0 = (coeff P \<zero>\<^sub>2 0)" by simp |
|
1095 |
hence "\<one> = \<zero>" by simp |
|
1096 |
with one_not_zero show "False" by contradiction |
|
1097 |
qed |
|
1098 |
||
1099 |
lemma (in UP_domain) UP_integral: |
|
1100 |
"[| p \<otimes>\<^sub>2 q = \<zero>\<^sub>2; p \<in> carrier P; q \<in> carrier P |] ==> p = \<zero>\<^sub>2 | q = \<zero>\<^sub>2" |
|
1101 |
proof - |
|
1102 |
fix p q |
|
1103 |
assume pq: "p \<otimes>\<^sub>2 q = \<zero>\<^sub>2" and R: "p \<in> carrier P" "q \<in> carrier P" |
|
1104 |
show "p = \<zero>\<^sub>2 | q = \<zero>\<^sub>2" |
|
1105 |
proof (rule classical) |
|
1106 |
assume c: "~ (p = \<zero>\<^sub>2 | q = \<zero>\<^sub>2)" |
|
1107 |
with R have "deg R p + deg R q = deg R (p \<otimes>\<^sub>2 q)" by simp |
|
1108 |
also from pq have "... = 0" by simp |
|
1109 |
finally have "deg R p + deg R q = 0" . |
|
1110 |
then have f1: "deg R p = 0 & deg R q = 0" by simp |
|
1111 |
from f1 R have "p = finsum P (%i. (monom P (coeff P p i) i)) {..0}" |
|
1112 |
by (simp only: up_repr_le) |
|
1113 |
also from R have "... = monom P (coeff P p 0) 0" by simp |
|
1114 |
finally have p: "p = monom P (coeff P p 0) 0" . |
|
1115 |
from f1 R have "q = finsum P (%i. (monom P (coeff P q i) i)) {..0}" |
|
1116 |
by (simp only: up_repr_le) |
|
1117 |
also from R have "... = monom P (coeff P q 0) 0" by simp |
|
1118 |
finally have q: "q = monom P (coeff P q 0) 0" . |
|
1119 |
from R have "coeff P p 0 \<otimes> coeff P q 0 = coeff P (p \<otimes>\<^sub>2 q) 0" by simp |
|
1120 |
also from pq have "... = \<zero>" by simp |
|
1121 |
finally have "coeff P p 0 \<otimes> coeff P q 0 = \<zero>" . |
|
1122 |
with R have "coeff P p 0 = \<zero> | coeff P q 0 = \<zero>" |
|
1123 |
by (simp add: R.integral_iff) |
|
1124 |
with p q show "p = \<zero>\<^sub>2 | q = \<zero>\<^sub>2" by fastsimp |
|
1125 |
qed |
|
1126 |
qed |
|
1127 |
||
1128 |
theorem (in UP_domain) UP_domain: |
|
1129 |
"domain P" |
|
1130 |
by (auto intro!: domainI UP_cring UP_one_not_zero UP_integral del: disjCI) |
|
1131 |
||
1132 |
text {* |
|
1133 |
Instantiation of results from @{term domain}. |
|
1134 |
*} |
|
1135 |
||
1136 |
lemmas (in UP_domain) UP_zero_not_one [simp] = |
|
1137 |
domain.zero_not_one [OF UP_domain] |
|
1138 |
||
1139 |
lemmas (in UP_domain) UP_integral_iff = |
|
1140 |
domain.integral_iff [OF UP_domain] |
|
1141 |
||
1142 |
lemmas (in UP_domain) UP_m_lcancel = |
|
1143 |
domain.m_lcancel [OF UP_domain] |
|
1144 |
||
1145 |
lemmas (in UP_domain) UP_m_rcancel = |
|
1146 |
domain.m_rcancel [OF UP_domain] |
|
1147 |
||
1148 |
lemma (in UP_domain) smult_integral: |
|
1149 |
"[| a \<odot>\<^sub>2 p = \<zero>\<^sub>2; a \<in> carrier R; p \<in> carrier P |] ==> a = \<zero> | p = \<zero>\<^sub>2" |
|
1150 |
by (simp add: monom_mult_is_smult [THEN sym] UP_integral_iff |
|
1151 |
inj_on_iff [OF monom_inj, of _ "\<zero>", simplified]) |
|
1152 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13940
diff
changeset
|
1153 |
subsection {* Evaluation Homomorphism and Universal Property*} |
13940 | 1154 |
|
1155 |
ML_setup {* |
|
1156 |
Context.>> (fn thy => (simpset_ref_of thy := |
|
1157 |
simpset_of thy setsubgoaler asm_full_simp_tac; thy)) *} |
|
1158 |
||
13949
0ce528cd6f19
HOL-Algebra complete for release Isabelle2003 (modulo section headers).
