| author | wenzelm | 
| Thu, 11 Apr 2024 12:05:01 +0200 | |
| changeset 80109 | dbcd6dc7f70f | 
| parent 79597 | 76a1c0ea6777 | 
| child 80665 | 294f3734411c | 
| permissions | -rw-r--r-- | 
| 1475 | 1  | 
(* Title: HOL/Fun.thy  | 
2  | 
Author: Tobias Nipkow, Cambridge University Computer Laboratory  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
3  | 
Author: Andrei Popescu, TU Muenchen  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
4  | 
Copyright 1994, 2012  | 
| 18154 | 5  | 
*)  | 
| 923 | 6  | 
|
| 60758 | 7  | 
section \<open>Notions about functions\<close>  | 
| 923 | 8  | 
|
| 15510 | 9  | 
theory Fun  | 
| 63575 | 10  | 
imports Set  | 
| 69913 | 11  | 
keywords "functor" :: thy_goal_defn  | 
| 15131 | 12  | 
begin  | 
| 2912 | 13  | 
|
| 63322 | 14  | 
lemma apply_inverse: "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u"  | 
| 26147 | 15  | 
by auto  | 
| 2912 | 16  | 
|
| 63322 | 17  | 
text \<open>Uniqueness, so NOT the axiom of choice.\<close>  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
18  | 
lemma uniq_choice: "\<forall>x. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x. Q x (f x)"  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
19  | 
by (force intro: theI')  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
20  | 
|
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
21  | 
lemma b_uniq_choice: "\<forall>x\<in>S. \<exists>!y. Q x y \<Longrightarrow> \<exists>f. \<forall>x\<in>S. Q x (f x)"  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
22  | 
by (force intro: theI')  | 
| 12258 | 23  | 
|
| 63400 | 24  | 
|
| 61799 | 25  | 
subsection \<open>The Identity Function \<open>id\<close>\<close>  | 
| 6171 | 26  | 
|
| 63322 | 27  | 
definition id :: "'a \<Rightarrow> 'a"  | 
28  | 
where "id = (\<lambda>x. x)"  | 
|
| 13910 | 29  | 
|
| 26147 | 30  | 
lemma id_apply [simp]: "id x = x"  | 
31  | 
by (simp add: id_def)  | 
|
32  | 
||
| 47579 | 33  | 
lemma image_id [simp]: "image id = id"  | 
34  | 
by (simp add: id_def fun_eq_iff)  | 
|
| 26147 | 35  | 
|
| 47579 | 36  | 
lemma vimage_id [simp]: "vimage id = id"  | 
37  | 
by (simp add: id_def fun_eq_iff)  | 
|
| 26147 | 38  | 
|
| 
62843
 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 
paulson <lp15@cam.ac.uk> 
parents: 
62618 
diff
changeset
 | 
39  | 
lemma eq_id_iff: "(\<forall>x. f x = x) \<longleftrightarrow> f = id"  | 
| 
 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 
paulson <lp15@cam.ac.uk> 
parents: 
62618 
diff
changeset
 | 
40  | 
by auto  | 
| 
 
313d3b697c9a
Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
 
paulson <lp15@cam.ac.uk> 
parents: 
62618 
diff
changeset
 | 
41  | 
|
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
42  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
43  | 
constant id \<rightharpoonup> (Haskell) "id"  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
44  | 
|
| 26147 | 45  | 
|
| 61799 | 46  | 
subsection \<open>The Composition Operator \<open>f \<circ> g\<close>\<close>  | 
| 26147 | 47  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
48  | 
definition comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c"  (infixl "\<circ>" 55)
 | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
49  | 
where "f \<circ> g = (\<lambda>x. f (g x))"  | 
| 11123 | 50  | 
|
| 
61955
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
51  | 
notation (ASCII)  | 
| 
 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 
wenzelm 
parents: 
61799 
diff
changeset
 | 
52  | 
comp (infixl "o" 55)  | 
| 
19656
 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 
wenzelm 
parents: 
19536 
diff
changeset
 | 
53  | 
|
| 63322 | 54  | 
lemma comp_apply [simp]: "(f \<circ> g) x = f (g x)"  | 
| 49739 | 55  | 
by (simp add: comp_def)  | 
| 13585 | 56  | 
|
| 63322 | 57  | 
lemma comp_assoc: "(f \<circ> g) \<circ> h = f \<circ> (g \<circ> h)"  | 
| 49739 | 58  | 
by (simp add: fun_eq_iff)  | 
| 13585 | 59  | 
|
| 63322 | 60  | 
lemma id_comp [simp]: "id \<circ> g = g"  | 
| 49739 | 61  | 
by (simp add: fun_eq_iff)  | 
| 13585 | 62  | 
|
| 63322 | 63  | 
lemma comp_id [simp]: "f \<circ> id = f"  | 
| 49739 | 64  | 
by (simp add: fun_eq_iff)  | 
65  | 
||
| 63575 | 66  | 
lemma comp_eq_dest: "a \<circ> b = c \<circ> d \<Longrightarrow> a (b v) = c (d v)"  | 
| 49739 | 67  | 
by (simp add: fun_eq_iff)  | 
| 34150 | 68  | 
|
| 63575 | 69  | 
lemma comp_eq_elim: "a \<circ> b = c \<circ> d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R"  | 
| 61204 | 70  | 
by (simp add: fun_eq_iff)  | 
| 34150 | 71  | 
|
| 63322 | 72  | 
lemma comp_eq_dest_lhs: "a \<circ> b = c \<Longrightarrow> a (b v) = c v"  | 
| 55066 | 73  | 
by clarsimp  | 
74  | 
||
| 63322 | 75  | 
lemma comp_eq_id_dest: "a \<circ> b = id \<circ> c \<Longrightarrow> a (b v) = c v"  | 
76  | 
by clarsimp  | 
|
77  | 
||
78  | 
lemma image_comp: "f ` (g ` r) = (f \<circ> g) ` r"  | 
|
| 33044 | 79  | 
by auto  | 
80  | 
||
| 63322 | 81  | 
lemma vimage_comp: "f -` (g -` x) = (g \<circ> f) -` x"  | 
| 49739 | 82  | 
by auto  | 
83  | 
||
| 63322 | 84  | 
lemma image_eq_imp_comp: "f ` A = g ` B \<Longrightarrow> (h \<circ> f) ` A = (h \<circ> g) ` B"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
85  | 
by (auto simp: comp_def elim!: equalityE)  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
86  | 
|
| 67399 | 87  | 
lemma image_bind: "f ` (Set.bind A g) = Set.bind A ((`) f \<circ> g)"  | 
| 63322 | 88  | 
by (auto simp add: Set.bind_def)  | 
| 59512 | 89  | 
|
90  | 
lemma bind_image: "Set.bind (f ` A) g = Set.bind A (g \<circ> f)"  | 
|
| 63322 | 91  | 
by (auto simp add: Set.bind_def)  | 
| 59512 | 92  | 
|
| 63322 | 93  | 
lemma (in group_add) minus_comp_minus [simp]: "uminus \<circ> uminus = id"  | 
| 60929 | 94  | 
by (simp add: fun_eq_iff)  | 
95  | 
||
| 
74123
 
7c5842b06114
clarified abstract and concrete boolean algebras
 
haftmann 
parents: 
74101 
diff
changeset
 | 
96  | 
lemma (in boolean_algebra) minus_comp_minus [simp]: "uminus \<circ> uminus = id"  | 
| 60929 | 97  | 
by (simp add: fun_eq_iff)  | 
98  | 
||
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
99  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
100  | 
constant comp \<rightharpoonup> (SML) infixl 5 "o" and (Haskell) infixr 9 "."  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
101  | 
|
| 13585 | 102  | 
|
| 61799 | 103  | 
subsection \<open>The Forward Composition Operator \<open>fcomp\<close>\<close>  | 
| 26357 | 104  | 
|
| 63575 | 105  | 
definition fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c"  (infixl "\<circ>>" 60)
 | 
| 63322 | 106  | 
where "f \<circ>> g = (\<lambda>x. g (f x))"  | 
| 26357 | 107  | 
|
| 37751 | 108  | 
lemma fcomp_apply [simp]: "(f \<circ>> g) x = g (f x)"  | 
| 26357 | 109  | 
by (simp add: fcomp_def)  | 
110  | 
||
| 37751 | 111  | 
lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)"  | 
| 26357 | 112  | 
by (simp add: fcomp_def)  | 
113  | 
||
| 37751 | 114  | 
lemma id_fcomp [simp]: "id \<circ>> g = g"  | 
| 26357 | 115  | 
by (simp add: fcomp_def)  | 
116  | 
||
| 37751 | 117  | 
lemma fcomp_id [simp]: "f \<circ>> id = f"  | 
| 26357 | 118  | 
by (simp add: fcomp_def)  | 
119  | 
||
| 63322 | 120  | 
lemma fcomp_comp: "fcomp f g = comp g f"  | 
| 
61699
 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 
paulson <lp15@cam.ac.uk> 
parents: 
61630 
diff
changeset
 | 
121  | 
by (simp add: ext)  | 
| 
 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 
paulson <lp15@cam.ac.uk> 
parents: 
61630 
diff
changeset
 | 
122  | 
|
| 
52435
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
123  | 
code_printing  | 
| 
 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 
haftmann 
parents: 
51717 
diff
changeset
 | 
124  | 
constant fcomp \<rightharpoonup> (Eval) infixl 1 "#>"  | 
| 
31202
 
52d332f8f909
pretty printing of functional combinators for evaluation code
 
haftmann 
parents: 
31080 
diff
changeset
 | 
125  | 
|
| 37751 | 126  | 
no_notation fcomp (infixl "\<circ>>" 60)  | 
| 
26588
 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 
haftmann 
parents: 
26357 
diff
changeset
 | 
127  | 
|
| 26357 | 128  | 
|
| 60758 | 129  | 
subsection \<open>Mapping functions\<close>  | 
| 40602 | 130  | 
|
| 63322 | 131  | 
definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd"
 | 
132  | 
where "map_fun f g h = g \<circ> h \<circ> f"  | 
|
| 40602 | 133  | 
|
| 63322 | 134  | 
lemma map_fun_apply [simp]: "map_fun f g h x = g (h (f x))"  | 
| 40602 | 135  | 
by (simp add: map_fun_def)  | 
136  | 
||
137  | 
||
| 60758 | 138  | 
subsection \<open>Injectivity and Bijectivity\<close>  | 
| 
39076
 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 
hoelzl 
parents: 
39075 
diff
changeset
 | 
139  | 
|
| 63322 | 140  | 
definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool"  \<comment> \<open>injective\<close>
 | 
141  | 
where "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)"  | 
|
| 26147 | 142  | 
|
| 63322 | 143  | 
definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool"  \<comment> \<open>bijective\<close>
 | 
144  | 
where "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B"  | 
|
| 26147 | 145  | 
|
| 63575 | 146  | 
text \<open>  | 
147  | 
A common special case: functions injective, surjective or bijective over  | 
|
148  | 
the entire domain type.  | 
|
149  | 
\<close>  | 
|
| 26147 | 150  | 
|
| 
65170
 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 
haftmann 
parents: 
64966 
diff
changeset
 | 
151  | 
abbreviation inj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 
haftmann 
parents: 
64966 
diff
changeset
 | 
152  | 
where "inj f \<equiv> inj_on f UNIV"  | 
| 26147 | 153  | 
|
| 
65170
 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 
haftmann 
parents: 
64966 
diff
changeset
 | 
154  | 
abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 63322 | 155  | 
where "surj f \<equiv> range f = UNIV"  | 
| 13585 | 156  | 
|
| 67226 | 157  | 
translations \<comment> \<open>The negated case:\<close>  | 
| 
65170
 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 
haftmann 
parents: 
64966 
diff
changeset
 | 
158  | 
"\<not> CONST surj f" \<leftharpoondown> "CONST range f \<noteq> CONST UNIV"  | 
| 
 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 
haftmann 
parents: 
64966 
diff
changeset
 | 
159  | 
|
| 
 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 
haftmann 
parents: 
64966 
diff
changeset
 | 
160  | 
abbreviation bij :: "('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
 
53675f36820d
restored surj as output abbreviation, amending 6af79184bef3
 
haftmann 
parents: 
64966 
diff
changeset
 | 
161  | 
where "bij f \<equiv> bij_betw f UNIV UNIV"  | 
| 26147 | 162  | 
|
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
163  | 
lemma inj_def: "inj f \<longleftrightarrow> (\<forall>x y. f x = f y \<longrightarrow> x = y)"  | 
| 
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
164  | 
unfolding inj_on_def by blast  | 
| 
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
165  | 
|
| 63322 | 166  | 
lemma injI: "(\<And>x y. f x = f y \<Longrightarrow> x = y) \<Longrightarrow> inj f"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
167  | 
unfolding inj_def by blast  | 
| 13585 | 168  | 
|
| 63322 | 169  | 
theorem range_ex1_eq: "inj f \<Longrightarrow> b \<in> range f \<longleftrightarrow> (\<exists>!x. b = f x)"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
170  | 
unfolding inj_def by blast  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
171  | 
|
| 63322 | 172  | 
lemma injD: "inj f \<Longrightarrow> f x = f y \<Longrightarrow> x = y"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
173  | 
by (simp add: inj_def)  | 
| 63322 | 174  | 
|
175  | 
lemma inj_on_eq_iff: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<longleftrightarrow> x = y"  | 
|
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
176  | 
by (auto simp: inj_on_def)  | 
| 63322 | 177  | 
|
| 64965 | 178  | 
lemma inj_on_cong: "(\<And>a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A \<longleftrightarrow> inj_on g A"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
179  | 
by (auto simp: inj_on_def)  | 
| 63322 | 180  | 
|
| 
76281
 
