| 
31807
 | 
     1  | 
  | 
| 
 | 
     2  | 
(* Author: Florian Haftmann, TU Muenchen *)
  | 
| 
 | 
     3  | 
  | 
| 
 | 
     4  | 
header {* Executable finite sets *}
 | 
| 
 | 
     5  | 
  | 
| 
31849
 | 
     6  | 
theory Fset
  | 
| 
31807
 | 
     7  | 
imports List_Set
  | 
| 
 | 
     8  | 
begin
  | 
| 
 | 
     9  | 
  | 
| 
31846
 | 
    10  | 
declare mem_def [simp]
  | 
| 
 | 
    11  | 
  | 
| 
31807
 | 
    12  | 
subsection {* Lifting *}
 | 
| 
 | 
    13  | 
  | 
| 
 | 
    14  | 
datatype 'a fset = Fset "'a set"
  | 
| 
 | 
    15  | 
  | 
| 
 | 
    16  | 
primrec member :: "'a fset \<Rightarrow> 'a set" where
  | 
| 
 | 
    17  | 
  "member (Fset A) = A"
  | 
| 
 | 
    18  | 
  | 
| 
34048
 | 
    19  | 
lemma member_inject [simp]:
  | 
| 
 | 
    20  | 
  "member A = member B \<Longrightarrow> A = B"
  | 
| 
 | 
    21  | 
  by (cases A, cases B) simp
  | 
| 
 | 
    22  | 
  | 
| 
31807
 | 
    23  | 
lemma Fset_member [simp]:
  | 
| 
 | 
    24  | 
  "Fset (member A) = A"
  | 
| 
 | 
    25  | 
  by (cases A) simp
  | 
| 
 | 
    26  | 
  | 
| 
 | 
    27  | 
definition Set :: "'a list \<Rightarrow> 'a fset" where
  | 
| 
 | 
    28  | 
  "Set xs = Fset (set xs)"
  | 
| 
 | 
    29  | 
  | 
| 
 | 
    30  | 
lemma member_Set [simp]:
  | 
| 
 | 
    31  | 
  "member (Set xs) = set xs"
  | 
| 
 | 
    32  | 
  by (simp add: Set_def)
  | 
| 
 | 
    33  | 
  | 
| 
32880
 | 
    34  | 
definition Coset :: "'a list \<Rightarrow> 'a fset" where
  | 
| 
 | 
    35  | 
  "Coset xs = Fset (- set xs)"
  | 
| 
 | 
    36  | 
  | 
| 
 | 
    37  | 
lemma member_Coset [simp]:
  | 
| 
 | 
    38  | 
  "member (Coset xs) = - set xs"
  | 
| 
 | 
    39  | 
  by (simp add: Coset_def)
  | 
| 
 | 
    40  | 
  | 
| 
 | 
    41  | 
code_datatype Set Coset
  | 
| 
 | 
    42  | 
  | 
| 
 | 
    43  | 
lemma member_code [code]:
  | 
| 
 | 
    44  | 
  "member (Set xs) y \<longleftrightarrow> List.member y xs"
  | 
| 
 | 
    45  | 
  "member (Coset xs) y \<longleftrightarrow> \<not> List.member y xs"
  | 
| 
 | 
    46  | 
  by (simp_all add: mem_iff fun_Compl_def bool_Compl_def)
  | 
| 
 | 
    47  | 
  | 
| 
 | 
    48  | 
lemma member_image_UNIV [simp]:
  | 
| 
 | 
    49  | 
  "member ` UNIV = UNIV"
  | 
| 
 | 
    50  | 
proof -
  | 
| 
 | 
    51  | 
  have "\<And>A \<Colon> 'a set. \<exists>B \<Colon> 'a fset. A = member B"
  | 
| 
 | 
    52  | 
  proof
  | 
| 
 | 
    53  | 
    fix A :: "'a set"
  | 
| 
 | 
    54  | 
    show "A = member (Fset A)" by simp
  | 
| 
 | 
    55  | 
  qed
  | 
| 
 | 
    56  | 
  then show ?thesis by (simp add: image_def)
  | 
| 
 | 
    57  | 
qed
  | 
| 
31807
 | 
    58  | 
  | 
| 
 | 
    59  | 
  | 
| 
34048
 | 
    60  | 
subsection {* Lattice instantiation *}
 | 
| 
 | 
    61  | 
  | 
| 
 | 
    62  | 
instantiation fset :: (type) boolean_algebra
  | 
| 
 | 
    63  | 
begin
  | 
| 
 | 
    64  | 
  | 
| 
 | 
    65  | 
definition less_eq_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
  | 
| 
 | 
    66  | 