ballarin
parents:
13940
diff
changeset
|
1159 |
(* alternative congruence rule (possibly more efficient) |
13940 | 1160 |
lemma (in abelian_monoid) finsum_cong2: |
1161 |
"[| !!i. i \<in> A ==> f i \<in> carrier G = True; A = B; |
|
1162 |
!!i. i \<in> B ==> f i = g i |] ==> finsum G f A = finsum G g B" |
|
1163 |
sorry |
|
1164 |
*) |
|
1165 |
||
1166 |
theorem (in cring) diagonal_sum: |
|
1167 |
"[| f \<in> {..n + m::nat} -> carrier R; g \<in> {..n + m} -> carrier R |] ==> |
|
1168 |
finsum R (%k. finsum R (%i. f i \<otimes> g (k - i)) {..k}) {..n + m} = |
|
1169 |
finsum R (%k. finsum R (%i. f k \<otimes> g i) {..n + m - k}) {..n + m}" |
|
1170 |
proof - |
|
1171 |
assume Rf: "f \<in> {..n + m} -> carrier R" and Rg: "g \<in> {..n + m} -> carrier R" |
|
1172 |
{ |
|
1173 |
fix j |
|
1174 |
have "j <= n + m ==> |
|
1175 |
finsum R (%k. finsum R (%i. f i \<otimes> g (k - i)) {..k}) {..j} = |
|
1176 |
finsum R (%k. finsum R (%i. f k \<otimes> g i) {..j - k}) {..j}" |
|
1177 |
proof (induct j) |
|
1178 |
case 0 from Rf Rg show ?case by (simp add: Pi_def) |
|
1179 |
next |
|
1180 |
case (Suc j) |
|
1181 |
(* The following could be simplified if there was a reasoner for |
|
1182 |
total orders integrated with simip. *) |
|
1183 |
have R6: "!!i k. [| k <= j; i <= Suc j - k |] ==> g i \<in> carrier R" |
|
1184 |
using Suc by (auto intro!: funcset_mem [OF Rg]) arith |
|
1185 |
have R8: "!!i k. [| k <= Suc j; i <= k |] ==> g (k - i) \<in> carrier R" |
|
1186 |
using Suc by (auto intro!: funcset_mem [OF Rg]) arith |
|
1187 |
have R9: "!!i k. [| k <= Suc j |] ==> f k \<in> carrier R" |
|
1188 |
using Suc by (auto intro!: funcset_mem [OF Rf]) |
|
1189 |
have R10: "!!i k. [| k <= Suc j; i <= Suc j - k |] ==> g i \<in> carrier R" |
|
1190 |
using Suc by (auto intro!: funcset_mem [OF Rg]) arith |
|
1191 |
have R11: "g 0 \<in> carrier R" |
|
1192 |
using Suc by (auto intro!: funcset_mem [OF Rg]) |
|
1193 |
from Suc show ?case |
|
1194 |
by (simp cong: finsum_cong add: Suc_diff_le a_ac |
|
1195 |
Pi_def R6 R8 R9 R10 R11) |
|
1196 |
qed |
|
1197 |
} |
|
1198 |
then show ?thesis by fast |
|
1199 |
qed |
|
1200 |
||
1201 |
lemma (in abelian_monoid) boundD_carrier: |
|
1202 |
"[| bound \<zero> n f; n < m |] ==> f m \<in> carrier G" |
|
1203 |
by auto |
|
1204 |
||
1205 |
theorem (in cring) cauchy_product: |
|
1206 |
assumes bf: "bound \<zero> n f" and bg: "bound \<zero> m g" |
|
1207 |
and Rf: "f \<in> {..n} -> carrier R" and Rg: "g \<in> {..m} -> carrier R" |
|
1208 |
shows "finsum R (%k. finsum R (%i. f i \<otimes> g (k-i)) {..k}) {..n + m} = |
|
1209 |
finsum R f {..n} \<otimes> finsum R g {..m}" |
|
1210 |
(* State revese direction? *) |
|
1211 |
proof - |
|
1212 |
have f: "!!x. f x \<in> carrier R" |
|
1213 |
proof - |
|
1214 |
fix x |
|
1215 |
show "f x \<in> carrier R" |
|
1216 |
using Rf bf boundD_carrier by (cases "x <= n") (auto simp: Pi_def) |
|
1217 |
qed |
|
1218 |
have g: "!!x. g x \<in> carrier R" |
|
1219 |
proof - |
|
1220 |
fix x |
|
1221 |
show "g x \<in> carrier R" |
|
1222 |