457f1cba78fb
renamed lemma inj_on_strict_subset to image_strict_mono for symmetry with image_mono and to distinguish from inj_on_subset
 
desharna 
parents: 
76264 
diff
changeset
 | 
181  | 
lemma image_strict_mono: "inj_on f B \<Longrightarrow> A \<subset> B \<Longrightarrow> f ` A \<subset> f ` B"  | 
| 63322 | 182  | 
unfolding inj_on_def by blast  | 
183  | 
||
| 
69700
 
7a92cbec7030
new material about summations and powers, along with some tweaks
 
paulson <lp15@cam.ac.uk> 
parents: 
69661 
diff
changeset
 | 
184  | 
lemma inj_compose: "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
185  | 
by (simp add: inj_def)  | 
| 38620 | 186  | 
|
187  | 
lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)"  | 
|
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
188  | 
by (simp add: inj_def fun_eq_iff)  | 
| 38620 | 189  | 
|
| 63322 | 190  | 
lemma inj_eq: "inj f \<Longrightarrow> f x = f y \<longleftrightarrow> x = y"  | 
191  | 
by (simp add: inj_on_eq_iff)  | 
|
| 32988 | 192  | 
|
| 71827 | 193  | 
lemma inj_on_iff_Uniq: "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<exists>\<^sub>\<le>\<^sub>1y. y\<in>A \<and> f x = f y)"  | 
194  | 
by (auto simp: Uniq_def inj_on_def)  | 
|
195  | 
||
| 26147 | 196  | 
lemma inj_on_id[simp]: "inj_on id A"  | 
| 
39076
 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 
hoelzl 
parents: 
39075 
diff
changeset
 | 
197  | 
by (simp add: inj_on_def)  | 
| 13585 | 198  | 
|
| 63322 | 199  | 
lemma inj_on_id2[simp]: "inj_on (\<lambda>x. x) A"  | 
200  | 
by (simp add: inj_on_def)  | 
|
| 26147 | 201  | 
|
| 46586 | 202  | 
lemma inj_on_Int: "inj_on f A \<or> inj_on f B \<Longrightarrow> inj_on f (A \<inter> B)"  | 
| 63322 | 203  | 
unfolding inj_on_def by blast  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
204  | 
|
| 40702 | 205  | 
lemma surj_id: "surj id"  | 
| 63322 | 206  | 
by simp  | 
| 26147 | 207  | 
|
| 
39101
 
606432dd1896
Revert bij_betw changes to simp set (Problem in afp/Ordinals_and_Cardinals)
 
hoelzl 
parents: 
39076 
diff
changeset
 | 
208  | 
lemma bij_id[simp]: "bij id"  | 
| 63322 | 209  | 
by (simp add: bij_betw_def)  | 
| 13585 | 210  | 
|
| 
76252
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
211  | 
lemma bij_uminus: "bij (uminus :: 'a \<Rightarrow> 'a::group_add)"  | 
| 63322 | 212  | 
unfolding bij_betw_def inj_on_def  | 
213  | 
by (force intro: minus_minus [symmetric])  | 
|
| 63072 | 214  | 
|
| 
72125
 
cf8399df4d76
elimination of some needless assumptions
 
paulson <lp15@cam.ac.uk> 
parents: 
71857 
diff
changeset
 | 
215  | 
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"  | 
| 
 
cf8399df4d76
elimination of some needless assumptions
 
paulson <lp15@cam.ac.uk> 
parents: 
71857 
diff
changeset
 | 
216  | 
unfolding bij_betw_def by auto  | 
| 
 
cf8399df4d76
elimination of some needless assumptions
 
paulson <lp15@cam.ac.uk> 
parents: 
71857 
diff
changeset
 | 
217  | 
|
| 63322 | 218  | 
lemma inj_onI [intro?]: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> x = y) \<Longrightarrow> inj_on f A"  | 
219  | 
by (simp add: inj_on_def)  | 
|
| 13585 | 220  | 
|
| 
78258
 
71366be2c647
The sym_diff operator (symmetric difference)
 
paulson <lp15@cam.ac.uk> 
parents: 
78099 
diff
changeset
 | 
221  | 
text \<open>For those frequent proofs by contradiction\<close>  | 
| 
 
71366be2c647
The sym_diff operator (symmetric difference)
 
paulson <lp15@cam.ac.uk> 
parents: 
78099 
diff
changeset
 | 
222  | 
lemma inj_onCI: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x = f y \<Longrightarrow> x \<noteq> y \<Longrightarrow> False) \<Longrightarrow> inj_on f A"  | 
| 
 
71366be2c647
The sym_diff operator (symmetric difference)
 
paulson <lp15@cam.ac.uk> 
parents: 
78099 
diff
changeset
 | 
223  | 
by (force simp: inj_on_def)  | 
| 
 
71366be2c647
The sym_diff operator (symmetric difference)
 
paulson <lp15@cam.ac.uk> 
parents: 
78099 
diff
changeset
 | 
224  | 
|
| 63322 | 225  | 
lemma inj_on_inverseI: "(\<And>x. x \<in> A \<Longrightarrow> g (f x) = x) \<Longrightarrow> inj_on f A"  | 
| 64965 | 226  | 
by (auto dest: arg_cong [of concl: g] simp add: inj_on_def)  | 
| 13585 | 227  | 
|
| 63322 | 228  | 
lemma inj_onD: "inj_on f A \<Longrightarrow> f x = f y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x = y"  | 
229  | 
unfolding inj_on_def by blast  | 
|
| 13585 | 230  | 
|
| 63365 | 231  | 
lemma inj_on_subset:  | 
232  | 
assumes "inj_on f A"  | 
|
| 63575 | 233  | 
and "B \<subseteq> A"  | 
| 63365 | 234  | 
shows "inj_on f B"  | 
235  | 
proof (rule inj_onI)  | 
|
236  | 
fix a b  | 
|
237  | 
assume "a \<in> B" and "b \<in> B"  | 
|
238  | 
with assms have "a \<in> A" and "b \<in> A"  | 
|
239  | 
by auto  | 
|
240  | 
moreover assume "f a = f b"  | 
|
| 64965 | 241  | 
ultimately show "a = b"  | 
242  | 
using assms by (auto dest: inj_onD)  | 
|
| 63365 | 243  | 
qed  | 
244  | 
||
| 63322 | 245  | 
lemma comp_inj_on: "inj_on f A \<Longrightarrow> inj_on g (f ` A) \<Longrightarrow> inj_on (g \<circ> f) A"  | 
246  | 
by (simp add: comp_def inj_on_def)  | 
|
247  | 
||
248  | 
lemma inj_on_imageI: "inj_on (g \<circ> f) A \<Longrightarrow> inj_on g (f ` A)"  | 
|
| 63072 | 249  | 
by (auto simp add: inj_on_def)  | 
| 15303 | 250  | 
|
| 63322 | 251  | 
lemma inj_on_image_iff:  | 
| 64965 | 252  | 
"\<forall>x\<in>A. \<forall>y\<in>A. g (f x) = g (f y) \<longleftrightarrow> g x = g y \<Longrightarrow> inj_on f A \<Longrightarrow> inj_on g (f ` A) \<longleftrightarrow> inj_on g A"  | 
| 63322 | 253  | 
unfolding inj_on_def by blast  | 
| 15439 | 254  | 
|
| 63322 | 255  | 
lemma inj_on_contraD: "inj_on f A \<Longrightarrow> x \<noteq> y \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> f x \<noteq> f y"  | 
256  | 
unfolding inj_on_def by blast  | 
|
| 12258 | 257  | 
|
| 63072 | 258  | 
lemma inj_singleton [simp]: "inj_on (\<lambda>x. {x}) A"
 | 
259  | 
by (simp add: inj_on_def)  | 
|
| 13585 | 260  | 
|
| 15111 | 261  | 
lemma inj_on_empty[iff]: "inj_on f {}"
 | 
| 63322 | 262  | 
by (simp add: inj_on_def)  | 
| 13585 | 263  | 
|
| 63322 | 264  | 
lemma subset_inj_on: "inj_on f B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> inj_on f A"  | 
265  | 
unfolding inj_on_def by blast  | 
|
266  | 
||
267  | 
lemma inj_on_Un: "inj_on f (A \<union> B) \<longleftrightarrow> inj_on f A \<and> inj_on f B \<and> f ` (A - B) \<inter> f ` (B - A) = {}"
 | 
|
268  | 
unfolding inj_on_def by (blast intro: sym)  | 
|
| 15111 | 269  | 
|
| 63322 | 270  | 
lemma inj_on_insert [iff]: "inj_on f (insert a A) \<longleftrightarrow> inj_on f A \<and> f a \<notin> f ` (A - {a})"
 | 
271  | 
unfolding inj_on_def by (blast intro: sym)  | 
|
272  | 
||
273  | 
lemma inj_on_diff: "inj_on f A \<Longrightarrow> inj_on f (A - B)"  | 
|
274  | 
unfolding inj_on_def by blast  | 
|
| 15111 | 275  | 
|
| 63322 | 276  | 
lemma comp_inj_on_iff: "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' \<circ> f) A"  | 
| 64965 | 277  | 
by (auto simp: comp_inj_on inj_on_def)  | 
| 15111 | 278  | 
|
| 63322 | 279  | 
lemma inj_on_imageI2: "inj_on (f' \<circ> f) A \<Longrightarrow> inj_on f A"  | 
| 64965 | 280  | 
by (auto simp: comp_inj_on inj_on_def)  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
281  | 
|
| 
51598
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
282  | 
lemma inj_img_insertE:  | 
| 
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
283  | 
assumes "inj_on f A"  | 
| 63322 | 284  | 
assumes "x \<notin> B"  | 
285  | 
and "insert x B = f ` A"  | 
|
286  | 
obtains x' A' where "x' \<notin> A'" and "A = insert x' A'" and "x = f x'" and "B = f ` A'"  | 
|
| 
51598
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
287  | 
proof -  | 
| 
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
288  | 
from assms have "x \<in> f ` A" by auto  | 
| 
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
289  | 
then obtain x' where *: "x' \<in> A" "x = f x'" by auto  | 
| 63322 | 290  | 
  then have A: "A = insert x' (A - {x'})" by auto
 | 
291  | 
  with assms * have B: "B = f ` (A - {x'})" by (auto dest: inj_on_contraD)
 | 
|
| 
51598
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
292  | 
  have "x' \<notin> A - {x'}" by simp
 | 
| 63322 | 293  | 
from this A \<open>x = f x'\<close> B show ?thesis ..  | 
| 
51598
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
294  | 
qed  | 
| 
 
5dbe537087aa
generalized lemma fold_image thanks to Peter Lammich
 
haftmann 
parents: 
49905 
diff
changeset
 | 
295  | 
|
| 
71404
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
296  | 
lemma linorder_inj_onI:  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
297  | 
fixes A :: "'a::order set"  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
298  | 
assumes ne: "\<And>x y. \<lbrakk>x < y; x\<in>A; y\<in>A\<rbrakk> \<Longrightarrow> f x \<noteq> f y" and lin: "\<And>x y. \<lbrakk>x\<in>A; y\<in>A\<rbrakk> \<Longrightarrow> x\<le>y \<or> y\<le>x"  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
299  | 
shows "inj_on f A"  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
300  | 
proof (rule inj_onI)  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
301  | 
fix x y  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
302  | 
assume eq: "f x = f y" and "x\<in>A" "y\<in>A"  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
303  | 
then show "x = y"  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
304  | 
using lin [of x y] ne by (force simp: dual_order.order_iff_strict)  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
305  | 
qed  | 
| 
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
306  | 
|
| 
76722
 
b1d57dd345e1
First round of moving material from the number theory development
 
paulson <lp15@cam.ac.uk> 
parents: 
76281 
diff
changeset
 | 
307  | 
lemma linorder_inj_onI':  | 
| 
 
b1d57dd345e1
First round of moving material from the number theory development
 
paulson <lp15@cam.ac.uk> 
parents: 
76281 
diff
changeset
 | 
308  | 
fixes A :: "'a :: linorder set"  | 
| 
 
b1d57dd345e1
First round of moving material from the number theory development
 
paulson <lp15@cam.ac.uk> 
parents: 
76281 
diff
changeset
 | 
309  | 
assumes "\<And>i j. i \<in> A \<Longrightarrow> j \<in> A \<Longrightarrow> i < j \<Longrightarrow> f i \<noteq> f j"  | 
| 
 
b1d57dd345e1
First round of moving material from the number theory development
 
paulson <lp15@cam.ac.uk> 
parents: 
76281 
diff
changeset
 | 
310  | 
shows "inj_on f A"  | 
| 
 
b1d57dd345e1
First round of moving material from the number theory development
 
paulson <lp15@cam.ac.uk> 
parents: 
76281 
diff
changeset
 | 
311  | 
by (intro linorder_inj_onI) (auto simp add: assms)  | 
| 
 
b1d57dd345e1
First round of moving material from the number theory development
 
paulson <lp15@cam.ac.uk> 
parents: 
76281 
diff
changeset
 | 
312  | 
|
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54147 
diff
changeset
 | 
313  | 
lemma linorder_injI:  | 
| 64965 | 314  | 
assumes "\<And>x y::'a::linorder. x < y \<Longrightarrow> f x \<noteq> f y"  | 
| 
54578
 
