| author | nipkow | 
| Mon, 16 Aug 2004 14:21:54 +0200 | |
| changeset 15130 | dc6be28d7f4e | 
| parent 14981 | e73f8140af78 | 
| child 15392 | 290bc97038c7 | 
| permissions | -rw-r--r-- | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
1  | 
(* Title: HOL/Quadratic_Reciprocity/Quadratic_Reciprocity.thy  | 
| 14981 | 2  | 
ID: $Id$  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
3  | 
Authors: Jeremy Avigad, David Gray, and Adam Kramer  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
4  | 
*)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
5  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
6  | 
header {* The law of Quadratic reciprocity *}
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
7  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
8  | 
theory Quadratic_Reciprocity = Gauss:;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
9  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
10  | 
(***************************************************************)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
11  | 
(* *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
12  | 
(* Lemmas leading up to the proof of theorem 3.3 in *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
13  | 
(* Niven and Zuckerman's presentation *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
14  | 
(* *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
15  | 
(***************************************************************)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
16  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
17  | 
lemma (in GAUSS) QRLemma1: "a * setsum id A =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
18  | 
p * setsum (%x. ((x * a) div p)) A + setsum id D + setsum id E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
19  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
20  | 
from finite_A have "a * setsum id A = setsum (%x. a * x) A";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
21  | 
by (auto simp add: setsum_const_mult id_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
22  | 
also have "setsum (%x. a * x) = setsum (%x. x * a)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
23  | 
by (auto simp add: zmult_commute)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
24  | 
also; have "setsum (%x. x * a) A = setsum id B";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
25  | 
by (auto simp add: B_def sum_prop_id finite_A inj_on_xa_A)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
26  | 
also have "... = setsum (%x. p * (x div p) + StandardRes p x) B";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
27  | 
apply (rule setsum_same_function)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
28  | 
by (auto simp add: finite_B StandardRes_def zmod_zdiv_equality)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
29  | 
also have "... = setsum (%x. p * (x div p)) B + setsum (StandardRes p) B";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
30  | 
by (rule setsum_addf)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
31  | 
also; have "setsum (StandardRes p) B = setsum id C";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
32  | 
by (auto simp add: C_def sum_prop_id [THEN sym] finite_B  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
33  | 
SR_B_inj)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
34  | 
also; from C_eq have "... = setsum id (D \<union> E)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
35  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
36  | 
also; from finite_D finite_E have "... = setsum id D + setsum id E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
37  | 
apply (rule setsum_Un_disjoint)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
38  | 
by (auto simp add: D_def E_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
39  | 
also have "setsum (%x. p * (x div p)) B =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
40  | 
setsum ((%x. p * (x div p)) o (%x. (x * a))) A";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
41  | 
by (auto simp add: B_def sum_prop finite_A inj_on_xa_A)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
42  | 
also have "... = setsum (%x. p * ((x * a) div p)) A";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
43  | 
by (auto simp add: o_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
44  | 
also from finite_A have "setsum (%x. p * ((x * a) div p)) A =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
45  | 
p * setsum (%x. ((x * a) div p)) A";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
46  | 
by (auto simp add: setsum_const_mult)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
47  | 
finally show ?thesis by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
48  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
49  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
50  | 
lemma (in GAUSS) QRLemma2: "setsum id A = p * int (card E) - setsum id E +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
51  | 
setsum id D";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
52  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
53  | 
from F_Un_D_eq_A have "setsum id A = setsum id (D \<union> F)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
54  | 
by (simp add: Un_commute)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
55  | 
also from F_D_disj finite_D finite_F have  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
56  | 
"... = setsum id D + setsum id F";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
57  | 
apply (simp add: Int_commute)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
58  | 
by (intro setsum_Un_disjoint)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
59  | 
also from F_def have "F = (%x. (p - x)) ` E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
60  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
61  | 
also from finite_E inj_on_pminusx_E have "setsum id ((%x. (p - x)) ` E) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
62  | 
setsum (%x. (p - x)) E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
63  | 
by (auto simp add: sum_prop)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
64  | 
also from finite_E have "setsum (op - p) E = setsum (%x. p) E - setsum id E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
65  | 
by (auto simp add: setsum_minus id_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
66  | 
also from finite_E have "setsum (%x. p) E = p * int(card E)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
67  | 
by (intro setsum_const)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
68  | 
finally show ?thesis;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
69  | 
by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
70  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
71  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
72  | 
lemma (in GAUSS) QRLemma3: "(a - 1) * setsum id A =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
73  | 
p * (setsum (%x. ((x * a) div p)) A - int(card E)) + 2 * setsum id E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
74  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
75  | 
have "(a - 1) * setsum id A = a * setsum id A - setsum id A";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
76  | 