using Rg bg boundD_carrier by (cases "x <= m") (auto simp: Pi_def) |
|
1223 |
qed |
|
1224 |
from f g have "finsum R (%k. finsum R (%i. f i \<otimes> g (k-i)) {..k}) {..n + m} = |
|
1225 |
finsum R (%k. finsum R (%i. f k \<otimes> g i) {..n + m - k}) {..n + m}" |
|
1226 |
by (simp add: diagonal_sum Pi_def) |
|
1227 |
also have "... = finsum R |
|
1228 |
(%k. finsum R (%i. f k \<otimes> g i) {..n + m - k}) ({..n} Un {)n..n + m})" |
|
1229 |
by (simp only: ivl_disj_un_one) |
|
1230 |
also from f g have "... = finsum R |
|
1231 |
(%k. finsum R (%i. f k \<otimes> g i) {..n + m - k}) {..n}" |
|
1232 |
by (simp cong: finsum_cong |
|
1233 |
add: boundD [OF bf] finsum_Un_disjoint ivl_disj_int_one Pi_def) |
|
1234 |
also from f g have "... = finsum R |
|
1235 |
(%k. finsum R (%i. f k \<otimes> g i) ({..m} Un {)m..n + m - k})) {..n}" |
|
1236 |
by (simp cong: finsum_cong add: ivl_disj_un_one le_add_diff Pi_def) |
|
1237 |
also from f g have "... = finsum R |
|
1238 |
(%k. finsum R (%i. f k \<otimes> g i) {..m}) {..n}" |
|
1239 |
by (simp cong: finsum_cong |
|
1240 |
add: boundD [OF bg] finsum_Un_disjoint ivl_disj_int_one Pi_def) |
|
1241 |
also from f g have "... = finsum R f {..n} \<otimes> finsum R g {..m}" |
|
1242 |
by (simp add: finsum_ldistr diagonal_sum Pi_def, |
|
1243 |
simp cong: finsum_cong add: finsum_rdistr Pi_def) |
|
1244 |
finally show ?thesis . |
|
1245 |
qed |
|
1246 |
||
1247 |
lemma (in UP_cring) const_ring_hom: |
|
1248 |
"(%a. monom P a 0) \<in> ring_hom R P" |
|
1249 |
by (auto intro!: ring_hom_memI intro: up_eqI simp: monom_mult_is_smult) |
|
1250 |
||
1251 |
constdefs |
|
1252 |
eval :: "[('a, 'm) ring_scheme, ('b, 'n) ring_scheme, |
|
1253 |
'a => 'b, 'b, nat => 'a] => 'b" |
|
1254 |
"eval R S phi s == (\<lambda>p \<in> carrier (UP R). |
|
1255 |
finsum S (%i. mult S (phi (coeff (UP R) p i)) (pow S s i)) {..deg R p})" |
|
1256 |
(* |
|
1257 |
"eval R S phi s p == if p \<in> carrier (UP R) |
|
1258 |
then finsum S (%i. mult S (phi (coeff (UP R) p i)) (pow S s i)) {..deg R p} |
|
1259 |
else arbitrary" |
|
1260 |
*) |
|
1261 |
||
1262 |
locale ring_hom_UP_cring = ring_hom_cring R S + UP_cring R |
|
1263 |
||
1264 |
lemma (in ring_hom_UP_cring) eval_on_carrier: |
|
1265 |
"p \<in> carrier P ==> |
|
1266 |
eval R S phi s p = |
|
1267 |
finsum S (%i. mult S (phi (coeff P p i)) (pow S s i)) {..deg R p}" |
|
1268 |
by (unfold eval_def, fold P_def) simp |
|
1269 |
||
1270 |
lemma (in ring_hom_UP_cring) eval_extensional: |
|
1271 |
"eval R S phi s \<in> extensional (carrier P)" |
|
1272 |
by (unfold eval_def, fold P_def) simp |
|
1273 |
||
1274 |
theorem (in ring_hom_UP_cring) eval_ring_hom: |
|
1275 |
"s \<in> carrier S ==> eval R S h s \<in> ring_hom P S" |
|
1276 |
proof (rule ring_hom_memI) |
|
1277 |
fix p |
|
1278 |
assume RS: "p \<in> carrier P" "s \<in> carrier S" |
|
1279 |
then show "eval R S h s p \<in> carrier S" |
|
1280 |
by (simp only: eval_on_carrier) (simp add: Pi_def) |
|
1281 |
next |
|
1282 |
fix p q |
|
1283 |
assume RS: "p \<in> carrier P" "q \<in> carrier P" "s \<in> carrier S" |
|