9387251b6a46
eliminated dependence of BNF on Infinite_Set by moving 3 theorems from the latter to Main
 
traytel 
parents: 
54147 
diff
changeset
 | 
315  | 
shows "inj f"  | 
| 
71404
 
f2b783abfbe7
A few lemmas connected with orderings
 
paulson <lp15@cam.ac.uk> 
parents: 
69913 
diff
changeset
 | 
316  | 
\<comment> \<open>Courtesy of Stephan Merz\<close>  | 
| 
76722
 
b1d57dd345e1
First round of moving material from the number theory development
 
paulson <lp15@cam.ac.uk> 
parents: 
76281 
diff
changeset
 | 
317  | 
using assms by (simp add: linorder_inj_onI')  | 
| 
69735
 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 
paulson <lp15@cam.ac.uk> 
parents: 
69700 
diff
changeset
 | 
318  | 
|
| 
 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 
paulson <lp15@cam.ac.uk> 
parents: 
69700 
diff
changeset
 | 
319  | 
lemma inj_on_image_Pow: "inj_on f A \<Longrightarrow>inj_on (image f) (Pow A)"  | 
| 
 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 
paulson <lp15@cam.ac.uk> 
parents: 
69700 
diff
changeset
 | 
320  | 
unfolding Pow_def inj_on_def by blast  | 
| 
 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 
paulson <lp15@cam.ac.uk> 
parents: 
69700 
diff
changeset
 | 
321  | 
|
| 
 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 
paulson <lp15@cam.ac.uk> 
parents: 
69700 
diff
changeset
 | 
322  | 
lemma bij_betw_image_Pow: "bij_betw f A B \<Longrightarrow> bij_betw (image f) (Pow A) (Pow B)"  | 
| 
 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 
paulson <lp15@cam.ac.uk> 
parents: 
69700 
diff
changeset
 | 
323  | 
by (auto simp add: bij_betw_def inj_on_image_Pow image_Pow_surj)  | 
| 
 
8230dca028eb
the theory of Equipollence, and moving Fpow from Cardinals into Main
 
paulson <lp15@cam.ac.uk> 
parents: 
69700 
diff
changeset
 | 
324  | 
|
| 40702 | 325  | 
lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)"  | 
326  | 
by auto  | 
|
| 
39076
 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 
hoelzl 
parents: 
39075 
diff
changeset
 | 
327  | 
|
| 63322 | 328  | 
lemma surjI:  | 
| 64965 | 329  | 
assumes "\<And>x. g (f x) = x"  | 
| 63322 | 330  | 
shows "surj g"  | 
| 64965 | 331  | 
using assms [symmetric] by auto  | 
| 13585 | 332  | 
|
| 
39076
 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 
hoelzl 
parents: 
39075 
diff
changeset
 | 
333  | 
lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x"  | 
| 
 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 
hoelzl 
parents: 
39075 
diff
changeset
 | 
334  | 
by (simp add: surj_def)  | 
| 13585 | 335  | 
|
| 
39076
 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 
hoelzl 
parents: 
39075 
diff
changeset
 | 
336  | 
lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C"  | 
| 63575 | 337  | 
by (simp add: surj_def) blast  | 
| 13585 | 338  | 
|
| 63322 | 339  | 
lemma comp_surj: "surj f \<Longrightarrow> surj g \<Longrightarrow> surj (g \<circ> f)"  | 
| 69768 | 340  | 
using image_comp [of g f UNIV] by simp  | 
| 13585 | 341  | 
|
| 63322 | 342  | 
lemma bij_betw_imageI: "inj_on f A \<Longrightarrow> f ` A = B \<Longrightarrow> bij_betw f A B"  | 
343  | 
unfolding bij_betw_def by clarify  | 
|
| 57282 | 344  | 
|
345  | 
lemma bij_betw_imp_surj_on: "bij_betw f A B \<Longrightarrow> f ` A = B"  | 
|
346  | 
unfolding bij_betw_def by clarify  | 
|
347  | 
||
| 39074 | 348  | 
lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f"  | 
| 40702 | 349  | 
unfolding bij_betw_def by auto  | 
| 39074 | 350  | 
|
| 63322 | 351  | 
lemma bij_betw_empty1: "bij_betw f {} A \<Longrightarrow> A = {}"
 | 
352  | 
unfolding bij_betw_def by blast  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
353  | 
|
| 63322 | 354  | 
lemma bij_betw_empty2: "bij_betw f A {} \<Longrightarrow> A = {}"
 | 
355  | 
unfolding bij_betw_def by blast  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
356  | 
|
| 63322 | 357  | 
lemma inj_on_imp_bij_betw: "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)"  | 
358  | 
unfolding bij_betw_def by simp  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
359  | 
|
| 
77138
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
360  | 
lemma bij_betw_DiffI:  | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
361  | 
assumes "bij_betw f A B" "bij_betw f C D" "C \<subseteq> A" "D \<subseteq> B"  | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
362  | 
shows "bij_betw f (A - C) (B - D)"  | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
363  | 
using assms unfolding bij_betw_def inj_on_def by auto  | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
364  | 
|
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
365  | 
lemma bij_betw_singleton_iff [simp]: "bij_betw f {x} {y} \<longleftrightarrow> f x = y"
 | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
366  | 
by (auto simp: bij_betw_def)  | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
367  | 
|
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
368  | 
lemma bij_betw_singletonI [intro]: "f x = y \<Longrightarrow> bij_betw f {x} {y}"
 | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
369  | 
by auto  | 
| 
 
c8597292cd41
Moved in a large number of highly useful library lemmas, mostly due to Manuel Eberl
 
paulson <lp15@cam.ac.uk> 
parents: 
76722 
diff
changeset
 | 
370  | 
|
| 71464 | 371  | 
lemma bij_betw_apply: "\<lbrakk>bij_betw f A B; a \<in> A\<rbrakk> \<Longrightarrow> f a \<in> B"  | 
372  | 
unfolding bij_betw_def by auto  | 
|
373  | 
||
| 
39076
 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 
hoelzl 
parents: 
39075 
diff
changeset
 | 
374  | 
lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f"  | 
| 64965 | 375  | 
by (rule bij_betw_def)  | 
| 39074 | 376  | 
|
| 63322 | 377  | 
lemma bijI: "inj f \<Longrightarrow> surj f \<Longrightarrow> bij f"  | 
| 64965 | 378  | 
by (rule bij_betw_imageI)  | 
| 13585 | 379  | 
|
| 63322 | 380  | 
lemma bij_is_inj: "bij f \<Longrightarrow> inj f"  | 
381  | 
by (simp add: bij_def)  | 
|
| 13585 | 382  | 
|
| 63322 | 383  | 
lemma bij_is_surj: "bij f \<Longrightarrow> surj f"  | 
384  | 
by (simp add: bij_def)  | 
|
| 13585 | 385  | 
|
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
386  | 
lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A"  | 
| 63322 | 387  | 
by (simp add: bij_betw_def)  | 
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
388  | 
|
| 63322 | 389  | 
lemma bij_betw_trans: "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g \<circ> f) A C"  | 
390  | 
by (auto simp add:bij_betw_def comp_inj_on)  | 
|
| 31438 | 391  | 
|
| 63322 | 392  | 
lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g \<circ> f)"  | 
| 40702 | 393  | 
by (rule bij_betw_trans)  | 
394  | 
||
| 63322 | 395  | 
lemma bij_betw_comp_iff: "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' \<circ> f) A A''"  | 
396  | 
by (auto simp add: bij_betw_def inj_on_def)  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
397  | 
|
| 
79597
 
76a1c0ea6777
A few lemmas brought in from AFP entries
 
paulson <lp15@cam.ac.uk> 
parents: 
79582 
diff
changeset
 | 
398  | 
lemma bij_betw_Collect:  | 
| 
 
76a1c0ea6777
A few lemmas brought in from AFP entries
 
paulson <lp15@cam.ac.uk> 
parents: 
79582 
diff
changeset
 | 
399  | 
assumes "bij_betw f A B" "\<And>x. x \<in> A \<Longrightarrow> Q (f x) \<longleftrightarrow> P x"  | 
| 
 
76a1c0ea6777
A few lemmas brought in from AFP entries
 
paulson <lp15@cam.ac.uk> 
parents: 
79582 
diff
changeset
 | 
400  | 
  shows   "bij_betw f {x\<in>A. P x} {y\<in>B. Q y}"
 | 
| 
 
76a1c0ea6777
A few lemmas brought in from AFP entries
 
paulson <lp15@cam.ac.uk> 
parents: 
79582 
diff
changeset
 | 
401  | 
using assms by (auto simp add: bij_betw_def inj_on_def)  | 
| 
 