by (auto simp add: zdiff_zmult_distrib)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
77  | 
also note QRLemma1;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
78  | 
also; from QRLemma2 have "p * (\<Sum>x \<in> A. x * a div p) + setsum id D +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
79  | 
setsum id E - setsum id A =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
80  | 
p * (\<Sum>x \<in> A. x * a div p) + setsum id D +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
81  | 
setsum id E - (p * int (card E) - setsum id E + setsum id D)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
82  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
83  | 
also; have "... = p * (\<Sum>x \<in> A. x * a div p) -  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
84  | 
p * int (card E) + 2 * setsum id E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
85  | 
by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
86  | 
finally show ?thesis;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
87  | 
by (auto simp only: zdiff_zmult_distrib2)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
88  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
89  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
90  | 
lemma (in GAUSS) QRLemma4: "a \<in> zOdd ==>  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
91  | 
(setsum (%x. ((x * a) div p)) A \<in> zEven) = (int(card E): zEven)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
92  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
93  | 
assume a_odd: "a \<in> zOdd";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
94  | 
from QRLemma3 have a: "p * (setsum (%x. ((x * a) div p)) A - int(card E)) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
95  | 
(a - 1) * setsum id A - 2 * setsum id E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
96  | 
by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
97  | 
from a_odd have "a - 1 \<in> zEven"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
98  | 
by (rule odd_minus_one_even)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
99  | 
hence "(a - 1) * setsum id A \<in> zEven";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
100  | 
by (rule even_times_either)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
101  | 
moreover have "2 * setsum id E \<in> zEven";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
102  | 
by (auto simp add: zEven_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
103  | 
ultimately have "(a - 1) * setsum id A - 2 * setsum id E \<in> zEven"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
104  | 
by (rule even_minus_even)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
105  | 
with a have "p * (setsum (%x. ((x * a) div p)) A - int(card E)): zEven";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
106  | 
by simp  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
107  | 
hence "p \<in> zEven | (setsum (%x. ((x * a) div p)) A - int(card E)): zEven";  | 
| 14434 | 108  | 
by (rule EvenOdd.even_product)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
109  | 
with p_odd have "(setsum (%x. ((x * a) div p)) A - int(card E)): zEven";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
110  | 
by (auto simp add: odd_iff_not_even)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
111  | 
thus ?thesis;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
112  | 
by (auto simp only: even_diff [THEN sym])  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
113  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
114  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
115  | 
lemma (in GAUSS) QRLemma5: "a \<in> zOdd ==>  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
116  | 
(-1::int)^(card E) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
117  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
118  | 
assume "a \<in> zOdd";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
119  | 
from QRLemma4 have  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
120  | 
"(int(card E): zEven) = (setsum (%x. ((x * a) div p)) A \<in> zEven)";..;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
121  | 
moreover have "0 \<le> int(card E)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
122  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
123  | 
moreover have "0 \<le> setsum (%x. ((x * a) div p)) A";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
124  | 
proof (intro setsum_non_neg);  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
125  | 
from finite_A show "finite A";.;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
126  | 
next show "\<forall>x \<in> A. 0 \<le> x * a div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
127  | 
proof;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
128  | 
fix x;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
129  | 
assume "x \<in> A";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
130  | 
then have "0 \<le> x";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
131  | 
by (auto simp add: A_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
132  | 
with a_nonzero have "0 \<le> x * a";  | 
| 
14353
 
79f9fbef9106
Added lemmas to Ring_and_Field with slightly modified simplification rules
 
paulson 
parents: 
13871 
diff
changeset
 | 
133  | 
by (auto simp add: zero_le_mult_iff)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
134  | 
with p_g_2 show "0 \<le> x * a div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
135  | 
by (auto simp add: pos_imp_zdiv_nonneg_iff)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
136  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
137  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
138  | 
ultimately have "(-1::int)^nat((int (card E))) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
139  | 
(-1)^nat(((\<Sum>x \<in> A. x * a div p)))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
140  | 
by (intro neg_one_power_parity, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
141  | 
also have "nat (int(card E)) = card E";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
142  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
143  | 
finally show ?thesis;.;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
144  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
145  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
146  | 
lemma MainQRLemma: "[| a \<in> zOdd; 0 < a; ~([a = 0] (mod p));p \<in> zprime; 2 < p;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
147  | 
  A = {x. 0 < x & x \<le> (p - 1) div 2} |] ==> 
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
148  | 
(Legendre a p) = (-1::int)^(nat(setsum (%x. ((x * a) div p)) A))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
149  | 
apply (subst GAUSS.gauss_lemma)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
150  | 
apply (auto simp add: GAUSS_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
151  | 
apply (subst GAUSS.QRLemma5)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
152  | 
by (auto simp add: GAUSS_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
153  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
154  | 
(******************************************************************)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
155  | 
(* *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