1284 |
then show "eval R S h s (p \<otimes>\<^sub>3 q) = eval R S h s p \<otimes>\<^sub>2 eval R S h s q" |
|
1285 |
proof (simp only: eval_on_carrier UP_mult_closed) |
|
1286 |
from RS have |
|
1287 |
"finsum S (%i. h (coeff P (p \<otimes>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R (p \<otimes>\<^sub>3 q)} = |
|
1288 |
finsum S (%i. h (coeff P (p \<otimes>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1289 |
({..deg R (p \<otimes>\<^sub>3 q)} Un {)deg R (p \<otimes>\<^sub>3 q)..deg R p + deg R q})" |
|
1290 |
by (simp cong: finsum_cong |
|
1291 |
add: deg_aboveD finsum_Un_disjoint ivl_disj_int_one Pi_def |
|
1292 |
del: coeff_mult) |
|
1293 |
also from RS have "... = |
|
1294 |
finsum S (%i. h (coeff P (p \<otimes>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R p + deg R q}" |
|
1295 |
by (simp only: ivl_disj_un_one deg_mult_cring) |
|
1296 |
also from RS have "... = |
|
1297 |
finsum S (%i. |
|
1298 |
finsum S (%k. |
|
1299 |
(h (coeff P p k) \<otimes>\<^sub>2 h (coeff P q (i-k))) \<otimes>\<^sub>2 (s (^)\<^sub>2 k \<otimes>\<^sub>2 s (^)\<^sub>2 (i-k))) |
|
1300 |
{..i}) {..deg R p + deg R q}" |
|
1301 |
by (simp cong: finsum_cong add: nat_pow_mult Pi_def |
|
1302 |
S.m_ac S.finsum_rdistr) |
|
1303 |
also from RS have "... = |
|
1304 |
finsum S (%i. h (coeff P p i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R p} \<otimes>\<^sub>2 |
|
1305 |
finsum S (%i. h (coeff P q i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R q}" |
|
1306 |
by (simp add: S.cauchy_product [THEN sym] boundI deg_aboveD S.m_ac |
|
1307 |
Pi_def) |
|
1308 |
finally show |
|
1309 |
"finsum S (%i. h (coeff P (p \<otimes>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R (p \<otimes>\<^sub>3 q)} = |
|
1310 |
finsum S (%i. h (coeff P p i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R p} \<otimes>\<^sub>2 |
|
1311 |
finsum S (%i. h (coeff P q i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R q}" . |
|
1312 |
qed |
|
1313 |
next |
|
1314 |
fix p q |
|
1315 |
assume RS: "p \<in> carrier P" "q \<in> carrier P" "s \<in> carrier S" |
|
1316 |
then show "eval R S h s (p \<oplus>\<^sub>3 q) = eval R S h s p \<oplus>\<^sub>2 eval R S h s q" |
|
1317 |
proof (simp only: eval_on_carrier UP_a_closed) |
|
1318 |
from RS have |
|
1319 |
"finsum S (%i. h (coeff P (p \<oplus>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R (p \<oplus>\<^sub>3 q)} = |
|
1320 |
finsum S (%i. h (coeff P (p \<oplus>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1321 |
({..deg R (p \<oplus>\<^sub>3 q)} Un {)deg R (p \<oplus>\<^sub>3 q)..max (deg R p) (deg R q)})" |
|
1322 |
by (simp cong: finsum_cong |
|
1323 |
add: deg_aboveD finsum_Un_disjoint ivl_disj_int_one Pi_def |
|
1324 |
del: coeff_add) |
|
1325 |
also from RS have "... = |
|
1326 |
finsum S (%i. h (coeff P (p \<oplus>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1327 |
{..max (deg R p) (deg R q)}" |
|
1328 |
by (simp add: ivl_disj_un_one) |
|
1329 |
also from RS have "... = |
|
1330 |