  [simp]: "A \<le> B \<longleftrightarrow> member A \<subseteq> member B"
  | 
| 
 | 
    67  | 
  | 
| 
 | 
    68  | 
definition less_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> bool" where
  | 
| 
 | 
    69  | 
  [simp]: "A < B \<longleftrightarrow> member A \<subset> member B"
  | 
| 
 | 
    70  | 
  | 
| 
 | 
    71  | 
definition inf_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
  | 
| 
 | 
    72  | 
  [simp]: "inf A B = Fset (member A \<inter> member B)"
  | 
| 
 | 
    73  | 
  | 
| 
 | 
    74  | 
definition sup_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
  | 
| 
 | 
    75  | 
  [simp]: "sup A B = Fset (member A \<union> member B)"
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
definition bot_fset :: "'a fset" where
  | 
| 
 | 
    78  | 
  [simp]: "bot = Fset {}"
 | 
| 
 | 
    79  | 
  | 
| 
 | 
    80  | 
definition top_fset :: "'a fset" where
  | 
| 
 | 
    81  | 
  [simp]: "top = Fset UNIV"
  | 
| 
 | 
    82  | 
  | 
| 
 | 
    83  | 
definition uminus_fset :: "'a fset \<Rightarrow> 'a fset" where
  | 
| 
 | 
    84  | 
  [simp]: "- A = Fset (- (member A))"
  | 
| 
 | 
    85  | 
  | 
| 
 | 
    86  | 
definition minus_fset :: "'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
  | 
| 
 | 
    87  | 
  [simp]: "A - B = Fset (member A - member B)"
  | 
| 
 | 
    88  | 
  | 
| 
 | 
    89  | 
instance proof
  | 
| 
 | 
    90  | 
qed auto
  | 
| 
 | 
    91  | 
  | 
| 
 | 
    92  | 
end
  | 
| 
 | 
    93  | 
  | 
| 
 | 
    94  | 
instantiation fset :: (type) complete_lattice
  | 
| 
 | 
    95  | 
begin
  | 
| 
 | 
    96  | 
  | 
| 
 | 
    97  | 
definition Inf_fset :: "'a fset set \<Rightarrow> 'a fset" where
  | 
| 
 | 
    98  | 
  [simp, code del]: "Inf_fset As = Fset (Inf (image member As))"
  | 
| 
 | 
    99  | 
  | 
| 
 | 
   100  | 
definition Sup_fset :: "'a fset set \<Rightarrow> 'a fset" where
  | 
| 
 | 
   101  | 
  [simp, code del]: "Sup_fset As = Fset (Sup (image member As))"
  | 
| 
 | 
   102  | 
  | 
| 
 | 
   103  | 
instance proof
  | 
| 
 | 
   104  | 
qed (auto simp add: le_fun_def le_bool_def)
  | 
| 
 | 
   105  | 
  | 
| 
 | 
   106  | 
end
  | 
| 
 | 
   107  | 
  | 
| 
31807
 | 
   108  | 
subsection {* Basic operations *}
 | 
| 
 | 
   109  | 
  | 
| 
 | 
   110  | 
definition is_empty :: "'a fset \<Rightarrow> bool" where
  | 
| 
31846
 | 
   111  | 
  [simp]: "is_empty A \<longleftrightarrow> List_Set.is_empty (member A)"
  | 
| 
31807
 | 
   112  | 
  | 
| 
 | 
   113  | 
lemma is_empty_Set [code]:
  | 
| 
 | 
   114  | 
  "is_empty (Set xs) \<longleftrightarrow> null xs"
  | 
| 
31846
 | 
   115  | 
  by (simp add: is_empty_set)
  | 
| 
31807
 | 
   116  | 
  | 
| 
34048
 | 
   117  | 
lemma empty_Set [code]:
  | 
| 
 | 
   118  | 
  "bot = Set []"
  | 
| 
 | 
   119  | 
  by simp
  | 
| 
31807
 | 
   120  | 
  | 
| 
34048
 | 
   121  | 
lemma UNIV_Set [code]:
  | 
| 
 | 
   122  | 
  "top = Coset []"
  | 
| 
 | 
   123  | 
  by simp
  | 
| 
31807
 | 
   124  | 
  | 
| 
 | 
   125  | 