156  | 
(* Stuff about S, S1 and S2... *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
157  | 
(* *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
158  | 
(******************************************************************)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
159  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
160  | 
locale QRTEMP =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
161  | 
fixes p :: "int"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
162  | 
fixes q :: "int"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
163  | 
fixes P_set :: "int set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
164  | 
fixes Q_set :: "int set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
165  | 
fixes S :: "(int * int) set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
166  | 
fixes S1 :: "(int * int) set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
167  | 
fixes S2 :: "(int * int) set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
168  | 
fixes f1 :: "int => (int * int) set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
169  | 
fixes f2 :: "int => (int * int) set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
170  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
171  | 
assumes p_prime: "p \<in> zprime"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
172  | 
assumes p_g_2: "2 < p"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
173  | 
assumes q_prime: "q \<in> zprime"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
174  | 
assumes q_g_2: "2 < q"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
175  | 
assumes p_neq_q: "p \<noteq> q"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
176  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
177  | 
  defines P_set_def: "P_set == {x. 0 < x & x \<le> ((p - 1) div 2) }"
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
178  | 
  defines Q_set_def: "Q_set == {x. 0 < x & x \<le> ((q - 1) div 2) }"
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
179  | 
defines S_def: "S == P_set <*> Q_set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
180  | 
  defines S1_def:    "S1    == { (x, y). (x, y):S & ((p * y) < (q * x)) }"
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
181  | 
  defines S2_def:    "S2    == { (x, y). (x, y):S & ((q * x) < (p * y)) }"
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
182  | 
  defines f1_def:    "f1 j  == { (j1, y). (j1, y):S & j1 = j & 
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
183  | 
(y \<le> (q * j) div p) }"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
184  | 
  defines f2_def:    "f2 j  == { (x, j1). (x, j1):S & j1 = j & 
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
185  | 
(x \<le> (p * j) div q) }";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
186  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
187  | 
lemma (in QRTEMP) p_fact: "0 < (p - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
188  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
189  | 
from prems have "2 < p" by (simp add: QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
190  | 
then have "2 \<le> p - 1" by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
191  | 
then have "2 div 2 \<le> (p - 1) div 2" by (rule zdiv_mono1, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
192  | 
then show ?thesis by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
193  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
194  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
195  | 
lemma (in QRTEMP) q_fact: "0 < (q - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
196  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
197  | 
from prems have "2 < q" by (simp add: QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
198  | 
then have "2 \<le> q - 1" by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
199  | 
then have "2 div 2 \<le> (q - 1) div 2" by (rule zdiv_mono1, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
200  | 
then show ?thesis by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
201  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
202  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
203  | 
lemma (in QRTEMP) pb_neq_qa: "[|1 \<le> b; b \<le> (q - 1) div 2 |] ==>  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
204  | 
(p * b \<noteq> q * a)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
205  | 
proof;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
206  | 
assume "p * b = q * a" and "1 \<le> b" and "b \<le> (q - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
207  | 
then have "q dvd (p * b)" by (auto simp add: dvd_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
208  | 
with q_prime p_g_2 have "q dvd p | q dvd b";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
209  | 
by (auto simp add: zprime_zdvd_zmult)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
210  | 
moreover have "~ (q dvd p)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
211  | 
proof;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
212  | 
assume "q dvd p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
213  | 
with p_prime have "q = 1 | q = p"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
214  | 
apply (auto simp add: zprime_def QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
215  | 
apply (drule_tac x = q and R = False in allE)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
216  | 
apply (simp add: QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
217  | 
apply (subgoal_tac "0 \<le> q", simp add: QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
218  | 
apply (insert prems)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
219  | 
by (auto simp add: QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
220  | 
with q_g_2 p_neq_q show False by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
221  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
222  | 
ultimately have "q dvd b" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
223  | 
then have "q \<le> b";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
224  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
225  | 
assume "q dvd b";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
226  | 
moreover from prems have "0 < b" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
227  | 
ultimately show ?thesis by (insert zdvd_bounds [of q b], auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
228  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
229  | 
with prems have "q \<le> (q - 1) div 2" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
230  | 
then have "2 * q \<le> 2 * ((q - 1) div 2)" by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
231  | 
then have "2 * q \<le> q - 1";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
232  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
233  | 
assume "2 * q \<le> 2 * ((q - 1) div 2)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
234  | 
with prems have "q \<in> zOdd" by (auto simp add: QRTEMP_def zprime_zOdd_eq_grt_2)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
235  | 
with odd_minus_one_even have "(q - 1):zEven" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
236  | 
with even_div_2_prop2 have "(q - 1) = 2 * ((q - 1) div 2)" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