finsum S (%i. h (coeff P p i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..max (deg R p) (deg R q)} \<oplus>\<^sub>2 |
|
1331 |
finsum S (%i. h (coeff P q i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..max (deg R p) (deg R q)}" |
|
1332 |
by (simp cong: finsum_cong |
|
1333 |
add: l_distr deg_aboveD finsum_Un_disjoint ivl_disj_int_one Pi_def) |
|
1334 |
also have "... = |
|
1335 |
finsum S (%i. h (coeff P p i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1336 |
({..deg R p} Un {)deg R p..max (deg R p) (deg R q)}) \<oplus>\<^sub>2 |
|
1337 |
finsum S (%i. h (coeff P q i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1338 |
({..deg R q} Un {)deg R q..max (deg R p) (deg R q)})" |
|
1339 |
by (simp only: ivl_disj_un_one le_maxI1 le_maxI2) |
|
1340 |
also from RS have "... = |
|
1341 |
finsum S (%i. h (coeff P p i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R p} \<oplus>\<^sub>2 |
|
1342 |
finsum S (%i. h (coeff P q i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R q}" |
|
1343 |
by (simp cong: finsum_cong |
|
1344 |
add: deg_aboveD finsum_Un_disjoint ivl_disj_int_one Pi_def) |
|
1345 |
finally show |
|
1346 |
"finsum S (%i. h (coeff P (p \<oplus>\<^sub>3 q) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R (p \<oplus>\<^sub>3 q)} = |
|
1347 |
finsum S (%i. h (coeff P p i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R p} \<oplus>\<^sub>2 |
|
1348 |
finsum S (%i. h (coeff P q i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..deg R q}" |
|
1349 |
. |
|
1350 |
qed |
|
1351 |
next |
|
1352 |
assume S: "s \<in> carrier S" |
|
1353 |
then show "eval R S h s \<one>\<^sub>3 = \<one>\<^sub>2" |
|
1354 |
by (simp only: eval_on_carrier UP_one_closed) simp |
|
1355 |
qed |
|
1356 |
||
1357 |
text {* Instantiation of ring homomorphism lemmas. *} |
|
1358 |
||
1359 |
lemma (in ring_hom_UP_cring) ring_hom_cring_P_S: |
|
1360 |
"s \<in> carrier S ==> ring_hom_cring P S (eval R S h s)" |
|
1361 |
by (fast intro!: ring_hom_cring.intro UP_cring cring.axioms prems |
|
1362 |
intro: ring_hom_cring_axioms.intro eval_ring_hom) |
|
1363 |
||
1364 |
lemma (in ring_hom_UP_cring) UP_hom_closed [intro, simp]: |
|
1365 |
"[| s \<in> carrier S; p \<in> carrier P |] ==> eval R S h s p \<in> carrier S" |
|
1366 |
by (rule ring_hom_cring.hom_closed [OF ring_hom_cring_P_S]) |
|
1367 |
||
1368 |
lemma (in ring_hom_UP_cring) UP_hom_mult [simp]: |
|
1369 |
"[| s \<in> carrier S; p \<in> carrier P; q \<in> carrier P |] ==> |
|
1370 |
eval R S h s (p \<otimes>\<^sub>3 q) = eval R S h s p \<otimes>\<^sub>2 eval R S h s q" |
|
1371 |
by (rule ring_hom_cring.hom_mult [OF ring_hom_cring_P_S]) |
|
1372 |
||
1373 |
lemma (in ring_hom_UP_cring) UP_hom_add [simp]: |
|
1374 |
"[| s \<in> carrier S; p \<in> carrier P; q \<in> carrier P |] ==> |
|
1375 |
eval R S h s (p \<oplus>\<^sub>3 q) = eval R S h s p \<oplus>\<^sub>2 eval R S h s q" |
|
1376 |
by (rule ring_hom_cring.hom_add [OF ring_hom_cring_P_S]) |
|
1377 |
||
1378 |
lemma (in ring_hom_UP_cring) UP_hom_one [simp]: |
|
1379 |
"s \<in> carrier S ==> eval R S h s \<one>\<^sub>3 = \<one>\<^sub>2" |