76a1c0ea6777
A few lemmas brought in from AFP entries
 
paulson <lp15@cam.ac.uk> 
parents: 
79582 
diff
changeset
 | 
402  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
403  | 
lemma bij_betw_comp_iff2:  | 
| 63322 | 404  | 
assumes bij: "bij_betw f' A' A''"  | 
405  | 
and img: "f ` A \<le> A'"  | 
|
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
406  | 
shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' \<circ> f) A A''" (is "?L \<longleftrightarrow> ?R")  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
407  | 
proof  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
408  | 
assume "?L"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
409  | 
then show "?R"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
410  | 
using assms by (auto simp add: bij_betw_comp_iff)  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
411  | 
next  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
412  | 
assume *: "?R"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
413  | 
have "inj_on (f' \<circ> f) A \<Longrightarrow> inj_on f A"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
414  | 
using inj_on_imageI2 by blast  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
415  | 
moreover have "A' \<subseteq> f ` A"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
416  | 
proof  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
417  | 
fix a'  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
418  | 
assume **: "a' \<in> A'"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
419  | 
with bij have "f' a' \<in> A''"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
420  | 
unfolding bij_betw_def by auto  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
421  | 
with * obtain a where 1: "a \<in> A \<and> f' (f a) = f' a'"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
422  | 
unfolding bij_betw_def by force  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
423  | 
with img have "f a \<in> A'" by auto  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
424  | 
with bij ** 1 have "f a = a'"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
425  | 
unfolding bij_betw_def inj_on_def by auto  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
426  | 
with 1 show "a' \<in> f ` A" by auto  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
427  | 
qed  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
428  | 
ultimately show "?L"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
429  | 
using img * by (auto simp add: bij_betw_def)  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
430  | 
qed  | 
| 
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
431  | 
|
| 63322 | 432  | 
lemma bij_betw_inv:  | 
433  | 
assumes "bij_betw f A B"  | 
|
434  | 
shows "\<exists>g. bij_betw g B A"  | 
|
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
435  | 
proof -  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
436  | 
have i: "inj_on f A" and s: "f ` A = B"  | 
| 63322 | 437  | 
using assms by (auto simp: bij_betw_def)  | 
438  | 
let ?P = "\<lambda>b a. a \<in> A \<and> f a = b"  | 
|
439  | 
let ?g = "\<lambda>b. The (?P b)"  | 
|
440  | 
have g: "?g b = a" if P: "?P b a" for a b  | 
|
441  | 
proof -  | 
|
| 63575 | 442  | 
from that s have ex1: "\<exists>a. ?P b a" by blast  | 
| 63322 | 443  | 
then have uex1: "\<exists>!a. ?P b a" by (blast dest:inj_onD[OF i])  | 
| 63575 | 444  | 
then show ?thesis  | 
445  | 
using the1_equality[OF uex1, OF P] P by simp  | 
|
| 63322 | 446  | 
qed  | 
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
447  | 
have "inj_on ?g B"  | 
| 63322 | 448  | 
proof (rule inj_onI)  | 
449  | 
fix x y  | 
|
450  | 
assume "x \<in> B" "y \<in> B" "?g x = ?g y"  | 
|
451  | 
from s \<open>x \<in> B\<close> obtain a1 where a1: "?P x a1" by blast  | 
|
452  | 
from s \<open>y \<in> B\<close> obtain a2 where a2: "?P y a2" by blast  | 
|
453  | 
from g [OF a1] a1 g [OF a2] a2 \<open>?g x = ?g y\<close> show "x = y" by simp  | 
|
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
454  | 
qed  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
455  | 
moreover have "?g ` B = A"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
456  | 
proof safe  | 
| 63322 | 457  | 
fix b  | 
458  | 
assume "b \<in> B"  | 
|
| 56077 | 459  | 
with s obtain a where P: "?P b a" by blast  | 
| 63575 | 460  | 
with g[OF P] show "?g b \<in> A" by auto  | 
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
461  | 
next  | 
| 63322 | 462  | 
fix a  | 
463  | 
assume "a \<in> A"  | 
|
| 63575 | 464  | 
with s obtain b where P: "?P b a" by blast  | 
465  | 
with s have "b \<in> B" by blast  | 
|
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
466  | 
with g[OF P] have "\<exists>b\<in>B. a = ?g b" by blast  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
467  | 
then show "a \<in> ?g ` B"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
468  | 
by auto  | 
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
469  | 
qed  | 
| 63575 | 470  | 
ultimately show ?thesis  | 
471  | 
by (auto simp: bij_betw_def)  | 
|
| 
26105
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
472  | 
qed  | 
| 
 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 
nipkow 
parents: 
25886 
diff
changeset
 | 
473  | 
|
| 63588 | 474  | 
lemma bij_betw_cong: "(\<And>a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'"  | 
| 63591 | 475  | 
unfolding bij_betw_def inj_on_def by safe force+ (* somewhat slow *)  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
476  | 
|
| 63322 | 477  | 
lemma bij_betw_id[intro, simp]: "bij_betw id A A"  | 
478  | 
unfolding bij_betw_def id_def by auto  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
479  | 
|
| 63322 | 480  | 
lemma bij_betw_id_iff: "bij_betw id A B \<longleftrightarrow> A = B"  | 
481  | 
by (auto simp add: bij_betw_def)  | 
|
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
482  | 
|
| 39075 | 483  | 
lemma bij_betw_combine:  | 
| 63400 | 484  | 
  "bij_betw f A B \<Longrightarrow> bij_betw f C D \<Longrightarrow> B \<inter> D = {} \<Longrightarrow> bij_betw f (A \<union> C) (B \<union> D)"
 | 
485  | 
unfolding bij_betw_def inj_on_Un image_Un by auto  | 
|
| 39075 | 486  | 
|
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
487  | 
lemma bij_betw_subset: "bij_betw f A A' \<Longrightarrow> B \<subseteq> A \<Longrightarrow> f ` B = B' \<Longrightarrow> bij_betw f B B'"  | 
| 63322 | 488  | 
by (auto simp add: bij_betw_def inj_on_def)  | 
| 
40703
 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 
hoelzl 
parents: 
40702 
diff
changeset
 | 
489  | 
|
| 75624 | 490  | 
lemma bij_betw_ball: "bij_betw f A B \<Longrightarrow> (\<forall>b \<in> B. phi b) = (\<forall>a \<in> A. phi (f a))"  | 
491  | 
unfolding bij_betw_def inj_on_def by blast  | 
|
492  | 
||
| 58195 | 493  | 
lemma bij_pointE:  | 
494  | 
assumes "bij f"  | 
|
495  | 
obtains x where "y = f x" and "\<And>x'. y = f x' \<Longrightarrow> x' = x"  | 
|
496  | 
proof -  | 
|
497  | 
from assms have "inj f" by (rule bij_is_inj)  | 
|
498  | 
moreover from assms have "surj f" by (rule bij_is_surj)  | 
|
499  | 
then have "y \<in> range f" by simp  | 
|
500  | 
ultimately have "\<exists>!x. y = f x" by (simp add: range_ex1_eq)  | 
|
501  | 
with that show thesis by blast  | 
|
502  | 
qed  | 
|
503  | 
||
| 73326 | 504  | 
lemma bij_iff: \<^marker>\<open>contributor \<open>Amine Chaieb\<close>\<close>  | 
505  | 
\<open>bij f \<longleftrightarrow> (\<forall>x. \<exists>!y. f y = x)\<close> (is \<open>?P \<longleftrightarrow> ?Q\<close>)  | 
|
506  | 
proof  | 
|
507  | 
assume ?P  | 
|
508  | 
then have \<open>inj f\<close> \<open>surj f\<close>  | 
|
509  | 
by (simp_all add: bij_def)  | 
|
510  | 
show ?Q  | 
|
511  | 
proof  | 
|
512  | 
fix y  | 
|
513  | 
from \<open>surj f\<close> obtain x where \<open>y = f x\<close>  | 
|
514  | 
by (auto simp add: surj_def)  | 
|
515  | 
with \<open>inj f\<close> show \<open>\<exists>!x. f x = y\<close>  | 
|
516  | 
by (auto simp add: inj_def)  | 
|
517  | 
qed  | 
|
518  | 
next  | 
|
519  | 
assume ?Q  | 
|
520  | 
then have \<open>inj f\<close>  | 
|
521  | 
by (auto simp add: inj_def)  | 
|
522  | 
moreover have \<open>\<exists>x. y = f x\<close> for y  | 
|
523  | 
proof -  | 
|
524  | 
from \<open>?Q\<close> obtain x where \<open>f x = y\<close>  | 
|
525  | 
by blast  | 
|
526  | 
then have \<open>y = f x\<close>  | 
|
527  | 
by simp  | 
|
528  | 
then show ?thesis ..  | 
|
529  | 
qed  | 
|
530  | 
then have \<open>surj f\<close>  | 
|
531  | 
by (auto simp add: surj_def)  | 
|
532  | 
ultimately show ?P  | 
|
533  | 
by (rule bijI)  | 
|
534  | 
qed  | 
|
535  | 
||
| 73466 | 536  | 
lemma bij_betw_partition:  | 
537  | 
\<open>bij_betw f A B\<close>  | 
|
538  | 
  if \<open>bij_betw f (A \<union> C) (B \<union> D)\<close> \<open>bij_betw f C D\<close> \<open>A \<inter> C = {}\<close> \<open>B \<inter> D = {}\<close>
 | 
|
539  | 
proof -  | 
|
540  | 
from that have \<open>inj_on f (A \<union> C)\<close> \<open>inj_on f C\<close> \<open>f ` (A \<union> C) = B \<union> D\<close> \<open>f ` C = D\<close>  | 
|
541  | 
by (simp_all add: bij_betw_def)  | 
|
542  | 
  then have \<open>inj_on f A\<close> and \<open>f ` (A - C) \<inter> f ` (C - A) = {}\<close>
 | 
|
543  | 
by (simp_all add: inj_on_Un)  | 
|
544  | 
  with \<open>A \<inter> C = {}\<close> have \<open>f ` A \<inter> f ` C = {}\<close>
 | 
|
545  | 
by auto  | 
|
546  | 
  with \<open>f ` (A \<union> C) = B \<union> D\<close> \<open>f ` C = D\<close>  \<open>B \<inter> D = {}\<close>
 | 
|
547  | 
have \<open>f ` A = B\<close>  | 
|
548  | 
by blast  | 
|
549  | 
with \<open>inj_on f A\<close> show ?thesis  | 
|
550  | 
by (simp add: bij_betw_def)  | 
|
551  | 
qed  | 
|
552  | 
||
| 63322 | 553  | 
lemma surj_image_vimage_eq: "surj f \<Longrightarrow> f ` (f -` A) = A"  | 
554  | 
by simp  | 
|
| 13585 | 555  | 
|
| 42903 | 556  | 
lemma surj_vimage_empty:  | 
| 63322 | 557  | 
assumes "surj f"  | 
558  | 
  shows "f -` A = {} \<longleftrightarrow> A = {}"
 | 
|
559  | 
using surj_image_vimage_eq [OF \<open>surj f\<close>, of A]  | 
|
| 
44890
 
22f665a2e91c
new fastforce replacing fastsimp - less confusing name
 
nipkow 
parents: 
44860 
diff
changeset
 | 
560  | 
by (intro iffI) fastforce+  | 
| 42903 | 561  | 
|
| 63322 | 562  | 
lemma inj_vimage_image_eq: "inj f \<Longrightarrow> f -` (f ` A) = A"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
563  | 
unfolding inj_def by blast  | 
| 13585 | 564  | 
|
| 63322 | 565  | 
lemma vimage_subsetD: "surj f \<Longrightarrow> f -` B \<subseteq> A \<Longrightarrow> B \<subseteq> f ` A"  | 
566  | 
by (blast intro: sym)  | 
|
| 13585 | 567  | 
|
| 63322 | 568  | 
lemma vimage_subsetI: "inj f \<Longrightarrow> B \<subseteq> f ` A \<Longrightarrow> f -` B \<subseteq> A"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
569  | 
unfolding inj_def by blast  | 
| 13585 | 570  | 
|
| 63322 | 571  | 
lemma vimage_subset_eq: "bij f \<Longrightarrow> f -` B \<subseteq> A \<longleftrightarrow> B \<subseteq> f ` A"  | 
572  | 
unfolding bij_def by (blast del: subsetI intro: vimage_subsetI vimage_subsetD)  | 
|
| 13585 | 573  | 
|
| 63322 | 574  | 
lemma inj_on_image_eq_iff: "inj_on f C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"  | 
| 64965 | 575  | 
by (fastforce simp: inj_on_def)  | 
| 53927 | 576  | 
|
| 31438 | 577  | 
lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"  | 
| 63322 | 578  | 
by (erule inj_on_image_eq_iff) simp_all  | 
| 31438 | 579  | 
|
| 63322 | 580  | 
lemma inj_on_image_Int: "inj_on f C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` (A \<inter> B) = f ` A \<inter> f ` B"  | 
581  | 
unfolding inj_on_def by blast  | 
|
582  | 
||
583  | 
lemma inj_on_image_set_diff: "inj_on f C \<Longrightarrow> A - B \<subseteq> C \<Longrightarrow> B \<subseteq> C \<Longrightarrow> f ` (A - B) = f ` A - f ` B"  | 
|
584  | 
unfolding inj_on_def by blast  | 
|
| 13585 | 585  | 
|
| 63322 | 586  | 
lemma image_Int: "inj f \<Longrightarrow> f ` (A \<inter> B) = f ` A \<inter> f ` B"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
587  | 
unfolding inj_def by blast  | 
| 13585 | 588  | 
|
| 63322 | 589  | 
lemma image_set_diff: "inj f \<Longrightarrow> f ` (A - B) = f ` A - f ` B"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
590  | 
unfolding inj_def by blast  | 
| 13585 | 591  | 
|
| 63322 | 592  | 
lemma inj_on_image_mem_iff: "inj_on f B \<Longrightarrow> a \<in> B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> f a \<in> f ` A \<longleftrightarrow> a \<in> A"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
593  | 
by (auto simp: inj_on_def)  | 
| 
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
594  | 
|
| 63322 | 595  | 
lemma inj_image_mem_iff: "inj f \<Longrightarrow> f a \<in> f ` A \<longleftrightarrow> a \<in> A"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
596  | 
by (blast dest: injD)  | 
| 13585 | 597  | 
|
| 63322 | 598  | 
lemma inj_image_subset_iff: "inj f \<Longrightarrow> f ` A \<subseteq> f ` B \<longleftrightarrow> A \<subseteq> B"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
599  | 
by (blast dest: injD)  | 
| 13585 | 600  | 
|
| 63322 | 601  | 
lemma inj_image_eq_iff: "inj f \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B"  | 
| 
59504
 
8c6747dba731
New lemmas and a bit of tidying up.
 
paulson <lp15@cam.ac.uk> 
parents: 
58889 
diff
changeset
 | 
602  | 
by (blast dest: injD)  | 
| 13585 | 603  | 
|
| 63322 | 604  | 
lemma surj_Compl_image_subset: "surj f \<Longrightarrow> - (f ` A) \<subseteq> f ` (- A)"  | 
605  | 
by auto  | 
|
| 5852 | 606  | 
|
| 63322 | 607  | 
lemma inj_image_Compl_subset: "inj f \<Longrightarrow> f ` (- A) \<subseteq> - (f ` A)"  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
608  | 
by (auto simp: inj_def)  | 
| 63322 | 609  | 
|
610  | 
lemma bij_image_Compl_eq: "bij f \<Longrightarrow> f ` (- A) = - (f ` A)"  | 
|
611  | 
by (simp add: bij_def inj_image_Compl_subset surj_Compl_image_subset equalityI)  | 
|
| 13585 | 612  | 
|
| 41657 | 613  | 
lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
 | 
| 63322 | 614  | 
\<comment> \<open>The inverse image of a singleton under an injective function is included in a singleton.\<close>  | 
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
615  | 
by (simp add: inj_def) (blast intro: the_equality [symmetric])  | 
| 41657 | 616  | 
|
| 63322 | 617  | 
lemma inj_on_vimage_singleton: "inj_on f A \<Longrightarrow> f -` {a} \<inter> A \<subseteq> {THE x. x \<in> A \<and> f x = a}"
 | 
| 43991 | 618  | 
by (auto simp add: inj_on_def intro: the_equality [symmetric])  | 
619  | 
||
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
620  | 
lemma bij_betw_byWitness:  | 
| 63322 | 621  | 
assumes left: "\<forall>a \<in> A. f' (f a) = a"  | 
622  | 
and right: "\<forall>a' \<in> A'. f (f' a') = a'"  | 
|
| 63575 | 623  | 
and "f ` A \<subseteq> A'"  | 
624  | 
and img2: "f' ` A' \<subseteq> A"  | 
|
| 63322 | 625  | 
shows "bij_betw f A A'"  | 
626  | 
using assms  | 
|
| 63400 | 627  | 
unfolding bij_betw_def inj_on_def  | 
628  | 
proof safe  | 
|
| 63322 | 629  | 
fix a b  | 
| 63575 | 630  | 
assume "a \<in> A" "b \<in> A"  | 
631  | 
with left have "a = f' (f a) \<and> b = f' (f b)" by simp  | 
|
632  | 
moreover assume "f a = f b"  | 
|
633  | 
ultimately show "a = b" by simp  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
634  | 
next  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
635  | 
fix a' assume *: "a' \<in> A'"  | 
| 63575 | 636  | 
with img2 have "f' a' \<in> A" by blast  | 
637  | 
moreover from * right have "a' = f (f' a')" by simp  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
638  | 
ultimately show "a' \<in> f ` A" by blast  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
639  | 
qed  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
640  | 
|
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
641  | 
corollary notIn_Un_bij_betw:  | 
| 63322 | 642  | 
assumes "b \<notin> A"  | 
643  | 
and "f b \<notin> A'"  | 
|
644  | 
and "bij_betw f A A'"  | 
|
645  | 
  shows "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | 
|
646  | 
proof -  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
647  | 
  have "bij_betw f {b} {f b}"
 | 
| 63322 | 648  | 
unfolding bij_betw_def inj_on_def by simp  | 
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
649  | 
with assms show ?thesis  | 
| 63322 | 650  | 
    using bij_betw_combine[of f A A' "{b}" "{f b}"] by blast
 | 
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
651  | 
qed  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
652  | 
|
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
653  | 
lemma notIn_Un_bij_betw3:  | 
| 63322 | 654  | 
assumes "b \<notin> A"  | 
655  | 
and "f b \<notin> A'"  | 
|
656  | 
  shows "bij_betw f A A' = bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
657  | 
proof  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
658  | 
assume "bij_betw f A A'"  | 
| 63322 | 659  | 
  then show "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | 
660  | 
using assms notIn_Un_bij_betw [of b A f A'] by blast  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
661  | 
next  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
662  | 
  assume *: "bij_betw f (A \<union> {b}) (A' \<union> {f b})"
 | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
663  | 
have "f ` A = A'"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
664  | 
proof safe  | 
| 63322 | 665  | 
fix a  | 
666  | 
assume **: "a \<in> A"  | 
|
667  | 
    then have "f a \<in> A' \<union> {f b}"
 | 
|
668  | 
using * unfolding bij_betw_def by blast  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
669  | 
moreover  | 
| 63322 | 670  | 
have False if "f a = f b"  | 
671  | 
proof -  | 
|
| 63575 | 672  | 
have "a = b"  | 
673  | 
using * ** that unfolding bij_betw_def inj_on_def by blast  | 
|
| 63322 | 674  | 
with \<open>b \<notin> A\<close> ** show ?thesis by blast  | 
675  | 
qed  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
676  | 
ultimately show "f a \<in> A'" by blast  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
677  | 
next  | 
| 63322 | 678  | 
fix a'  | 
679  | 
assume **: "a' \<in> A'"  | 
|
680  | 
    then have "a' \<in> f ` (A \<union> {b})"
 | 
|
681  | 
using * by (auto simp add: bij_betw_def)  | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
682  | 
    then obtain a where 1: "a \<in> A \<union> {b} \<and> f a = a'" by blast
 | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
683  | 
moreover  | 
| 63322 | 684  | 
have False if "a = b" using 1 ** \<open>f b \<notin> A'\<close> that by blast  | 
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
685  | 
ultimately have "a \<in> A" by blast  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
686  | 
with 1 show "a' \<in> f ` A" by blast  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
687  | 
qed  | 
| 63322 | 688  | 
then show "bij_betw f A A'"  | 
689  | 
    using * bij_betw_subset[of f "A \<union> {b}" _ A] by blast
 | 
|
| 
55019
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
690  | 
qed  | 
| 
 