definition insert :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
  | 
| 
31846
 | 
   126  | 
  [simp]: "insert x A = Fset (Set.insert x (member A))"
  | 
| 
31807
 | 
   127  | 
  | 
| 
 | 
   128  | 
lemma insert_Set [code]:
  | 
| 
 | 
   129  | 
  "insert x (Set xs) = Set (List_Set.insert x xs)"
  | 
| 
32880
 | 
   130  | 
  "insert x (Coset xs) = Coset (remove_all x xs)"
  | 
| 
 | 
   131  | 
  by (simp_all add: Set_def Coset_def insert_set insert_set_compl)
  | 
| 
31807
 | 
   132  | 
  | 
| 
 | 
   133  | 
definition remove :: "'a \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
  | 
| 
31846
 | 
   134  | 
  [simp]: "remove x A = Fset (List_Set.remove x (member A))"
  | 
| 
31807
 | 
   135  | 
  | 
| 
 | 
   136  | 
lemma remove_Set [code]:
  | 
| 
 | 
   137  | 
  "remove x (Set xs) = Set (remove_all x xs)"
  | 
| 
32880
 | 
   138  | 
  "remove x (Coset xs) = Coset (List_Set.insert x xs)"
  | 
| 
 | 
   139  | 
  by (simp_all add: Set_def Coset_def remove_set remove_set_compl)
  | 
| 
31807
 | 
   140  | 
  | 
| 
 | 
   141  | 
definition map :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a fset \<Rightarrow> 'b fset" where
 | 
| 
31846
 | 
   142  | 
  [simp]: "map f A = Fset (image f (member A))"
  | 
| 
31807
 | 
   143  | 
  | 
| 
 | 
   144  | 
lemma map_Set [code]:
  | 
| 
 | 
   145  | 
  "map f (Set xs) = Set (remdups (List.map f xs))"
  | 
| 
31846
 | 
   146  | 
  by (simp add: Set_def)
  | 
| 
31807
 | 
   147  | 
  | 
| 
31847
 | 
   148  | 
definition filter :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> 'a fset" where
 | 
| 
 | 
   149  | 
  [simp]: "filter P A = Fset (List_Set.project P (member A))"
  | 
| 
31807
 | 
   150  | 
  | 
| 
31847
 | 
   151  | 
lemma filter_Set [code]:
  | 
| 
 | 
   152  | 
  "filter P (Set xs) = Set (List.filter P xs)"
  | 
| 
31846
 | 
   153  | 
  by (simp add: Set_def project_set)
  | 
| 
31807
 | 
   154  | 
  | 
| 
 | 
   155  | 
definition forall :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
 | 
| 
31846
 | 
   156  | 
  [simp]: "forall P A \<longleftrightarrow> Ball (member A) P"
  | 
| 
31807
 | 
   157  | 
  | 
| 
 | 
   158  | 
lemma forall_Set [code]:
  | 
| 
 | 
   159  | 
  "forall P (Set xs) \<longleftrightarrow> list_all P xs"
  | 
| 
31846
 | 
   160  | 
  by (simp add: Set_def ball_set)
  | 
| 
31807
 | 
   161  | 
  | 
| 
 | 
   162  | 
definition exists :: "('a \<Rightarrow> bool) \<Rightarrow> 'a fset \<Rightarrow> bool" where
 | 
| 
31846
 | 
   163  | 
  [simp]: "exists P A \<longleftrightarrow> Bex (member A) P"
  | 
| 
31807
 | 
   164  | 
  | 
| 
 | 
   165  | 
lemma exists_Set [code]:
  | 
| 
 | 
   166  | 
  "exists P (Set xs) \<longleftrightarrow> list_ex P xs"
  | 
| 
31846
 | 
   167  | 
  by (simp add: Set_def bex_set)
  | 
| 
 | 
   168  | 
  | 
| 
31849
 | 
   169  | 
definition card :: "'a fset \<Rightarrow> nat" where
  | 
| 
 | 
   170  | 
  [simp]: "card A = Finite_Set.card (member A)"
  | 
| 
 | 
   171  | 
  | 
| 
 | 
   172  | 