|
1380 |
by (rule ring_hom_cring.hom_one [OF ring_hom_cring_P_S]) |
|
1381 |
||
1382 |
lemma (in ring_hom_UP_cring) UP_hom_zero [simp]: |
|
1383 |
"s \<in> carrier S ==> eval R S h s \<zero>\<^sub>3 = \<zero>\<^sub>2" |
|
1384 |
by (rule ring_hom_cring.hom_zero [OF ring_hom_cring_P_S]) |
|
1385 |
||
1386 |
lemma (in ring_hom_UP_cring) UP_hom_a_inv [simp]: |
|
1387 |
"[| s \<in> carrier S; p \<in> carrier P |] ==> |
|
1388 |
(eval R S h s) (\<ominus>\<^sub>3 p) = \<ominus>\<^sub>2 (eval R S h s) p" |
|
1389 |
by (rule ring_hom_cring.hom_a_inv [OF ring_hom_cring_P_S]) |
|
1390 |
||
1391 |
lemma (in ring_hom_UP_cring) UP_hom_finsum [simp]: |
|
1392 |
"[| s \<in> carrier S; finite A; f \<in> A -> carrier P |] ==> |
|
1393 |
(eval R S h s) (finsum P f A) = finsum S (eval R S h s o f) A" |
|
1394 |
by (rule ring_hom_cring.hom_finsum [OF ring_hom_cring_P_S]) |
|
1395 |
||
1396 |
lemma (in ring_hom_UP_cring) UP_hom_finprod [simp]: |
|
1397 |
"[| s \<in> carrier S; finite A; f \<in> A -> carrier P |] ==> |
|
1398 |
(eval R S h s) (finprod P f A) = finprod S (eval R S h s o f) A" |
|
1399 |
by (rule ring_hom_cring.hom_finprod [OF ring_hom_cring_P_S]) |
|
1400 |
||
1401 |
text {* Further properties of the evaluation homomorphism. *} |
|
1402 |
||
1403 |
(* The following lemma could be proved in UP\_cring with the additional |
|
1404 |
assumption that h is closed. *) |
|
1405 |
||
1406 |
lemma (in ring_hom_UP_cring) eval_const: |
|
1407 |
"[| s \<in> carrier S; r \<in> carrier R |] ==> eval R S h s (monom P r 0) = h r" |
|
1408 |
by (simp only: eval_on_carrier monom_closed) simp |
|
1409 |
||
1410 |
text {* The following proof is complicated by the fact that in arbitrary |
|
1411 |
rings one might have @{term "one R = zero R"}. *} |
|
1412 |
||
1413 |
(* TODO: simplify by cases "one R = zero R" *) |
|
1414 |
||
1415 |
lemma (in ring_hom_UP_cring) eval_monom1: |
|
1416 |
"s \<in> carrier S ==> eval R S h s (monom P \<one> 1) = s" |
|
1417 |
proof (simp only: eval_on_carrier monom_closed R.one_closed) |
|
1418 |
assume S: "s \<in> carrier S" |
|
1419 |
then have "finsum S (\<lambda>i. h (coeff P (monom P \<one> 1) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1420 |
{..deg R (monom P \<one> 1)} = |
|
1421 |
finsum S (\<lambda>i. h (coeff P (monom P \<one> 1) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1422 |
({..deg R (monom P \<one> 1)} Un {)deg R (monom P \<one> 1)..1})" |
|
1423 |
by (simp cong: finsum_cong del: coeff_monom |
|
1424 |
add: deg_aboveD finsum_Un_disjoint ivl_disj_int_one Pi_def) |
|
1425 |
also have "... = |
|
1426 |
finsum S (\<lambda>i. h (coeff P (monom P \<one> 1) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) {..1}" |
|
1427 |
by (simp only: ivl_disj_un_one deg_monom_le R.one_closed) |
|
1428 |
also have "... = s" |
|
1429 |
proof (cases "s = \<zero>\<^sub>2") |
|
1430 |
case True then show ?thesis by (simp add: Pi_def) |
|
1431 |
next |
|
1432 |
case False with S show ?thesis by (simp add: Pi_def) |
|
1433 |
qed |
|
1434 |