237  | 
with prems show ?thesis by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
238  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
239  | 
then have p1: "q \<le> -1" by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
240  | 
with q_g_2 show False by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
241  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
242  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
243  | 
lemma (in QRTEMP) P_set_finite: "finite (P_set)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
244  | 
by (insert p_fact, auto simp add: P_set_def bdd_int_set_l_le_finite)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
245  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
246  | 
lemma (in QRTEMP) Q_set_finite: "finite (Q_set)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
247  | 
by (insert q_fact, auto simp add: Q_set_def bdd_int_set_l_le_finite)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
248  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
249  | 
lemma (in QRTEMP) S_finite: "finite S";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
250  | 
by (auto simp add: S_def P_set_finite Q_set_finite cartesian_product_finite)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
251  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
252  | 
lemma (in QRTEMP) S1_finite: "finite S1";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
253  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
254  | 
have "finite S" by (auto simp add: S_finite)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
255  | 
moreover have "S1 \<subseteq> S" by (auto simp add: S1_def S_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
256  | 
ultimately show ?thesis by (auto simp add: finite_subset)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
257  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
258  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
259  | 
lemma (in QRTEMP) S2_finite: "finite S2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
260  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
261  | 
have "finite S" by (auto simp add: S_finite)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
262  | 
moreover have "S2 \<subseteq> S" by (auto simp add: S2_def S_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
263  | 
ultimately show ?thesis by (auto simp add: finite_subset)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
264  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
265  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
266  | 
lemma (in QRTEMP) P_set_card: "(p - 1) div 2 = int (card (P_set))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
267  | 
by (insert p_fact, auto simp add: P_set_def card_bdd_int_set_l_le)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
268  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
269  | 
lemma (in QRTEMP) Q_set_card: "(q - 1) div 2 = int (card (Q_set))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
270  | 
by (insert q_fact, auto simp add: Q_set_def card_bdd_int_set_l_le)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
271  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
272  | 
lemma (in QRTEMP) S_card: "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
273  | 
apply (insert P_set_card Q_set_card P_set_finite Q_set_finite)  | 
| 14434 | 274  | 
apply (auto simp add: S_def zmult_int setsum_constant_nat)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
275  | 
done  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
276  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
277  | 
lemma (in QRTEMP) S1_Int_S2_prop: "S1 \<inter> S2 = {}";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
278  | 
by (auto simp add: S1_def S2_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
279  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
280  | 
lemma (in QRTEMP) S1_Union_S2_prop: "S = S1 \<union> S2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
281  | 
apply (auto simp add: S_def P_set_def Q_set_def S1_def S2_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
282  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
283  | 
fix a and b;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
284  | 
assume "~ q * a < p * b" and b1: "0 < b" and b2: "b \<le> (q - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
285  | 
with zless_linear have "(p * b < q * a) | (p * b = q * a)" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
286  | 
moreover from pb_neq_qa b1 b2 have "(p * b \<noteq> q * a)" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
287  | 
ultimately show "p * b < q * a" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
288  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
289  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
290  | 
lemma (in QRTEMP) card_sum_S1_S2: "((p - 1) div 2) * ((q - 1) div 2) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
291  | 
int(card(S1)) + int(card(S2))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
292  | 
proof-;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
293  | 
have "((p - 1) div 2) * ((q - 1) div 2) = int (card(S))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
294  | 
by (auto simp add: S_card)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
295  | 
also have "... = int( card(S1) + card(S2))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
296  | 
apply (insert S1_finite S2_finite S1_Int_S2_prop S1_Union_S2_prop)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
297  | 
apply (drule card_Un_disjoint, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
298  | 
done  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
299  | 
also have "... = int(card(S1)) + int(card(S2))" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
300  | 
finally show ?thesis .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
301  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
302  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
303  | 
lemma (in QRTEMP) aux1a: "[| 0 < a; a \<le> (p - 1) div 2;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
304  | 
0 < b; b \<le> (q - 1) div 2 |] ==>  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
305  | 
(p * b < q * a) = (b \<le> q * a div p)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
306  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
307  | 
assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
308  | 
have "p * b < q * a ==> b \<le> q * a div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
309  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
310  | 
assume "p * b < q * a";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
311  | 
then have "p * b \<le> q * a" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
312  | 
then have "(p * b) div p \<le> (q * a) div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
313  | 
by (rule zdiv_mono1, insert p_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
314  | 
then show "b \<le> (q * a) div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
315  | 
apply (subgoal_tac "p \<noteq> 0")  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
316  | 
apply (frule zdiv_zmult_self2, force)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
317  | 
by (insert p_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