0d5e831175de
moved lemmas from 'Fun_More_FP' to where they belong
 
blanchet 
parents: 
54578 
diff
changeset
 | 
691  | 
|
| 
71857
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
692  | 
lemma inj_on_disjoint_Un:  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
693  | 
assumes "inj_on f A" and "inj_on g B"  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
694  | 
  and "f ` A \<inter> g ` B = {}"
 | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
695  | 
shows "inj_on (\<lambda>x. if x \<in> A then f x else g x) (A \<union> B)"  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
696  | 
using assms by (simp add: inj_on_def disjoint_iff) (blast)  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
697  | 
|
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
698  | 
lemma bij_betw_disjoint_Un:  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
699  | 
assumes "bij_betw f A C" and "bij_betw g B D"  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
700  | 
  and "A \<inter> B = {}"
 | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
701  | 
  and "C \<inter> D = {}"
 | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
702  | 
shows "bij_betw (\<lambda>x. if x \<in> A then f x else g x) (A \<union> B) (C \<union> D)"  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
703  | 
using assms by (auto simp: inj_on_disjoint_Un bij_betw_def)  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
704  | 
|
| 73594 | 705  | 
lemma involuntory_imp_bij:  | 
706  | 
\<open>bij f\<close> if \<open>\<And>x. f (f x) = x\<close>  | 
|
707  | 
proof (rule bijI)  | 
|
708  | 
from that show \<open>surj f\<close>  | 
|
709  | 
by (rule surjI)  | 
|
710  | 
show \<open>inj f\<close>  | 
|
711  | 
proof (rule injI)  | 
|
712  | 
fix x y  | 
|
713  | 
assume \<open>f x = f y\<close>  | 
|
714  | 
then have \<open>f (f x) = f (f y)\<close>  | 
|
715  | 
by simp  | 
|
716  | 
then show \<open>x = y\<close>  | 
|
717  | 
by (simp add: that)  | 
|
718  | 
qed  | 
|
719  | 
qed  | 
|
720  | 
||
721  | 
||
| 
76261
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
722  | 
subsubsection \<open>Inj/surj/bij of Algebraic Operations\<close>  | 
| 69502 | 723  | 
|
724  | 
context cancel_semigroup_add  | 
|
725  | 
begin  | 
|
726  | 
||
| 69661 | 727  | 
lemma inj_on_add [simp]:  | 
728  | 
"inj_on ((+) a) A"  | 
|
729  | 
by (rule inj_onI) simp  | 
|
730  | 
||
731  | 
lemma inj_on_add' [simp]:  | 
|
732  | 
"inj_on (\<lambda>b. b + a) A"  | 
|
733  | 
by (rule inj_onI) simp  | 
|
734  | 
||
735  | 
lemma bij_betw_add [simp]:  | 
|
736  | 
"bij_betw ((+) a) A B \<longleftrightarrow> (+) a ` A = B"  | 
|
737  | 
by (simp add: bij_betw_def)  | 
|
| 69502 | 738  | 
|
739  | 
end  | 
|
740  | 
||
| 
76252
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
741  | 
context group_add  | 
| 69502 | 742  | 
begin  | 
743  | 
||
| 
76261
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
744  | 
lemma diff_left_imp_eq: "a - b = a - c \<Longrightarrow> b = c"  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
745  | 
unfolding add_uminus_conv_diff[symmetric]  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
746  | 
by(drule local.add_left_imp_eq) simp  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
747  | 
|
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
748  | 
lemma inj_uminus[simp, intro]: "inj_on uminus A"  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
749  | 
by (auto intro!: inj_onI)  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
750  | 
|
| 76264 | 751  | 
lemma surj_uminus[simp]: "surj uminus"  | 
752  | 
using surjI minus_minus by blast  | 
|
753  | 
||
| 69661 | 754  | 
lemma surj_plus [simp]:  | 
755  | 
"surj ((+) a)"  | 
|
| 
76252
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
756  | 
proof (standard, simp, standard, simp)  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
757  | 
fix x  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
758  | 
have "x = a + (-a + x)" by (simp add: add.assoc)  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
759  | 
thus "x \<in> range ((+) a)" by blast  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
760  | 
qed  | 
| 69661 | 761  | 
|
| 
76261
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
762  | 
lemma surj_plus_right [simp]:  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
763  | 
"surj (\<lambda>b. b+a)"  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
764  | 
proof (standard, simp, standard, simp)  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
765  | 
fix b show "b \<in> range (\<lambda>b. b+a)"  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
766  | 
using diff_add_cancel[of b a, symmetric] by blast  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
767  | 
qed  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
768  | 
|
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
769  | 
lemma inj_on_diff_left [simp]:  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
770  | 
\<open>inj_on ((-) a) A\<close>  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
771  | 
by (auto intro: inj_onI dest!: diff_left_imp_eq)  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
772  | 
|
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
773  | 
lemma inj_on_diff_right [simp]:  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
774  | 
\<open>inj_on (\<lambda>b. b - a) A\<close>  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
775  | 
by (auto intro: inj_onI simp add: algebra_simps)  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
776  | 
|
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
777  | 
lemma surj_diff [simp]:  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
778  | 
"surj ((-) a)"  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
779  | 
proof (standard, simp, standard, simp)  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
780  | 
fix x  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
781  | 
have "x = a - (- x + a)" by (simp add: algebra_simps)  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
782  | 
thus "x \<in> range ((-) a)" by blast  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
783  | 
qed  | 
| 69502 | 784  | 
|
| 69661 | 785  | 
lemma surj_diff_right [simp]:  | 
786  | 
"surj (\<lambda>x. x - a)"  | 
|
| 
76252
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
787  | 
proof (standard, simp, standard, simp)  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
788  | 
fix x  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
789  | 
have "x = x + a - a" by simp  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
790  | 
thus "x \<in> range (\<lambda>x. x - a)" by fast  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
791  | 
qed  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
792  | 
|
| 
76261
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
793  | 
lemma shows bij_plus: "bij ((+) a)" and bij_plus_right: "bij (\<lambda>x. x + a)"  | 
| 76264 | 794  | 
and bij_uminus: "bij uminus"  | 
| 
76261
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
795  | 
and bij_diff: "bij ((-) a)" and bij_diff_right: "bij (\<lambda>x. x - a)"  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
796  | 
by(simp_all add: bij_def)  | 
| 
 
26524d0b4395
added and reorganized lemmas (some suggested by Jeremy Sylvestre)
 
nipkow 
parents: 
76260 
diff
changeset
 | 
797  | 
|
| 
76252
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
798  | 
lemma translation_subtract_Compl:  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
799  | 
"(\<lambda>x. x - a) ` (- t) = - ((\<lambda>x. x - a) ` t)"  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
800  | 
by(rule bij_image_Compl_eq)  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
801  | 
(auto simp add: bij_def surj_def inj_def diff_eq_eq intro!: add_diff_cancel[symmetric])  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
802  | 
|
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
803  | 
lemma translation_diff:  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
804  | 
"(+) a ` (s - t) = ((+) a ` s) - ((+) a ` t)"  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
805  | 
by auto  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
806  | 
|
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
807  | 
lemma translation_subtract_diff:  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
808  | 
"(\<lambda>x. x - a) ` (s - t) = ((\<lambda>x. x - a) ` s) - ((\<lambda>x. x - a) ` t)"  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
809  | 
by(rule image_set_diff)(simp add: inj_on_def diff_eq_eq)  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
810  | 
|
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
811  | 
lemma translation_Int:  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
812  | 
"(+) a ` (s \<inter> t) = ((+) a ` s) \<inter> ((+) a ` t)"  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
813  | 
by auto  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
814  | 
|
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
815  | 
lemma translation_subtract_Int:  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
816  | 
"(\<lambda>x. x - a) ` (s \<inter> t) = ((\<lambda>x. x - a) ` s) \<inter> ((\<lambda>x. x - a) ` t)"  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
817  | 
by(rule image_Int)(simp add: inj_on_def diff_eq_eq)  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
818  | 
|
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
819  | 
end  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
820  | 
|
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
821  | 
(* TODO: prove in group_add *)  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
822  | 
context ab_group_add  | 
| 
 
d123d9f67514
generalized type classes as suggested by Jeremy Sylvestre
 
nipkow 
parents: 
76056 
diff
changeset
 | 
823  | 
begin  | 
| 69661 | 824  | 
|
825  | 
lemma translation_Compl:  | 
|
826  | 
"(+) a ` (- t) = - ((+) a ` t)"  | 
|
827  | 
proof (rule set_eqI)  | 
|
828  | 
fix b  | 
|
829  | 
show "b \<in> (+) a ` (- t) \<longleftrightarrow> b \<in> - (+) a ` t"  | 
|
830  | 
by (auto simp: image_iff algebra_simps intro!: bexI [of _ "b - a"])  | 
|
831  | 
qed  | 
|
832  | 
||
| 69502 | 833  | 
end  | 
834  | 
||
| 41657 | 835  | 
|
| 63322 | 836  | 
subsection \<open>Function Updating\<close>  | 
| 13585 | 837  | 
|
| 63322 | 838  | 
definition fun_upd :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> ('a \<Rightarrow> 'b)"
 | 
| 63324 | 839  | 
where "fun_upd f a b = (\<lambda>x. if x = a then b else f x)"  | 
| 26147 | 840  | 
|
| 
41229
 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 
wenzelm 
parents: 
40969 
diff
changeset
 | 
841  | 
nonterminal updbinds and updbind  | 
| 
 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 
wenzelm 
parents: 
40969 
diff
changeset
 | 
842  | 
|
| 26147 | 843  | 
syntax  | 
| 63322 | 844  | 
  "_updbind" :: "'a \<Rightarrow> 'a \<Rightarrow> updbind"             ("(2_ :=/ _)")
 | 
845  | 
  ""         :: "updbind \<Rightarrow> updbinds"             ("_")
 | 
|
846  | 
  "_updbinds":: "updbind \<Rightarrow> updbinds \<Rightarrow> updbinds" ("_,/ _")
 | 
|
847  | 
  "_Update"  :: "'a \<Rightarrow> updbinds \<Rightarrow> 'a"            ("_/'((_)')" [1000, 0] 900)
 | 
|
| 26147 | 848  | 
|
849  | 
translations  | 
|
| 63322 | 850  | 
"_Update f (_updbinds b bs)" \<rightleftharpoons> "_Update (_Update f b) bs"  | 
851  | 
"f(x:=y)" \<rightleftharpoons> "CONST fun_upd f x y"  | 
|
| 26147 | 852  | 
|
| 
55414
 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 
blanchet 
parents: 
55066 
diff
changeset
 | 
853  | 
(* Hint: to define the sum of two functions (or maps), use case_sum.  | 
| 58111 | 854  | 
A nice infix syntax could be defined by  | 
| 35115 | 855  | 
notation  | 
| 
55414
 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 
blanchet 
parents: 
55066 
diff
changeset
 | 
856  | 
case_sum (infixr "'(+')"80)  | 
| 26147 | 857  | 
*)  | 
858  | 
||
| 63322 | 859  | 
lemma fun_upd_idem_iff: "f(x:=y) = f \<longleftrightarrow> f x = y"  | 
860  | 
unfolding fun_upd_def  | 
|
861  | 
apply safe  | 
|
| 63575 | 862  | 
apply (erule subst)  | 
863  | 
apply auto  | 
|
| 63322 | 864  | 
done  | 
| 13585 | 865  | 
|
| 63322 | 866  | 
lemma fun_upd_idem: "f x = y \<Longrightarrow> f(x := y) = f"  | 
| 45603 | 867  | 
by (simp only: fun_upd_idem_iff)  | 
| 13585 | 868  | 
|
| 45603 | 869  | 
lemma fun_upd_triv [iff]: "f(x := f x) = f"  | 
870  | 
by (simp only: fun_upd_idem)  | 
|
| 13585 | 871  | 
|
| 63322 | 872  | 
lemma fun_upd_apply [simp]: "(f(x := y)) z = (if z = x then y else f z)"  | 
873  | 
by (simp add: fun_upd_def)  | 
|
| 13585 | 874  | 
|
| 63322 | 875  | 
(* fun_upd_apply supersedes these two, but they are useful  | 
| 13585 | 876  | 
if fun_upd_apply is intentionally removed from the simpset *)  | 
| 63322 | 877  | 
lemma fun_upd_same: "(f(x := y)) x = y"  | 
878  | 
by simp  | 
|
| 13585 | 879  | 
|
| 63322 | 880  | 
lemma fun_upd_other: "z \<noteq> x \<Longrightarrow> (f(x := y)) z = f z"  | 
881  | 
by simp  | 
|
| 13585 | 882  | 
|
| 63322 | 883  | 
lemma fun_upd_upd [simp]: "f(x := y, x := z) = f(x := z)"  | 
884  | 
by (simp add: fun_eq_iff)  | 
|
| 13585 | 885  | 
|
| 63322 | 886  | 
lemma fun_upd_twist: "a \<noteq> c \<Longrightarrow> (m(a := b))(c := d) = (m(c := d))(a := b)"  | 
| 
71616
 