finally show "finsum S (\<lambda>i. h (coeff P (monom P \<one> 1) i) \<otimes>\<^sub>2 s (^)\<^sub>2 i) |
|
1435 |
{..deg R (monom P \<one> 1)} = s" . |
|
1436 |
qed |
|
1437 |
||
1438 |
lemma (in UP_cring) monom_pow: |
|
1439 |
assumes R: "a \<in> carrier R" |
|
1440 |
shows "(monom P a n) (^)\<^sub>2 m = monom P (a (^) m) (n * m)" |
|
1441 |
proof (induct m) |
|
1442 |
case 0 from R show ?case by simp |
|
1443 |
next |
|
1444 |
case Suc with R show ?case |
|
1445 |
by (simp del: monom_mult add: monom_mult [THEN sym] add_commute) |
|
1446 |
qed |
|
1447 |
||
1448 |
lemma (in ring_hom_cring) hom_pow [simp]: |
|
1449 |
"x \<in> carrier R ==> h (x (^) n) = h x (^)\<^sub>2 (n::nat)" |
|
1450 |
by (induct n) simp_all |
|
1451 |
||
1452 |
lemma (in ring_hom_UP_cring) UP_hom_pow [simp]: |
|
1453 |
"[| s \<in> carrier S; p \<in> carrier P |] ==> |
|
1454 |
(eval R S h s) (p (^)\<^sub>3 n) = eval R S h s p (^)\<^sub>2 (n::nat)" |
|
1455 |
by (rule ring_hom_cring.hom_pow [OF ring_hom_cring_P_S]) |
|
1456 |
||
1457 |
lemma (in ring_hom_UP_cring) eval_monom: |
|
1458 |
"[| s \<in> carrier S; r \<in> carrier R |] ==> |
|
1459 |
eval R S h s (monom P r n) = h r \<otimes>\<^sub>2 s (^)\<^sub>2 n" |
|
1460 |
proof - |
|
1461 |
assume RS: "s \<in> carrier S" "r \<in> carrier R" |
|
1462 |
then have "eval R S h s (monom P r n) = |
|
1463 |
eval R S h s (monom P r 0 \<otimes>\<^sub>3 (monom P \<one> 1) (^)\<^sub>3 n)" |
|
1464 |
by (simp del: monom_mult UP_hom_mult UP_hom_pow |
|
1465 |
add: monom_mult [THEN sym] monom_pow) |
|
1466 |
also from RS eval_monom1 have "... = h r \<otimes>\<^sub>2 s (^)\<^sub>2 n" |
|
1467 |
by (simp add: eval_const) |
|
1468 |
finally show ?thesis . |
|
1469 |
qed |
|
1470 |
||
1471 |
lemma (in ring_hom_UP_cring) eval_smult: |
|
1472 |
"[| s \<in> carrier S; r \<in> carrier R; p \<in> carrier P |] ==> |
|
1473 |
eval R S h s (r \<odot>\<^sub>3 p) = h r \<otimes>\<^sub>2 eval R S h s p" |
|
1474 |
by (simp add: monom_mult_is_smult [THEN sym] eval_const) |
|
1475 |
||
1476 |
lemma ring_hom_cringI: |
|
1477 |
assumes "cring R" |
|
1478 |
and "cring S" |
|
1479 |
and "h \<in> ring_hom R S" |
|
1480 |
shows "ring_hom_cring R S h" |
|
1481 |
by (fast intro: ring_hom_cring.intro ring_hom_cring_axioms.intro |
|
1482 |
cring.axioms prems) |
|
1483 |
||
1484 |
lemma (in ring_hom_UP_cring) UP_hom_unique: |
|
1485 |
assumes Phi: "Phi \<in> ring_hom P S" "Phi (monom P \<one> (Suc 0)) = s" |
|
1486 |
"!!r. r \<in> carrier R ==> Phi (monom P r 0) = h r" |
|
1487 |
and Psi: "Psi \<in> ring_hom P S" "Psi (monom P \<one> (Suc 0)) = s" |
|
1488 |
"!!r. r \<in> carrier R ==> Psi (monom P r 0) = h r" |
|
1489 |
and RS: "s \<in> carrier S" "p \<in> carrier P" |
|
1490 |
shows "Phi p = Psi p" |
|
1491 |
proof - |
|
1492 |
have Phi_hom: "ring_hom_cring P S Phi" |
|
1493 |
by (auto intro: ring_hom_cringI UP_cring S.cring Phi) |
|
1494 |
have Psi_hom: "ring_hom_cring P S Psi" |
|
1495 |
by (auto intro: ring_hom_cringI UP_cring S.cring Psi) |
|
1496 |
thm monom_mult |
|
1497 |
have "Phi p = Phi (finsum P |
|
1498 |