lemma card_Set [code]:
  | 
| 
 | 
   173  | 
  "card (Set xs) = length (remdups xs)"
  | 
| 
 | 
   174  | 
proof -
  | 
| 
 | 
   175  | 
  have "Finite_Set.card (set (remdups xs)) = length (remdups xs)"
  | 
| 
 | 
   176  | 
    by (rule distinct_card) simp
  | 
| 
 | 
   177  | 
  then show ?thesis by (simp add: Set_def card_def)
  | 
| 
 | 
   178  | 
qed
  | 
| 
 | 
   179  | 
  | 
| 
31846
 | 
   180  | 
  | 
| 
 | 
   181  | 
subsection {* Derived operations *}
 | 
| 
 | 
   182  | 
  | 
| 
 | 
   183  | 
lemma subfset_eq_forall [code]:
  | 
| 
34048
 | 
   184  | 
  "A \<le> B \<longleftrightarrow> forall (member B) A"
  | 
| 
31846
 | 
   185  | 
  by (simp add: subset_eq)
  | 
| 
 | 
   186  | 
  | 
| 
 | 
   187  | 
lemma subfset_subfset_eq [code]:
  | 
| 
34048
 | 
   188  | 
  "A < B \<longleftrightarrow> A \<le> B \<and> \<not> B \<le> (A :: 'a fset)"
  | 
| 
 | 
   189  | 
  by (fact less_le_not_le)
  | 
| 
31846
 | 
   190  | 
  | 
| 
 | 
   191  | 
lemma eq_fset_subfset_eq [code]:
  | 
| 
34048
 | 
   192  | 
  "eq_class.eq A B \<longleftrightarrow> A \<le> B \<and> B \<le> (A :: 'a fset)"
  | 
| 
31846
 | 
   193  | 
  by (cases A, cases B) (simp add: eq set_eq)
  | 
| 
 | 
   194  | 
  | 
| 
31807
 | 
   195  | 
  | 
| 
 | 
   196  | 
subsection {* Functorial operations *}
 | 
| 
 | 
   197  | 
  | 
| 
32880
 | 
   198  | 
lemma inter_project [code]:
  | 
| 
34048
 | 
   199  | 
  "inf A (Set xs) = Set (List.filter (member A) xs)"
  | 
| 
 | 
   200  | 
  "inf A (Coset xs) = foldl (\<lambda>A x. remove x A) A xs"
  | 
| 
31807
 | 
   201  | 
proof -
  | 
| 
34048
 | 
   202  | 
  show "inf A (Set xs) = Set (List.filter (member A) xs)"
  | 
| 
32880
 | 
   203  | 
    by (simp add: inter project_def Set_def)
  | 
| 
 | 
   204  | 
  have "foldl (\<lambda>A x. List_Set.remove x A) (member A) xs =
  | 
| 
 | 
   205  | 
    member (foldl (\<lambda>A x. Fset (List_Set.remove x (member A))) A xs)"
  | 
| 
31807
 | 
   206  | 
    by (rule foldl_apply_inv) simp
  | 
| 
34048
 | 
   207  | 
  then show "inf A (Coset xs) = foldl (\<lambda>A x. remove x A) A xs"
  | 
| 
32880
 | 
   208  | 
    by (simp add: Diff_eq [symmetric] minus_set)
  | 
| 
31807
 | 
   209  | 
qed
  | 
| 
 | 
   210  | 
  | 
| 
 | 
   211  | 
lemma subtract_remove [code]:
  | 
| 
34048
 | 
   212  | 
  "A - Set xs = foldl (\<lambda>A x. remove x A) A xs"
  | 
| 
 | 
   213  | 
  "A - Coset xs = Set (List.filter (member A) xs)"
  | 
| 
31807
 | 
   214  | 
proof -
  | 
| 
 | 
   215  | 
  have "foldl (\<lambda>A x. List_Set.remove x A) (member A) xs =
  | 
| 
 | 
   216  | 
    member (foldl (\<lambda>A x. Fset (List_Set.remove x (member A))) A xs)"
  | 
| 
 | 
   217  | 
    by (rule foldl_apply_inv) simp
  | 
| 
34048
 | 
   218  | 
  then show "A - Set xs = foldl (\<lambda>A x. remove x A) A xs"
  | 
| 
32880
 | 
   219  | 
    by (simp add: minus_set)
  | 
| 
34048
 | 
   220  | 
  show "A - Coset xs = Set (List.filter (member A) xs)"
  | 
| 
32880
 | 
   221  | 
    by (auto simp add: Coset_def Set_def)