a9de39608b1a
more tidying up of old apply-proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
71472 
diff
changeset
 | 
887  | 
by auto  | 
| 63322 | 888  | 
|
889  | 
lemma inj_on_fun_updI: "inj_on f A \<Longrightarrow> y \<notin> f ` A \<Longrightarrow> inj_on (f(x := y)) A"  | 
|
| 
64966
 
d53d7ca3303e
added inj_def (redundant, analogous to surj_def, bij_def);
 
wenzelm 
parents: 
64965 
diff
changeset
 | 
890  | 
by (auto simp: inj_on_def)  | 
| 15303 | 891  | 
|
| 63322 | 892  | 
lemma fun_upd_image: "f(x := y) ` A = (if x \<in> A then insert y (f ` (A - {x})) else f ` A)"
 | 
893  | 
by auto  | 
|
| 15510 | 894  | 
|
| 31080 | 895  | 
lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)"  | 
| 44921 | 896  | 
by auto  | 
| 31080 | 897  | 
|
| 61630 | 898  | 
lemma fun_upd_eqD: "f(x := y) = g(x := z) \<Longrightarrow> y = z"  | 
| 63322 | 899  | 
by (simp add: fun_eq_iff split: if_split_asm)  | 
900  | 
||
| 26147 | 901  | 
|
| 61799 | 902  | 
subsection \<open>\<open>override_on\<close>\<close>  | 
| 26147 | 903  | 
|
| 63322 | 904  | 
definition override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | 
905  | 
where "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)"  | 
|
| 13910 | 906  | 
|
| 15691 | 907  | 
lemma override_on_emptyset[simp]: "override_on f g {} = f"
 | 
| 64965 | 908  | 
by (simp add: override_on_def)  | 
| 13910 | 909  | 
|
| 63322 | 910  | 
lemma override_on_apply_notin[simp]: "a \<notin> A \<Longrightarrow> (override_on f g A) a = f a"  | 
| 64965 | 911  | 
by (simp add: override_on_def)  | 
| 13910 | 912  | 
|
| 63322 | 913  | 
lemma override_on_apply_in[simp]: "a \<in> A \<Longrightarrow> (override_on f g A) a = g a"  | 
| 64965 | 914  | 
by (simp add: override_on_def)  | 
| 13910 | 915  | 
|
| 
63561
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
63416 
diff
changeset
 | 
916  | 
lemma override_on_insert: "override_on f g (insert x X) = (override_on f g X)(x:=g x)"  | 
| 64965 | 917  | 
by (simp add: override_on_def fun_eq_iff)  | 
| 
63561
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
63416 
diff
changeset
 | 
918  | 
|
| 
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
63416 
diff
changeset
 | 
919  | 
lemma override_on_insert': "override_on f g (insert x X) = (override_on (f(x:=g x)) g X)"  | 
| 64965 | 920  | 
by (simp add: override_on_def fun_eq_iff)  | 
| 
63561
 
fba08009ff3e
add lemmas contributed by Peter Gammie
 
Andreas Lochbihler 
parents: 
63416 
diff
changeset
 | 
921  | 
|
| 26147 | 922  | 
|
| 60758 | 923  | 
subsection \<open>Inversion of injective functions\<close>  | 
| 31949 | 924  | 
|
| 63322 | 925  | 
definition the_inv_into :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
 | 
| 63324 | 926  | 
where "the_inv_into A f = (\<lambda>x. THE y. y \<in> A \<and> f y = x)"  | 
| 63322 | 927  | 
|
928  | 
lemma the_inv_into_f_f: "inj_on f A \<Longrightarrow> x \<in> A \<Longrightarrow> the_inv_into A f (f x) = x"  | 
|
929  | 
unfolding the_inv_into_def inj_on_def by blast  | 
|
| 32961 | 930  | 
|
| 63322 | 931  | 
lemma f_the_inv_into_f: "inj_on f A \<Longrightarrow> y \<in> f ` A \<Longrightarrow> f (the_inv_into A f y) = y"  | 
| 
71857
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
932  | 
unfolding the_inv_into_def  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
933  | 
by (rule the1I2; blast dest: inj_onD)  | 
| 32961 | 934  | 
|
| 
72125
 
cf8399df4d76
elimination of some needless assumptions
 
paulson <lp15@cam.ac.uk> 
parents: 
71857 
diff
changeset
 | 
935  | 
lemma f_the_inv_into_f_bij_betw:  | 
| 
 
cf8399df4d76
elimination of some needless assumptions
 
paulson <lp15@cam.ac.uk> 
parents: 
71857 
diff
changeset
 | 
936  | 
"bij_betw f A B \<Longrightarrow> (bij_betw f A B \<Longrightarrow> x \<in> B) \<Longrightarrow> f (the_inv_into A f x) = x"  | 
| 
 
cf8399df4d76
elimination of some needless assumptions
 
paulson <lp15@cam.ac.uk> 
parents: 
71857 
diff
changeset
 | 
937  | 
unfolding bij_betw_def by (blast intro: f_the_inv_into_f)  | 
| 
 
cf8399df4d76
elimination of some needless assumptions
 
paulson <lp15@cam.ac.uk> 
parents: 
71857 
diff
changeset
 | 
938  | 
|
| 63322 | 939  | 
lemma the_inv_into_into: "inj_on f A \<Longrightarrow> x \<in> f ` A \<Longrightarrow> A \<subseteq> B \<Longrightarrow> the_inv_into A f x \<in> B"  | 
| 
71857
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
940  | 
unfolding the_inv_into_def  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
941  | 
by (rule the1I2; blast dest: inj_onD)  | 
| 32961 | 942  | 
|
| 63322 | 943  | 
lemma the_inv_into_onto [simp]: "inj_on f A \<Longrightarrow> the_inv_into A f ` (f ` A) = A"  | 
944  | 
by (fast intro: the_inv_into_into the_inv_into_f_f [symmetric])  | 
|
| 32961 | 945  | 
|
| 63322 | 946  | 
lemma the_inv_into_f_eq: "inj_on f A \<Longrightarrow> f x = y \<Longrightarrow> x \<in> A \<Longrightarrow> the_inv_into A f y = x"  | 
| 
71857
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
947  | 
by (force simp add: the_inv_into_f_f)  | 
| 32961 | 948  | 
|
| 33057 | 949  | 
lemma the_inv_into_comp:  | 
| 63322 | 950  | 
"inj_on f (g ` A) \<Longrightarrow> inj_on g A \<Longrightarrow> x \<in> f ` g ` A \<Longrightarrow>  | 
951  | 
the_inv_into A (f \<circ> g) x = (the_inv_into A g \<circ> the_inv_into (g ` A) f) x"  | 
|
952  | 
apply (rule the_inv_into_f_eq)  | 
|
953  | 
apply (fast intro: comp_inj_on)  | 
|
954  | 
apply (simp add: f_the_inv_into_f the_inv_into_into)  | 
|
955  | 
apply (simp add: the_inv_into_into)  | 
|
956  | 
done  | 
|
| 32961 | 957  | 
|
| 63322 | 958  | 
lemma inj_on_the_inv_into: "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)"  | 
959  | 
by (auto intro: inj_onI simp: the_inv_into_f_f)  | 
|
| 32961 | 960  | 
|
| 63322 | 961  | 
lemma bij_betw_the_inv_into: "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A"  | 
962  | 
by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into)  | 
|
| 32961 | 963  | 
|
| 
71857
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
964  | 
lemma bij_betw_iff_bijections:  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
965  | 
"bij_betw f A B \<longleftrightarrow> (\<exists>g. (\<forall>x \<in> A. f x \<in> B \<and> g(f x) = x) \<and> (\<forall>y \<in> B. g y \<in> A \<and> f(g y) = y))"  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
966  | 
(is "?lhs = ?rhs")  | 
| 
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
967  | 
proof  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
968  | 
show "?lhs \<Longrightarrow> ?rhs"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
969  | 
by (auto simp: bij_betw_def f_the_inv_into_f the_inv_into_f_f the_inv_into_into  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
970  | 
exI[where ?x="the_inv_into A f"])  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
971  | 
next  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
972  | 
show "?rhs \<Longrightarrow> ?lhs"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
973  | 
by (force intro: bij_betw_byWitness)  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
974  | 
qed  | 
| 
71857
 
d73955442df5
a few new lemmas about functions
 
paulson <lp15@cam.ac.uk> 
parents: 
71827 
diff
changeset
 | 
975  | 
|
| 63322 | 976  | 
abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)"
 | 
977  | 
where "the_inv f \<equiv> the_inv_into UNIV f"  | 
|
| 
32998
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
978  | 
|
| 64965 | 979  | 
lemma the_inv_f_f: "the_inv f (f x) = x" if "inj f"  | 
980  | 
using that UNIV_I by (rule the_inv_into_f_f)  | 
|
| 
32998
 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 
berghofe 
parents: 
32988 
diff
changeset
 | 
981  | 
|
| 
44277
 
bcb696533579
moved fundamental lemma fun_eq_iff to theory HOL; tuned whitespace
 
haftmann 
parents: 
43991 
diff
changeset
 | 
982  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
983  | 
subsection \<open>Monotonicity\<close>  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
984  | 
|
| 
75582
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
985  | 
definition monotone_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
986  | 
where "monotone_on A orda ordb f \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. orda x y \<longrightarrow> ordb (f x) (f y))"  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
987  | 
|
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
988  | 
abbreviation monotone :: "('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('b \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
989  | 
where "monotone \<equiv> monotone_on UNIV"  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
990  | 
|
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
991  | 
lemma monotone_def[no_atp]: "monotone orda ordb f \<longleftrightarrow> (\<forall>x y. orda x y \<longrightarrow> ordb (f x) (f y))"  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
992  | 
by (simp add: monotone_on_def)  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
993  | 
|
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
994  | 
text \<open>Lemma @{thm [source] monotone_def} is provided for backward compatibility.\<close>
 | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
995  | 
|
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
996  | 
lemma monotone_onI:  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
997  | 
"(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> orda x y \<Longrightarrow> ordb (f x) (f y)) \<Longrightarrow> monotone_on A orda ordb f"  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
998  | 
by (simp add: monotone_on_def)  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
999  | 
|
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1000  | 
lemma monotoneI[intro?]: "(\<And>x y. orda x y \<Longrightarrow> ordb (f x) (f y)) \<Longrightarrow> monotone orda ordb f"  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1001  | 
by (rule monotone_onI)  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1002  | 
|
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1003  | 
lemma monotone_onD:  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1004  | 
"monotone_on A orda ordb f \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> orda x y \<Longrightarrow> ordb (f x) (f y)"  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1005  | 
by (simp add: monotone_on_def)  | 
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1006  | 
|
| 
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1007  | 
lemma monotoneD[dest?]: "monotone orda ordb f \<Longrightarrow> orda x y \<Longrightarrow> ordb (f x) (f y)"  | 
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1008  | 
by (rule monotone_onD[of UNIV, simplified])  | 
| 
75582
 
6fb4a0829cc4
added predicate monotone_on and redefined monotone to be an abbreviation.
 
desharna 
parents: 
74123 
diff
changeset
 | 
1009  | 
|
| 
75583
 
451e17e0ba9d
added lemmas monotone_on_empty[simp] and monotone_on_subset
 
desharna 
parents: 
75582 
diff
changeset
 | 
1010  | 
lemma monotone_on_subset: "monotone_on A orda ordb f \<Longrightarrow> B \<subseteq> A \<Longrightarrow> monotone_on B orda ordb f"  | 
| 
 
451e17e0ba9d
added lemmas monotone_on_empty[simp] and monotone_on_subset
 
desharna 
parents: 
75582 
diff
changeset
 | 
1011  | 
by (auto intro: monotone_onI dest: monotone_onD)  | 
| 
 
451e17e0ba9d
added lemmas monotone_on_empty[simp] and monotone_on_subset
 
desharna 
parents: 
75582 
diff
changeset
 | 
1012  | 
|
| 
 
451e17e0ba9d
added lemmas monotone_on_empty[simp] and monotone_on_subset
 
desharna 
parents: 
75582 
diff
changeset
 | 
1013  | 
lemma monotone_on_empty[simp]: "monotone_on {} orda ordb f"
 | 
| 
 
451e17e0ba9d
added lemmas monotone_on_empty[simp] and monotone_on_subset
 
desharna 
parents: 
75582 
diff
changeset
 | 
1014  | 
by (auto intro: monotone_onI dest: monotone_onD)  | 
| 
 