(%i. monom P (coeff P p i) 0 \<otimes>\<^sub>3 (monom P \<one> 1) (^)\<^sub>3 i) {..deg R p})" |
|
1499 |
by (simp add: up_repr RS monom_mult [THEN sym] monom_pow del: monom_mult) |
|
1500 |
also have "... = Psi (finsum P |
|
1501 |
(%i. monom P (coeff P p i) 0 \<otimes>\<^sub>3 (monom P \<one> 1) (^)\<^sub>3 i) {..deg R p})" |
|
1502 |
by (simp add: ring_hom_cring.hom_finsum [OF Phi_hom] |
|
1503 |
ring_hom_cring.hom_mult [OF Phi_hom] |
|
1504 |
ring_hom_cring.hom_pow [OF Phi_hom] Phi |
|
1505 |
ring_hom_cring.hom_finsum [OF Psi_hom] |
|
1506 |
ring_hom_cring.hom_mult [OF Psi_hom] |
|
1507 |
ring_hom_cring.hom_pow [OF Psi_hom] Psi RS Pi_def comp_def) |
|
1508 |
also have "... = Psi p" |
|
1509 |
by (simp add: up_repr RS monom_mult [THEN sym] monom_pow del: monom_mult) |
|
1510 |
finally show ?thesis . |
|
1511 |
qed |
|
1512 |
||
1513 |
||
1514 |
theorem (in ring_hom_UP_cring) UP_universal_property: |
|
1515 |
"s \<in> carrier S ==> |
|
1516 |
EX! Phi. Phi \<in> ring_hom P S \<inter> extensional (carrier P) & |
|
1517 |
Phi (monom P \<one> 1) = s & |
|
1518 |
(ALL r : carrier R. Phi (monom P r 0) = h r)" |
|
1519 |
using eval_monom1 |
|
1520 |
apply (auto intro: eval_ring_hom eval_const eval_extensional) |
|
1521 |
apply (rule extensionalityI) |
|
1522 |
apply (auto intro: UP_hom_unique) |
|
1523 |
done |
|
1524 |
||
1525 |
subsection {* Sample application of evaluation homomorphism *} |
|
1526 |
||
1527 |
lemma ring_hom_UP_cringI: |
|
1528 |
assumes "cring R" |
|
1529 |
and "cring S" |
|
1530 |
and "h \<in> ring_hom R S" |
|
1531 |
shows "ring_hom_UP_cring R S h" |
|
1532 |
by (fast intro: ring_hom_UP_cring.intro ring_hom_cring_axioms.intro |
|
1533 |
cring.axioms prems) |
|
1534 |
||
13975 | 1535 |
constdefs |
1536 |
INTEG :: "int ring" |
|
1537 |
"INTEG == (| carrier = UNIV, mult = op *, one = 1, zero = 0, add = op + |)" |
|
1538 |
||
1539 |
lemma cring_INTEG: |
|
1540 |
"cring INTEG" |
|
1541 |
by (unfold INTEG_def) (auto intro!: cringI abelian_groupI comm_monoidI |
|
1542 |
zadd_zminus_inverse2 zadd_zmult_distrib) |
|
1543 |
||
13940 | 1544 |
lemma INTEG_id: |
1545 |
"ring_hom_UP_cring INTEG INTEG id" |
|
1546 |
by (fast intro: ring_hom_UP_cringI cring_INTEG id_ring_hom) |
|
1547 |
||
1548 |
text {* |
|
1549 |
An instantiation mechanism would now import all theorems and lemmas |
|
1550 |
valid in the context of homomorphisms between @{term INTEG} and @{term |
|
1551 |
"UP INTEG"}. *} |
|
1552 |
||
1553 |
lemma INTEG_closed [intro, simp]: |
|
1554 |
"z \<in> carrier INTEG" |
|
1555 |
by (unfold INTEG_def) simp |
|
1556 |
||
1557 |
lemma INTEG_mult [simp]: |
|
1558 |
"mult INTEG z w = z * w" |
|
1559 |
by (unfold INTEG_def) simp |
|
1560 |
||
1561 |
lemma INTEG_pow [simp]: |
|
1562 |
"pow INTEG z n = z ^ n" |
|
1563 |
by (induct n) (simp_all add: INTEG_def nat_pow_def) |
|
1564 |
||
1565 |
lemma "eval INTEG INTEG id 10 (monom (UP INTEG) 5 2) = 500" |
|
1566 |
by (simp add: ring_hom_UP_cring.eval_monom [OF INTEG_id]) |
|
1567 |
||
1568 |
-- {* Calculates @{term "x = 500"} *} |
|
1569 |
||
1570 |
||
1571 |
end |