318  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
319  | 
moreover have "b \<le> q * a div p ==> p * b < q * a";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
320  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
321  | 
assume "b \<le> q * a div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
322  | 
then have "p * b \<le> p * ((q * a) div p)";  | 
| 
14387
 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 
paulson 
parents: 
14353 
diff
changeset
 | 
323  | 
by (insert p_g_2, auto simp add: mult_le_cancel_left)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
324  | 
also have "... \<le> q * a";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
325  | 
by (rule zdiv_leq_prop, insert p_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
326  | 
finally have "p * b \<le> q * a" .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
327  | 
then have "p * b < q * a | p * b = q * a";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
328  | 
by (simp only: order_le_imp_less_or_eq)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
329  | 
moreover have "p * b \<noteq> q * a";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
330  | 
by (rule pb_neq_qa, insert prems, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
331  | 
ultimately show ?thesis by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
332  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
333  | 
ultimately show ?thesis ..;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
334  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
335  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
336  | 
lemma (in QRTEMP) aux1b: "[| 0 < a; a \<le> (p - 1) div 2;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
337  | 
0 < b; b \<le> (q - 1) div 2 |] ==>  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
338  | 
(q * a < p * b) = (a \<le> p * b div q)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
339  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
340  | 
assume "0 < a" and "a \<le> (p - 1) div 2" and "0 < b" and "b \<le> (q - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
341  | 
have "q * a < p * b ==> a \<le> p * b div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
342  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
343  | 
assume "q * a < p * b";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
344  | 
then have "q * a \<le> p * b" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
345  | 
then have "(q * a) div q \<le> (p * b) div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
346  | 
by (rule zdiv_mono1, insert q_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
347  | 
then show "a \<le> (p * b) div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
348  | 
apply (subgoal_tac "q \<noteq> 0")  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
349  | 
apply (frule zdiv_zmult_self2, force)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
350  | 
by (insert q_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
351  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
352  | 
moreover have "a \<le> p * b div q ==> q * a < p * b";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
353  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
354  | 
assume "a \<le> p * b div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
355  | 
then have "q * a \<le> q * ((p * b) div q)";  | 
| 
14387
 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 
paulson 
parents: 
14353 
diff
changeset
 | 
356  | 
by (insert q_g_2, auto simp add: mult_le_cancel_left)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
357  | 
also have "... \<le> p * b";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
358  | 
by (rule zdiv_leq_prop, insert q_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
359  | 
finally have "q * a \<le> p * b" .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
360  | 
then have "q * a < p * b | q * a = p * b";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
361  | 
by (simp only: order_le_imp_less_or_eq)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
362  | 
moreover have "p * b \<noteq> q * a";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
363  | 
by (rule pb_neq_qa, insert prems, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
364  | 
ultimately show ?thesis by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
365  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
366  | 
ultimately show ?thesis ..;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
367  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
368  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
369  | 
lemma aux2: "[| p \<in> zprime; q \<in> zprime; 2 < p; 2 < q |] ==>  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
370  | 
(q * ((p - 1) div 2)) div p \<le> (q - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
371  | 
proof-;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
372  | 
assume "p \<in> zprime" and "q \<in> zprime" and "2 < p" and "2 < q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
373  | 
(* Set up what's even and odd *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
374  | 
then have "p \<in> zOdd & q \<in> zOdd";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
375  | 
by (auto simp add: zprime_zOdd_eq_grt_2)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
376  | 
then have even1: "(p - 1):zEven & (q - 1):zEven";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
377  | 
by (auto simp add: odd_minus_one_even)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
378  | 
then have even2: "(2 * p):zEven & ((q - 1) * p):zEven";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
379  | 
by (auto simp add: zEven_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
380  | 
then have even3: "(((q - 1) * p) + (2 * p)):zEven";  | 
| 14434 | 381  | 
by (auto simp: EvenOdd.even_plus_even)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
382  | 
(* using these prove it *)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
383  | 
from prems have "q * (p - 1) < ((q - 1) * p) + (2 * p)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
384  | 
by (auto simp add: int_distrib)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
385  | 
then have "((p - 1) * q) div 2 < (((q - 1) * p) + (2 * p)) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
386  | 
apply (rule_tac x = "((p - 1) * q)" in even_div_2_l);  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
387  | 
by (auto simp add: even3, auto simp add: zmult_ac)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
388  | 
also have "((p - 1) * q) div 2 = q * ((p - 1) div 2)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
389  | 
by (auto simp add: even1 even_prod_div_2)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
390  | 
also have "(((q - 1) * p) + (2 * p)) div 2 = (((q - 1) div 2) * p) + p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
391  | 
by (auto simp add: even1 even2 even_prod_div_2 even_sum_div_2)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
392  | 
finally show ?thesis  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
393  | 
apply (rule_tac x = " q * ((p - 1) div 2)" and  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
394  | 
y = "(q - 1) div 2" in div_prop2);  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