451e17e0ba9d
added lemmas monotone_on_empty[simp] and monotone_on_subset
 
desharna 
parents: 
75582 
diff
changeset
 | 
1015  | 
|
| 75609 | 1016  | 
lemma monotone_on_o:  | 
1017  | 
assumes  | 
|
1018  | 
mono_f: "monotone_on A orda ordb f" and  | 
|
1019  | 
mono_g: "monotone_on B ordc orda g" and  | 
|
1020  | 
"g ` B \<subseteq> A"  | 
|
1021  | 
shows "monotone_on B ordc ordb (f \<circ> g)"  | 
|
1022  | 
proof (rule monotone_onI)  | 
|
1023  | 
fix x y assume "x \<in> B" and "y \<in> B" and "ordc x y"  | 
|
1024  | 
hence "orda (g x) (g y)"  | 
|
1025  | 
by (rule mono_g[THEN monotone_onD])  | 
|
1026  | 
moreover from \<open>g ` B \<subseteq> A\<close> \<open>x \<in> B\<close> \<open>y \<in> B\<close> have "g x \<in> A" and "g y \<in> A"  | 
|
1027  | 
unfolding image_subset_iff by simp_all  | 
|
1028  | 
ultimately show "ordb ((f \<circ> g) x) ((f \<circ> g) y)"  | 
|
1029  | 
using mono_f[THEN monotone_onD] by simp  | 
|
1030  | 
qed  | 
|
1031  | 
||
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1032  | 
subsubsection \<open>Specializations For @{class ord} Type Class And More\<close>
 | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1033  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1034  | 
context ord begin  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1035  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1036  | 
abbreviation mono_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b :: ord) \<Rightarrow> bool"
 | 
| 
75608
 
6c542e152b8a
redefined mono_on and strict_mono_on as an abbreviation of monotone_on
 
desharna 
parents: 
75607 
diff
changeset
 | 
1037  | 
where "mono_on A \<equiv> monotone_on A (\<le>) (\<le>)"  | 
| 
 
6c542e152b8a
redefined mono_on and strict_mono_on as an abbreviation of monotone_on
 
desharna 
parents: 
75607 
diff
changeset
 | 
1038  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1039  | 
abbreviation strict_mono_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b :: ord) \<Rightarrow> bool"
 | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1040  | 
where "strict_mono_on A \<equiv> monotone_on A (<) (<)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1041  | 
|
| 77934 | 1042  | 
abbreviation antimono_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b :: ord) \<Rightarrow> bool"
 | 
1043  | 
where "antimono_on A \<equiv> monotone_on A (\<le>) (\<ge>)"  | 
|
1044  | 
||
1045  | 
abbreviation strict_antimono_on :: "'a set \<Rightarrow> ('a \<Rightarrow> 'b :: ord) \<Rightarrow> bool"
 | 
|
1046  | 
where "strict_antimono_on A \<equiv> monotone_on A (<) (>)"  | 
|
1047  | 
||
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1048  | 
lemma mono_on_def[no_atp]: "mono_on A f \<longleftrightarrow> (\<forall>r s. r \<in> A \<and> s \<in> A \<and> r \<le> s \<longrightarrow> f r \<le> f s)"  | 
| 
75608
 
6c542e152b8a
redefined mono_on and strict_mono_on as an abbreviation of monotone_on
 
desharna 
parents: 
75607 
diff
changeset
 | 
1049  | 
by (auto simp add: monotone_on_def)  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1050  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1051  | 
lemma strict_mono_on_def[no_atp]:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1052  | 
"strict_mono_on A f \<longleftrightarrow> (\<forall>r s. r \<in> A \<and> s \<in> A \<and> r < s \<longrightarrow> f r < f s)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1053  | 
by (auto simp add: monotone_on_def)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1054  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1055  | 
text \<open>Lemmas @{thm [source] mono_on_def} and @{thm [source] strict_mono_on_def} are provided for
 | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1056  | 
backward compatibility.\<close>  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1057  | 
|
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1058  | 
lemma mono_onI:  | 
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1059  | 
"(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r \<le> s \<Longrightarrow> f r \<le> f s) \<Longrightarrow> mono_on A f"  | 
| 
75608
 
6c542e152b8a
redefined mono_on and strict_mono_on as an abbreviation of monotone_on
 
desharna 
parents: 
75607 
diff
changeset
 | 
1060  | 
by (rule monotone_onI)  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1061  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1062  | 
lemma strict_mono_onI:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1063  | 
"(\<And>r s. r \<in> A \<Longrightarrow> s \<in> A \<Longrightarrow> r < s \<Longrightarrow> f r < f s) \<Longrightarrow> strict_mono_on A f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1064  | 
by (rule monotone_onI)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1065  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1066  | 
lemma mono_onD: "\<lbrakk>mono_on A f; r \<in> A; s \<in> A; r \<le> s\<rbrakk> \<Longrightarrow> f r \<le> f s"  | 
| 
75608
 
6c542e152b8a
redefined mono_on and strict_mono_on as an abbreviation of monotone_on
 
desharna 
parents: 
75607 
diff
changeset
 | 
1067  | 
by (rule monotone_onD)  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1068  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1069  | 
lemma strict_mono_onD: "\<lbrakk>strict_mono_on A f; r \<in> A; s \<in> A; r < s\<rbrakk> \<Longrightarrow> f r < f s"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1070  | 
by (rule monotone_onD)  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1071  | 
|
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1072  | 
lemma mono_on_subset: "mono_on A f \<Longrightarrow> B \<subseteq> A \<Longrightarrow> mono_on B f"  | 
| 
75608
 
6c542e152b8a
redefined mono_on and strict_mono_on as an abbreviation of monotone_on
 
desharna 
parents: 
75607 
diff
changeset
 | 
1073  | 
by (rule monotone_on_subset)  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1074  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1075  | 
end  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1076  | 
|
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1077  | 
lemma mono_on_greaterD:  | 
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1078  | 
assumes "mono_on A g" "x \<in> A" "y \<in> A" "g x > (g (y::_::linorder) :: _ :: linorder)"  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1079  | 
shows "x > y"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1080  | 
proof (rule ccontr)  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1081  | 
assume "\<not>x > y"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1082  | 
hence "x \<le> y" by (simp add: not_less)  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1083  | 
from assms(1-3) and this have "g x \<le> g y" by (rule mono_onD)  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1084  | 
with assms(4) show False by simp  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1085  | 
qed  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1086  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1087  | 
context order begin  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1088  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1089  | 
abbreviation mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool"
 | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1090  | 
where "mono \<equiv> mono_on UNIV"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1091  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1092  | 
abbreviation strict_mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool"
 | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1093  | 
where "strict_mono \<equiv> strict_mono_on UNIV"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1094  | 
|
| 
76055
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1095  | 
abbreviation antimono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool"
 | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1096  | 
where "antimono \<equiv> monotone (\<le>) (\<lambda>x y. y \<le> x)"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1097  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1098  | 
lemma mono_def[no_atp]: "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1099  | 
by (simp add: monotone_on_def)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1100  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1101  | 
lemma strict_mono_def[no_atp]: "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1102  | 
by (simp add: monotone_on_def)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1103  | 
|
| 
76055
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1104  | 
lemma antimono_def[no_atp]: "antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1105  | 
by (simp add: monotone_on_def)  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1106  | 
|
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1107  | 
text \<open>Lemmas @{thm [source] mono_def}, @{thm [source] strict_mono_def}, and
 | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1108  | 
@{thm [source] antimono_def} are provided for backward compatibility.\<close>
 | 
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1109  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1110  | 
lemma monoI [intro?]: "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1111  | 
by (rule monotoneI)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1112  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1113  | 
lemma strict_monoI [intro?]: "(\<And>x y. x < y \<Longrightarrow> f x < f y) \<Longrightarrow> strict_mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1114  | 
by (rule monotoneI)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1115  | 
|
| 
76055
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1116  | 
lemma antimonoI [intro?]: "(\<And>x y. x \<le> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> antimono f"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1117  | 
by (rule monotoneI)  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1118  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1119  | 
lemma monoD [dest?]: "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1120  | 
by (rule monotoneD)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1121  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1122  | 
lemma strict_monoD [dest?]: "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1123  | 
by (rule monotoneD)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1124  | 
|
| 
76055
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1125  | 
lemma antimonoD [dest?]: "antimono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<ge> f y"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1126  | 
by (rule monotoneD)  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1127  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1128  | 
lemma monoE:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1129  | 
assumes "mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1130  | 
assumes "x \<le> y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1131  | 
obtains "f x \<le> f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1132  | 
proof  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1133  | 
from assms show "f x \<le> f y" by (simp add: mono_def)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1134  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1135  | 
|
| 
76055
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1136  | 
lemma antimonoE:  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1137  | 
fixes f :: "'a \<Rightarrow> 'b::order"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1138  | 
assumes "antimono f"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1139  | 
assumes "x \<le> y"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1140  | 
obtains "f x \<ge> f y"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1141  | 
proof  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1142  | 
from assms show "f x \<ge> f y" by (simp add: antimono_def)  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1143  | 
qed  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1144  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1145  | 
lemma mono_imp_mono_on: "mono f \<Longrightarrow> mono_on A f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1146  | 
by (rule monotone_on_subset[OF _ subset_UNIV])  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1147  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1148  | 
lemma strict_mono_mono [dest?]:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1149  | 
assumes "strict_mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1150  | 
shows "mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1151  | 
proof (rule monoI)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1152  | 
fix x y  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1153  | 
assume "x \<le> y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1154  | 
show "f x \<le> f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1155  | 
proof (cases "x = y")  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1156  | 
case True then show ?thesis by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1157  | 
next  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1158  | 
case False with \<open>x \<le> y\<close> have "x < y" by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1159  | 
with assms strict_monoD have "f x < f y" by auto  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1160  | 
then show ?thesis by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1161  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1162  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1163  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1164  | 
|
| 
79582
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1165  | 
lemma mono_on_ident: "mono_on S (\<lambda>x. x)"  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1166  | 
by (simp add: monotone_on_def)  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1167  | 
|
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1168  | 
lemma strict_mono_on_ident: "strict_mono_on S (\<lambda>x. x)"  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1169  | 
by (simp add: monotone_on_def)  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1170  | 
|
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1171  | 
lemma mono_on_const:  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1172  | 
fixes a :: "'b::order" shows "mono_on S (\<lambda>x. a)"  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1173  | 
by (simp add: mono_on_def)  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1174  | 
|
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1175  | 
lemma antimono_on_const:  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1176  | 
fixes a :: "'b::order" shows "antimono_on S (\<lambda>x. a)"  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1177  | 
by (simp add: monotone_on_def)  | 
| 
 
7822b55b26ce
Correct the definition of a convex function, and updated the proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
78258 
diff
changeset
 | 
1178  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1179  | 
end  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1180  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1181  | 
context linorder begin  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1182  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1183  | 
lemma mono_invE:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1184  | 
fixes f :: "'a \<Rightarrow> 'b::order"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1185  | 
assumes "mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1186  | 
assumes "f x < f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1187  | 
obtains "x \<le> y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1188  | 
proof  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1189  | 
show "x \<le> y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1190  | 
proof (rule ccontr)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1191  | 
assume "\<not> x \<le> y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1192  | 
then have "y \<le> x" by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1193  | 
with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1194  | 
with \<open>f x < f y\<close> show False by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1195  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1196  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1197  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1198  | 
lemma mono_strict_invE:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1199  | 
fixes f :: "'a \<Rightarrow> 'b::order"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1200  | 
assumes "mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1201  | 
assumes "f x < f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1202  | 
obtains "x < y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1203  | 
proof  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1204  | 
show "x < y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1205  | 
proof (rule ccontr)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1206  | 
assume "\<not> x < y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1207  | 
then have "y \<le> x" by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1208  | 
with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1209  | 
with \<open>f x < f y\<close> show False by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1210  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1211  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1212  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1213  | 
lemma strict_mono_eq:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1214  | 
assumes "strict_mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1215  | 
shows "f x = f y \<longleftrightarrow> x = y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1216  | 
proof  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1217  | 
assume "f x = f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1218  | 
show "x = y" proof (cases x y rule: linorder_cases)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1219  | 
case less with assms strict_monoD have "f x < f y" by auto  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1220  | 
with \<open>f x = f y\<close> show ?thesis by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1221  | 
next  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1222  | 
case equal then show ?thesis .  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1223  | 
next  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1224  | 
case greater with assms strict_monoD have "f y < f x" by auto  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1225  | 
with \<open>f x = f y\<close> show ?thesis by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1226  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1227  | 
qed simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1228  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1229  | 
lemma strict_mono_less_eq:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1230  | 
assumes "strict_mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1231  | 
shows "f x \<le> f y \<longleftrightarrow> x \<le> y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1232  | 
proof  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1233  | 
assume "x \<le> y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1234  | 
with assms strict_mono_mono monoD show "f x \<le> f y" by auto  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1235  | 
next  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1236  | 
assume "f x \<le> f y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1237  | 
show "x \<le> y" proof (rule ccontr)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1238  | 
assume "\<not> x \<le> y" then have "y < x" by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1239  | 
with assms strict_monoD have "f y < f x" by auto  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1240  | 
with \<open>f x \<le> f y\<close> show False by simp  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1241  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1242  | 
qed  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1243  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1244  | 
lemma strict_mono_less:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1245  | 
assumes "strict_mono f"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1246  | 
shows "f x < f y \<longleftrightarrow> x < y"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1247  | 
using assms  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1248  | 
by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1249  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1250  | 
end  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1251  | 
|
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1252  | 
lemma strict_mono_inv:  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1253  | 
  fixes f :: "('a::linorder) \<Rightarrow> ('b::linorder)"
 | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1254  | 
assumes "strict_mono f" and "surj f" and inv: "\<And>x. g (f x) = x"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1255  | 
shows "strict_mono g"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1256  | 
proof  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1257  | 
fix x y :: 'b assume "x < y"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1258  | 
from \<open>surj f\<close> obtain x' y' where [simp]: "x = f x'" "y = f y'" by blast  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1259  | 
with \<open>x < y\<close> and \<open>strict_mono f\<close> have "x' < y'" by (simp add: strict_mono_less)  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1260  | 
with inv show "g x < g y" by simp  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1261  | 
qed  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1262  | 
|
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1263  | 
lemma strict_mono_on_imp_inj_on:  | 
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1264  | 
assumes "strict_mono_on A (f :: (_ :: linorder) \<Rightarrow> (_ :: preorder))"  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1265  | 
shows "inj_on f A"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1266  | 
proof (rule inj_onI)  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1267  | 
fix x y assume "x \<in> A" "y \<in> A" "f x = f y"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1268  | 
thus "x = y"  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1269  | 
by (cases x y rule: linorder_cases)  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1270  | 
(auto dest: strict_mono_onD[OF assms, of x y] strict_mono_onD[OF assms, of y x])  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1271  | 
qed  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1272  | 
|
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1273  | 
lemma strict_mono_on_leD:  | 
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1274  | 
assumes "strict_mono_on A (f :: (_ :: linorder) \<Rightarrow> _ :: preorder)" "x \<in> A" "y \<in> A" "x \<le> y"  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1275  | 
shows "f x \<le> f y"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1276  | 
proof (cases "x = y")  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1277  | 
case True  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1278  | 
then show ?thesis by simp  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1279  | 
next  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1280  | 
case False  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1281  | 
with assms have "f x < f y"  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1282  | 
using strict_mono_onD[OF assms(1)] by simp  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1283  | 
then show ?thesis by (rule less_imp_le)  | 
| 
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1284  | 
qed  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1285  | 
|
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1286  | 
lemma strict_mono_on_eqD:  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1287  | 
fixes f :: "(_ :: linorder) \<Rightarrow> (_ :: preorder)"  | 
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1288  | 
assumes "strict_mono_on A f" "f x = f y" "x \<in> A" "y \<in> A"  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1289  | 
shows "y = x"  | 
| 
75669
 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 
Fabian Huch <huch@in.tum.de> 
parents: 
75624 
diff
changeset
 | 
1290  | 
using assms by (cases rule: linorder_cases) (auto dest: strict_mono_onD)  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1291  | 
|
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1292  | 
lemma strict_mono_on_imp_mono_on:  | 
| 
75607
 
