author | wenzelm |
Mon, 30 Mar 2009 22:38:50 +0200 | |
changeset 30804 | dbdb74be8dde |
parent 30663 | 0b6aff7451b2 |
child 31459 | ae39b7b2a68a |
permissions | -rw-r--r-- |
29708 | 1 |
(* Title: HOL/Library/Mapping.thy |
2 |
Author: Florian Haftmann, TU Muenchen |
|
3 |
*) |
|
4 |
||
5 |
header {* An abstract view on maps for code generation. *} |
|
6 |
||
7 |
theory Mapping |
|
30663
0b6aff7451b2
Main is (Complex_Main) base entry point in library theories
haftmann
parents:
29831
diff
changeset
|
8 |
imports Map Main |
29708 | 9 |
begin |
10 |
||
11 |
subsection {* Type definition and primitive operations *} |
|
12 |
||
13 |
datatype ('a, 'b) map = Map "'a \<rightharpoonup> 'b" |
|
14 |
||
15 |
definition empty :: "('a, 'b) map" where |
|
16 |
"empty = Map (\<lambda>_. None)" |
|
17 |
||
18 |
primrec lookup :: "('a, 'b) map \<Rightarrow> 'a \<rightharpoonup> 'b" where |
|
19 |
"lookup (Map f) = f" |
|
20 |
||
21 |
primrec update :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) map \<Rightarrow> ('a, 'b) map" where |
|
22 |
"update k v (Map f) = Map (f (k \<mapsto> v))" |
|
23 |
||
24 |
primrec delete :: "'a \<Rightarrow> ('a, 'b) map \<Rightarrow> ('a, 'b) map" where |
|
25 |
"delete k (Map f) = Map (f (k := None))" |
|
26 |
||
27 |
primrec keys :: "('a, 'b) map \<Rightarrow> 'a set" where |
|
28 |
"keys (Map f) = dom f" |
|
29 |
||
30 |
||
31 |
subsection {* Derived operations *} |
|
32 |
||
33 |
definition size :: "('a, 'b) map \<Rightarrow> nat" where |
|
34 |
"size m = (if finite (keys m) then card (keys m) else 0)" |
|
35 |
||
29814 | 36 |
definition replace :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) map \<Rightarrow> ('a, 'b) map" where |
37 |
"replace k v m = (if lookup m k = None then m else update k v m)" |
|
38 |
||
29708 | 39 |
definition tabulate :: "'a list \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) map" where |
40 |
"tabulate ks f = Map (map_of (map (\<lambda>k. (k, f k)) ks))" |
|
41 |
||
29826 | 42 |
definition bulkload :: "'a list \<Rightarrow> (nat, 'a) map" where |
43 |
"bulkload xs = Map (\<lambda>k. if k < length xs then Some (xs ! k) else None)" |
|
44 |
||
29708 | 45 |
|
46 |
subsection {* Properties *} |
|
47 |
||
48 |
lemma lookup_inject: |
|
49 |
"lookup m = lookup n \<longleftrightarrow> m = n" |
|
50 |
by (cases m, cases n) simp |
|
51 |
||
52 |
lemma lookup_empty [simp]: |
|
53 |
"lookup empty = Map.empty" |
|
54 |
by (simp add: empty_def) |
|
55 |
||
56 |
lemma lookup_update [simp]: |
|
57 |
"lookup (update k v m) = (lookup m) (k \<mapsto> v)" |
|
58 |
by (cases m) simp |
|
59 |
||
60 |
lemma lookup_delete: |
|
61 |
"lookup (delete k m) k = None" |
|
62 |
"k \<noteq> l \<Longrightarrow> lookup (delete k m) l = lookup m l" |
|
63 |
by (cases m, simp)+ |
|
64 |
||
65 |
lemma lookup_tabulate: |
|
66 |
"lookup (tabulate ks f) = (Some o f) |` set ks" |
|
67 |
by (induct ks) (auto simp add: tabulate_def restrict_map_def expand_fun_eq) |
|
68 |
||
29826 | 69 |
lemma lookup_bulkload: |
70 |
"lookup (bulkload xs) = (\<lambda>k. if k < length xs then Some (xs ! k) else None)" |
|
71 |
unfolding bulkload_def by simp |
|
72 |
||
29708 | 73 |
lemma update_update: |
74 |
"update k v (update k w m) = update k v m" |
|
75 |
"k \<noteq> l \<Longrightarrow> update k v (update l w m) = update l w (update k v m)" |
|
76 |
by (cases m, simp add: expand_fun_eq)+ |
|
77 |
||
29814 | 78 |
lemma replace_update: |
79 |
"lookup m k = None \<Longrightarrow> replace k v m = m" |
|
80 |
"lookup m k \<noteq> None \<Longrightarrow> replace k v m = update k v m" |
|
81 |
by (auto simp add: replace_def) |
|
82 |
||
29708 | 83 |
lemma delete_empty [simp]: |
84 |
"delete k empty = empty" |
|
85 |
by (simp add: empty_def) |
|
86 |
||
87 |
lemma delete_update: |
|
88 |
"delete k (update k v m) = delete k m" |
|
89 |
"k \<noteq> l \<Longrightarrow> delete k (update l v m) = update l v (delete k m)" |
|
90 |
by (cases m, simp add: expand_fun_eq)+ |
|
91 |
||
92 |
lemma update_delete [simp]: |
|
93 |
"update k v (delete k m) = update k v m" |
|
94 |
by (cases m) simp |
|
95 |
||
96 |
lemma keys_empty [simp]: |
|
97 |
"keys empty = {}" |
|
98 |
unfolding empty_def by simp |
|
99 |
||
100 |
lemma keys_update [simp]: |
|
101 |
"keys (update k v m) = insert k (keys m)" |
|
102 |
by (cases m) simp |
|
103 |
||
104 |
lemma keys_delete [simp]: |
|
105 |
"keys (delete k m) = keys m - {k}" |
|
106 |
by (cases m) simp |
|
107 |
||
108 |
lemma keys_tabulate [simp]: |
|
109 |
"keys (tabulate ks f) = set ks" |
|
110 |
by (auto simp add: tabulate_def dest: map_of_SomeD intro!: weak_map_of_SomeI) |
|
111 |
||
112 |
lemma size_empty [simp]: |
|
113 |
"size empty = 0" |
|
114 |
by (simp add: size_def keys_empty) |
|
115 |
||
116 |
lemma size_update: |
|
117 |
"finite (keys m) \<Longrightarrow> size (update k v m) = |
|
118 |
(if k \<in> keys m then size m else Suc (size m))" |
|
119 |
by (simp add: size_def keys_update) |
|
120 |
(auto simp only: card_insert card_Suc_Diff1) |
|
121 |
||
122 |
lemma size_delete: |
|
123 |
"size (delete k m) = (if k \<in> keys m then size m - 1 else size m)" |
|
124 |
by (simp add: size_def keys_delete) |
|
125 |
||
126 |
lemma size_tabulate: |
|
127 |
"size (tabulate ks f) = length (remdups ks)" |
|
128 |
by (simp add: size_def keys_tabulate distinct_card [of "remdups ks", symmetric]) |
|
129 |
||
29831 | 130 |
lemma bulkload_tabulate: |
29826 | 131 |
"bulkload xs = tabulate [0..<length xs] (nth xs)" |
29831 | 132 |
by (rule sym) |
133 |
(auto simp add: bulkload_def tabulate_def expand_fun_eq map_of_eq_None_iff map_compose [symmetric] comp_def) |
|
29826 | 134 |
|
29708 | 135 |
end |