395  | 
by (insert prems, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
396  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
397  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
398  | 
lemma (in QRTEMP) aux3a: "\<forall>j \<in> P_set. int (card (f1 j)) = (q * j) div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
399  | 
proof;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
400  | 
fix j;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
401  | 
assume j_fact: "j \<in> P_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
402  | 
  have "int (card (f1 j)) = int (card {y. y \<in> Q_set & y \<le> (q * j) div p})";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
403  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
404  | 
have "finite (f1 j)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
405  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
406  | 
have "(f1 j) \<subseteq> S" by (auto simp add: f1_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
407  | 
with S_finite show ?thesis by (auto simp add: finite_subset)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
408  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
409  | 
moreover have "inj_on (%(x,y). y) (f1 j)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
410  | 
by (auto simp add: f1_def inj_on_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
411  | 
ultimately have "card ((%(x,y). y) ` (f1 j)) = card (f1 j)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
412  | 
by (auto simp add: f1_def card_image)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
413  | 
    moreover have "((%(x,y). y) ` (f1 j)) = {y. y \<in> Q_set & y \<le> (q * j) div p}";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
414  | 
by (insert prems, auto simp add: f1_def S_def Q_set_def P_set_def  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
415  | 
image_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
416  | 
ultimately show ?thesis by (auto simp add: f1_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
417  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
418  | 
  also have "... = int (card {y. 0 < y & y \<le> (q * j) div p})";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
419  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
420  | 
    have "{y. y \<in> Q_set & y \<le> (q * j) div p} = 
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
421  | 
        {y. 0 < y & y \<le> (q * j) div p}";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
422  | 
apply (auto simp add: Q_set_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
423  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
424  | 
fix x;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
425  | 
assume "0 < x" and "x \<le> q * j div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
426  | 
with j_fact P_set_def have "j \<le> (p - 1) div 2"; by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
427  | 
with q_g_2; have "q * j \<le> q * ((p - 1) div 2)";  | 
| 
14387
 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 
paulson 
parents: 
14353 
diff
changeset
 | 
428  | 
by (auto simp add: mult_le_cancel_left)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
429  | 
with p_g_2 have "q * j div p \<le> q * ((p - 1) div 2) div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
430  | 
by (auto simp add: zdiv_mono1)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
431  | 
also from prems have "... \<le> (q - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
432  | 
apply simp apply (insert aux2) by (simp add: QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
433  | 
finally show "x \<le> (q - 1) div 2" by (insert prems, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
434  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
435  | 
then show ?thesis by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
436  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
437  | 
also have "... = (q * j) div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
438  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
439  | 
from j_fact P_set_def have "0 \<le> j" by auto  | 
| 
14387
 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 
paulson 
parents: 
14353 
diff
changeset
 | 
440  | 
with q_g_2 have "q * 0 \<le> q * j" by (auto simp only: mult_left_mono)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
441  | 
then have "0 \<le> q * j" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
442  | 
then have "0 div p \<le> (q * j) div p";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
443  | 
apply (rule_tac a = 0 in zdiv_mono1)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
444  | 
by (insert p_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
445  | 
also have "0 div p = 0" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
446  | 
finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
447  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
448  | 
finally show "int (card (f1 j)) = q * j div p" .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
449  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
450  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
451  | 
lemma (in QRTEMP) aux3b: "\<forall>j \<in> Q_set. int (card (f2 j)) = (p * j) div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
452  | 
proof;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
453  | 
fix j;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
454  | 
assume j_fact: "j \<in> Q_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
455  | 
  have "int (card (f2 j)) = int (card {y. y \<in> P_set & y \<le> (p * j) div q})";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
456  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
457  | 
have "finite (f2 j)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
458  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
459  | 
have "(f2 j) \<subseteq> S" by (auto simp add: f2_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
460  | 
with S_finite show ?thesis by (auto simp add: finite_subset)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
461  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
462  | 
moreover have "inj_on (%(x,y). x) (f2 j)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
463  | 
by (auto simp add: f2_def inj_on_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
464  | 
ultimately have "card ((%(x,y). x) ` (f2 j)) = card (f2 j)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
465  | 
by (auto simp add: f2_def card_image)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
466  | 
    moreover have "((%(x,y). x) ` (f2 j)) = {y. y \<in> P_set & y \<le> (p * j) div q}";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
467  | 
by (insert prems, auto simp add: f2_def S_def Q_set_def  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
468  | 
P_set_def image_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
469  | 
ultimately show ?thesis by (auto simp add: f2_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
470  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
471  | 
  also have "... = int (card {y. 0 < y & y \<le> (p * j) div q})";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
472  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
473  | 