3c544d64c218
changed argument order of mono_on and strict_mono_on to uniformize with monotone_on and other predicates
 
desharna 
parents: 
75583 
diff
changeset
 | 
1293  | 
"strict_mono_on A (f :: (_ :: linorder) \<Rightarrow> _ :: preorder) \<Longrightarrow> mono_on A f"  | 
| 
71472
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1294  | 
by (rule mono_onI, rule strict_mono_on_leD)  | 
| 
 
c213d067e60f
Moved a number of general-purpose lemmas into HOL
 
paulson <lp15@cam.ac.uk> 
parents: 
71464 
diff
changeset
 | 
1295  | 
|
| 77934 | 1296  | 
lemma mono_imp_strict_mono:  | 
1297  | 
fixes f :: "'a::order \<Rightarrow> 'b::order"  | 
|
1298  | 
shows "\<lbrakk>mono_on S f; inj_on f S\<rbrakk> \<Longrightarrow> strict_mono_on S f"  | 
|
1299  | 
by (auto simp add: monotone_on_def order_less_le inj_on_eq_iff)  | 
|
1300  | 
||
1301  | 
lemma strict_mono_iff_mono:  | 
|
1302  | 
fixes f :: "'a::linorder \<Rightarrow> 'b::order"  | 
|
1303  | 
shows "strict_mono_on S f \<longleftrightarrow> mono_on S f \<and> inj_on f S"  | 
|
1304  | 
proof  | 
|
1305  | 
show "strict_mono_on S f \<Longrightarrow> mono_on S f \<and> inj_on f S"  | 
|
1306  | 
by (simp add: strict_mono_on_imp_inj_on strict_mono_on_imp_mono_on)  | 
|
1307  | 
qed (auto intro: mono_imp_strict_mono)  | 
|
1308  | 
||
1309  | 
lemma antimono_imp_strict_antimono:  | 
|
1310  | 
fixes f :: "'a::order \<Rightarrow> 'b::order"  | 
|
1311  | 
shows "\<lbrakk>antimono_on S f; inj_on f S\<rbrakk> \<Longrightarrow> strict_antimono_on S f"  | 
|
1312  | 
by (auto simp add: monotone_on_def order_less_le inj_on_eq_iff)  | 
|
1313  | 
||
1314  | 
lemma strict_antimono_iff_antimono:  | 
|
1315  | 
fixes f :: "'a::linorder \<Rightarrow> 'b::order"  | 
|
1316  | 
shows "strict_antimono_on S f \<longleftrightarrow> antimono_on S f \<and> inj_on f S"  | 
|
1317  | 
proof  | 
|
1318  | 
show "strict_antimono_on S f \<Longrightarrow> antimono_on S f \<and> inj_on f S"  | 
|
1319  | 
by (force simp add: monotone_on_def intro: linorder_inj_onI)  | 
|
1320  | 
qed (auto intro: antimono_imp_strict_antimono)  | 
|
1321  | 
||
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1322  | 
lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1323  | 
unfolding mono_def le_fun_def by auto  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1324  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1325  | 
lemma mono_add:  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1326  | 
fixes a :: "'a::ordered_ab_semigroup_add"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1327  | 
shows "mono ((+) a)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1328  | 
by (simp add: add_left_mono monoI)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1329  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1330  | 
lemma (in semilattice_inf) mono_inf: "mono f \<Longrightarrow> f (A \<sqinter> B) \<le> f A \<sqinter> f B"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1331  | 
for f :: "'a \<Rightarrow> 'b::semilattice_inf"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1332  | 
by (auto simp add: mono_def intro: Lattices.inf_greatest)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1333  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1334  | 
lemma (in semilattice_sup) mono_sup: "mono f \<Longrightarrow> f A \<squnion> f B \<le> f (A \<squnion> B)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1335  | 
for f :: "'a \<Rightarrow> 'b::semilattice_sup"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1336  | 
by (auto simp add: mono_def intro: Lattices.sup_least)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1337  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1338  | 
lemma (in linorder) min_of_mono: "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1339  | 
by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1340  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1341  | 
lemma (in linorder) max_of_mono: "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1342  | 
by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1343  | 
|
| 
76055
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1344  | 
lemma (in linorder)  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1345  | 
max_of_antimono: "antimono f \<Longrightarrow> max (f x) (f y) = f (min x y)" and  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1346  | 
min_of_antimono: "antimono f \<Longrightarrow> min (f x) (f y) = f (max x y)"  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1347  | 
by (auto simp: antimono_def Orderings.max_def max_def Orderings.min_def min_def intro!: antisym)  | 
| 
 
8d56461f85ec
moved antimono to Fun and redefined it as an abbreviation
 
desharna 
parents: 
76054 
diff
changeset
 | 
1348  | 
|
| 
76054
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1349  | 
lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1350  | 
by (auto intro!: inj_onI dest: strict_mono_eq)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1351  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1352  | 
lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1353  | 
by (fact mono_inf)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1354  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1355  | 
lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1356  | 
by (fact mono_sup)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1357  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1358  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1359  | 
subsubsection \<open>Least value operator\<close>  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1360  | 
|
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1361  | 
lemma Least_mono: "mono f \<Longrightarrow> \<exists>x\<in>S. \<forall>y\<in>S. x \<le> y \<Longrightarrow> (LEAST y. y \<in> f ` S) = f (LEAST x. x \<in> S)"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1362  | 
for f :: "'a::order \<Rightarrow> 'b::order"  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1363  | 
\<comment> \<open>Courtesy of Stephan Merz\<close>  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1364  | 
apply clarify  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1365  | 
apply (erule_tac P = "\<lambda>x. x \<in> S" in LeastI2_order)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1366  | 
apply fast  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1367  | 
apply (rule LeastI2_order)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1368  | 
apply (auto elim: monoD intro!: order_antisym)  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1369  | 
done  | 
| 
 
a4b47c684445
moved mono and strict_mono to Fun and redefined them as abbreviations
 
desharna 
parents: 
75624 
diff
changeset
 | 
1370  | 
|
| 63322 | 1371  | 
|
| 61204 | 1372  | 
subsection \<open>Setup\<close>  | 
| 40969 | 1373  | 
|
| 60758 | 1374  | 
subsubsection \<open>Proof tools\<close>  | 
| 22845 | 1375  | 
|
| 63400 | 1376  | 
text \<open>Simplify terms of the form \<open>f(\<dots>,x:=y,\<dots>,x:=z,\<dots>)\<close> to \<open>f(\<dots>,x:=z,\<dots>)\<close>\<close>  | 
| 22845 | 1377  | 
|
| 
78099
 
4d9349989d94
more uniform simproc_setup: avoid vacuous abstraction over morphism, which sometimes captures context values in its functional closure;
 
wenzelm 
parents: 
77934 
diff
changeset
 | 
1378  | 
simproc_setup fun_upd2 ("f(v := w, x := y)") = \<open>
 | 
| 63322 | 1379  | 
let  | 
1380  | 
fun gen_fun_upd NONE T _ _ = NONE  | 
|
| 69593 | 1381  | 
| gen_fun_upd (SOME f) T x y = SOME (Const (\<^const_name>\<open>fun_upd\<close>, T) $ f $ x $ y)  | 
| 63322 | 1382  | 
fun dest_fun_T1 (Type (_, T :: Ts)) = T  | 
| 69593 | 1383  | 
fun find_double (t as Const (\<^const_name>\<open>fun_upd\<close>,T) $ f $ x $ y) =  | 
| 63322 | 1384  | 
let  | 
| 69593 | 1385  | 
fun find (Const (\<^const_name>\<open>fun_upd\<close>,T) $ g $ v $ w) =  | 
| 63322 | 1386  | 
if v aconv x then SOME g else gen_fun_upd (find g) T v w  | 
1387  | 
| find t = NONE  | 
|
1388  | 
in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end  | 
|
| 24017 | 1389  | 
|
| 69593 | 1390  | 
val ss = simpset_of \<^context>  | 
| 
51717
 
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
 
wenzelm 
parents: 
51598 
diff
changeset
 | 
1391  | 
|
| 63322 | 1392  | 
fun proc ctxt ct =  | 
1393  | 
let  | 
|
1394  | 
val t = Thm.term_of ct  | 
|
1395  | 
in  | 
|
| 63400 | 1396  | 
(case find_double t of  | 
| 63322 | 1397  | 
(T, NONE) => NONE  | 
1398  | 
| (T, SOME rhs) =>  | 
|
1399  | 
SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs))  | 
|
1400  | 
(fn _ =>  | 
|
1401  | 
resolve_tac ctxt [eq_reflection] 1 THEN  | 
|
1402  | 
                resolve_tac ctxt @{thms ext} 1 THEN
 | 
|
| 63400 | 1403  | 
simp_tac (put_simpset ss ctxt) 1)))  | 
| 63322 | 1404  | 
end  | 
| 
78099
 
4d9349989d94
more uniform simproc_setup: avoid vacuous abstraction over morphism, which sometimes captures context values in its functional closure;
 
wenzelm 
parents: 
77934 
diff
changeset
 | 
1405  | 
in K proc end  | 
| 60758 | 1406  | 
\<close>  | 
| 22845 | 1407  | 
|
1408  | 
||
| 60758 | 1409  | 
subsubsection \<open>Functorial structure of types\<close>  | 
| 40969 | 1410  | 
|
| 69605 | 1411  | 
ML_file \<open>Tools/functor.ML\<close>  | 
| 40969 | 1412  | 
|
| 
55467
 
a5c9002bc54d
renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
 
blanchet 
parents: 
55414 
diff
changeset
 | 
1413  | 
functor map_fun: map_fun  | 
| 
47488
 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 
haftmann 
parents: 
46950 
diff
changeset
 | 
1414  | 
by (simp_all add: fun_eq_iff)  | 
| 
 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 
haftmann 
parents: 
46950 
diff
changeset
 | 
1415  | 
|
| 
55467
 
a5c9002bc54d
renamed 'enriched_type' to more informative 'functor' (following the renaming of enriched type constructors to bounded natural functors)
 
blanchet 
parents: 
55414 
diff
changeset
 | 
1416  | 
functor vimage  | 
| 49739 | 1417  | 
by (simp_all add: fun_eq_iff vimage_comp)  | 
1418  | 
||
| 63322 | 1419  | 
|
| 60758 | 1420  | 
text \<open>Legacy theorem names\<close>  | 
| 49739 | 1421  | 
|
1422  | 
lemmas o_def = comp_def  | 
|
1423  | 
lemmas o_apply = comp_apply  | 
|
1424  | 
lemmas o_assoc = comp_assoc [symmetric]  | 
|
1425  | 
lemmas id_o = id_comp  | 
|
1426  | 
lemmas o_id = comp_id  | 
|
1427  | 
lemmas o_eq_dest = comp_eq_dest  | 
|
1428  | 
lemmas o_eq_elim = comp_eq_elim  | 
|
| 55066 | 1429  | 
lemmas o_eq_dest_lhs = comp_eq_dest_lhs  | 
1430  | 
lemmas o_eq_id_dest = comp_eq_id_dest  | 
|
| 
47488
 
be6dd389639d
centralized enriched_type declaration, thanks to in-situ available Isar commands
 
haftmann 
parents: 
46950 
diff
changeset
 | 
1431  | 
|
| 2912 | 1432  | 
end  |