    have "{y. y \<in> P_set & y \<le> (p * j) div q} = 
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
474  | 
        {y. 0 < y & y \<le> (p * j) div q}";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
475  | 
apply (auto simp add: P_set_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
476  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
477  | 
fix x;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
478  | 
assume "0 < x" and "x \<le> p * j div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
479  | 
with j_fact Q_set_def have "j \<le> (q - 1) div 2"; by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
480  | 
with p_g_2; have "p * j \<le> p * ((q - 1) div 2)";  | 
| 
14387
 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 
paulson 
parents: 
14353 
diff
changeset
 | 
481  | 
by (auto simp add: mult_le_cancel_left)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
482  | 
with q_g_2 have "p * j div q \<le> p * ((q - 1) div 2) div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
483  | 
by (auto simp add: zdiv_mono1)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
484  | 
also from prems have "... \<le> (p - 1) div 2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
485  | 
by (auto simp add: aux2 QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
486  | 
finally show "x \<le> (p - 1) div 2" by (insert prems, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
487  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
488  | 
then show ?thesis by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
489  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
490  | 
also have "... = (p * j) div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
491  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
492  | 
from j_fact Q_set_def have "0 \<le> j" by auto  | 
| 
14387
 
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
 
paulson 
parents: 
14353 
diff
changeset
 | 
493  | 
with p_g_2 have "p * 0 \<le> p * j" by (auto simp only: mult_left_mono)  | 
| 
13871
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
494  | 
then have "0 \<le> p * j" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
495  | 
then have "0 div q \<le> (p * j) div q";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
496  | 
apply (rule_tac a = 0 in zdiv_mono1)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
497  | 
by (insert q_g_2, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
498  | 
also have "0 div q = 0" by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
499  | 
finally show ?thesis by (auto simp add: card_bdd_int_set_l_le)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
500  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
501  | 
finally show "int (card (f2 j)) = p * j div q" .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
502  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
503  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
504  | 
lemma (in QRTEMP) S1_card: "int (card(S1)) = setsum (%j. (q * j) div p) P_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
505  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
506  | 
have "\<forall>x \<in> P_set. finite (f1 x)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
507  | 
proof;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
508  | 
fix x;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
509  | 
have "f1 x \<subseteq> S" by (auto simp add: f1_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
510  | 
with S_finite show "finite (f1 x)" by (auto simp add: finite_subset)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
511  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
512  | 
  moreover have "(\<forall>x \<in> P_set. \<forall>y \<in> P_set. x \<noteq> y --> (f1 x) \<inter> (f1 y) = {})";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
513  | 
by (auto simp add: f1_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
514  | 
moreover note P_set_finite;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
515  | 
ultimately have "int(card (UNION P_set f1)) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
516  | 
setsum (%x. int(card (f1 x))) P_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
517  | 
by (rule_tac A = P_set in int_card_indexed_union_disjoint_sets, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
518  | 
moreover have "S1 = UNION P_set f1";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
519  | 
by (auto simp add: f1_def S_def S1_def S2_def P_set_def Q_set_def aux1a)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
520  | 
ultimately have "int(card (S1)) = setsum (%j. int(card (f1 j))) P_set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
521  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
522  | 
also have "... = setsum (%j. q * j div p) P_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
523  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
524  | 
note aux3a  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
525  | 
with P_set_finite show ?thesis by (rule setsum_same_function)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
526  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
527  | 
finally show ?thesis .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
528  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
529  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
530  | 
lemma (in QRTEMP) S2_card: "int (card(S2)) = setsum (%j. (p * j) div q) Q_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
531  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
532  | 
have "\<forall>x \<in> Q_set. finite (f2 x)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
533  | 
proof;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
534  | 
fix x;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
535  | 
have "f2 x \<subseteq> S" by (auto simp add: f2_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
536  | 
with S_finite show "finite (f2 x)" by (auto simp add: finite_subset)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
537  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
538  | 
moreover have "(\<forall>x \<in> Q_set. \<forall>y \<in> Q_set. x \<noteq> y -->  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
539  | 
      (f2 x) \<inter> (f2 y) = {})";
 | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
540  | 
by (auto simp add: f2_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
541  | 
moreover note Q_set_finite;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
542  | 
ultimately have "int(card (UNION Q_set f2)) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
543  | 
setsum (%x. int(card (f2 x))) Q_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
544  | 
by (rule_tac A = Q_set in int_card_indexed_union_disjoint_sets, auto)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
545  | 
moreover have "S2 = UNION Q_set f2";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
546  | 
by (auto simp add: f2_def S_def S1_def S2_def P_set_def Q_set_def aux1b)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
547  | 
ultimately have "int(card (S2)) = setsum (%j. int(card (f2 j))) Q_set"  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
548  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
549  | 
also have "... = setsum (%j. p * j div q) Q_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
550  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
551  | 
note aux3b;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
552  | 
with Q_set_finite show ?thesis by (rule setsum_same_function)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
553  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
554  | 
finally show ?thesis .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
555  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
556  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
557  | 
lemma (in QRTEMP) S1_carda: "int (card(S1)) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
558  | 
setsum (%j. (j * q) div p) P_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
559  | 
by (auto simp add: S1_card zmult_ac)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
560  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
561  | 
lemma (in QRTEMP) S2_carda: "int (card(S2)) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
562  | 
setsum (%j. (j * p) div q) Q_set";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
563  | 
by (auto simp add: S2_card zmult_ac)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
564  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
565  | 
lemma (in QRTEMP) pq_sum_prop: "(setsum (%j. (j * p) div q) Q_set) +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
566  | 
(setsum (%j. (j * q) div p) P_set) = ((p - 1) div 2) * ((q - 1) div 2)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
567  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
568  | 
have "(setsum (%j. (j * p) div q) Q_set) +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
569  | 
(setsum (%j. (j * q) div p) P_set) = int (card S2) + int (card S1)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
570  | 
by (auto simp add: S1_carda S2_carda)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
571  | 
also have "... = int (card S1) + int (card S2)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
572  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
573  | 
also have "... = ((p - 1) div 2) * ((q - 1) div 2)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
574  | 
by (auto simp add: card_sum_S1_S2)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
575  | 
finally show ?thesis .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
576  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
577  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
578  | 
lemma pq_prime_neq: "[| p \<in> zprime; q \<in> zprime; p \<noteq> q |] ==> (~[p = 0] (mod q))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
579  | 
apply (auto simp add: zcong_eq_zdvd_prop zprime_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
580  | 
apply (drule_tac x = q in allE)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
581  | 
apply (drule_tac x = p in allE)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
582  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
583  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
584  | 
lemma (in QRTEMP) QR_short: "(Legendre p q) * (Legendre q p) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
585  | 
(-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
586  | 
proof -;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
587  | 
from prems have "~([p = 0] (mod q))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
588  | 
by (auto simp add: pq_prime_neq QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
589  | 
with prems have a1: "(Legendre p q) = (-1::int) ^  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
590  | 
nat(setsum (%x. ((x * p) div q)) Q_set)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
591  | 
apply (rule_tac p = q in MainQRLemma)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
592  | 
by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
593  | 
from prems have "~([q = 0] (mod p))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
594  | 
apply (rule_tac p = q and q = p in pq_prime_neq)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
595  | 
apply (simp add: QRTEMP_def)+;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
596  | 
by arith  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
597  | 
with prems have a2: "(Legendre q p) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
598  | 
(-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
599  | 
apply (rule_tac p = p in MainQRLemma)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
600  | 
by (auto simp add: zprime_zOdd_eq_grt_2 QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
601  | 
from a1 a2 have "(Legendre p q) * (Legendre q p) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
602  | 
(-1::int) ^ nat(setsum (%x. ((x * p) div q)) Q_set) *  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
603  | 
(-1::int) ^ nat(setsum (%x. ((x * q) div p)) P_set)";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
604  | 
by auto  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
605  | 
also have "... = (-1::int) ^ (nat(setsum (%x. ((x * p) div q)) Q_set) +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
606  | 
nat(setsum (%x. ((x * q) div p)) P_set))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
607  | 
by (auto simp add: zpower_zadd_distrib)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
608  | 
also have "nat(setsum (%x. ((x * p) div q)) Q_set) +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
609  | 
nat(setsum (%x. ((x * q) div p)) P_set) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
610  | 
nat((setsum (%x. ((x * p) div q)) Q_set) +  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
611  | 
(setsum (%x. ((x * q) div p)) P_set))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
612  | 
apply (rule_tac z1 = "setsum (%x. ((x * p) div q)) Q_set" in  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
613  | 
nat_add_distrib [THEN sym]);  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
614  | 
by (auto simp add: S1_carda [THEN sym] S2_carda [THEN sym])  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
615  | 
also have "... = nat(((p - 1) div 2) * ((q - 1) div 2))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
616  | 
by (auto simp add: pq_sum_prop)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
617  | 
finally show ?thesis .;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
618  | 
qed;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
619  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
620  | 
theorem Quadratic_Reciprocity:  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
621  | 
"[| p \<in> zOdd; p \<in> zprime; q \<in> zOdd; q \<in> zprime;  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
622  | 
p \<noteq> q |]  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
623  | 
==> (Legendre p q) * (Legendre q p) =  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
624  | 
(-1::int)^nat(((p - 1) div 2)*((q - 1) div 2))";  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
625  | 
by (auto simp add: QRTEMP.QR_short zprime_zOdd_eq_grt_2 [THEN sym]  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
626  | 
QRTEMP_def)  | 
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
627  | 
|
| 
 
26e5f5e624f6
Gauss's law of quadratic reciprocity by Avigad, Gray and Kramer
 
paulson 
parents:  
diff
changeset
 | 
628  | 
end  |