  | 
| 
 | 
   222  | 
qed
  | 
| 
 | 
   223  | 
  | 
| 
 | 
   224  | 
lemma union_insert [code]:
  | 
| 
34048
 | 
   225  | 
  "sup (Set xs) A = foldl (\<lambda>A x. insert x A) A xs"
  | 
| 
 | 
   226  | 
  "sup (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
  | 
| 
32880
 | 
   227  | 
proof -
  | 
| 
 | 
   228  | 
  have "foldl (\<lambda>A x. Set.insert x A) (member A) xs =
  | 
| 
 | 
   229  | 
    member (foldl (\<lambda>A x. Fset (Set.insert x (member A))) A xs)"
  | 
| 
 | 
   230  | 
    by (rule foldl_apply_inv) simp
  | 
| 
34048
 | 
   231  | 
  then show "sup (Set xs) A = foldl (\<lambda>A x. insert x A) A xs"
  | 
| 
32880
 | 
   232  | 
    by (simp add: union_set)
  | 
| 
34048
 | 
   233  | 
  show "sup (Coset xs) A = Coset (List.filter (Not \<circ> member A) xs)"
  | 
| 
32880
 | 
   234  | 
    by (auto simp add: Coset_def)
  | 
| 
31807
 | 
   235  | 
qed
  | 
| 
 | 
   236  | 
  | 
| 
34048
 | 
   237  | 
context complete_lattice
  | 
| 
 | 
   238  | 
begin
  | 
| 
31807
 | 
   239  | 
  | 
| 
34048
 | 
   240  | 
definition Infimum :: "'a fset \<Rightarrow> 'a" where
  | 
| 
 | 
   241  | 
  [simp]: "Infimum A = Inf (member A)"
  | 
| 
31807
 | 
   242  | 
  | 
| 
34048
 | 
   243  | 
lemma Infimum_inf [code]:
  | 
| 
 | 
   244  | 
  "Infimum (Set As) = foldl inf top As"
  | 
| 
 | 
   245  | 
  "Infimum (Coset []) = bot"
  | 
| 
 | 
   246  | 
  by (simp_all add: Inf_set_fold Inf_UNIV)
  | 
| 
31807
 | 
   247  | 
  | 
| 
34048
 | 
   248  | 
definition Supremum :: "'a fset \<Rightarrow> 'a" where
  | 
| 
 | 
   249  | 
  [simp]: "Supremum A = Sup (member A)"
  | 
| 
 | 
   250  | 
  | 
| 
 | 
   251  | 
lemma Supremum_sup [code]:
  | 
| 
 | 
   252  | 
  "Supremum (Set As) = foldl sup bot As"
  | 
| 
 | 
   253  | 
  "Supremum (Coset []) = top"
  | 
| 
 | 
   254  | 
  by (simp_all add: Sup_set_fold Sup_UNIV)
  | 
| 
 | 
   255  | 
  | 
| 
 | 
   256  | 
end
  | 
| 
31807
 | 
   257  | 
  | 
| 
 | 
   258  | 
  | 
| 
 | 
   259  | 
subsection {* Misc operations *}
 | 
| 
 | 
   260  | 
  | 
| 
 | 
   261  | 
lemma size_fset [code]:
  | 
| 
 | 
   262  | 
  "fset_size f A = 0"
  | 
| 
 | 
   263  | 
  "size A = 0"
  | 
| 
 | 
   264  | 
  by (cases A, simp) (cases A, simp)
  | 
| 
 | 
   265  | 
  | 
| 
 | 
   266  | 
lemma fset_case_code [code]:
  | 
| 
 | 
   267  | 
  "fset_case f A = f (member A)"
  | 
| 
 | 
   268  | 
  by (cases A) simp
  | 
| 
 | 
   269  | 
  | 
| 
 | 
   270  | 
lemma fset_rec_code [code]:
  | 
| 
 | 
   271  | 
  "fset_rec f A = f (member A)"
  | 
| 
 | 
   272  | 
  by (cases A) simp
  | 
| 
 | 
   273  | 
  | 
| 
31846
 | 
   274  | 
  | 
| 
 | 
   275  | 
subsection {* Simplified simprules *}
 | 
| 
 | 
   276  | 
  | 
| 
 | 
   277  | 
lemma is_empty_simp [simp]:
  | 
| 
 | 
   278  | 
  "is_empty A \<longleftrightarrow> member A = {}"
 | 
| 
 | 
   279  | 
  by (simp add: List_Set.is_empty_def)
  | 
| 
 | 
   280  | 
declare is_empty_def [simp del]
  | 
| 
 | 
   281  | 
  | 
| 
 | 
   282  | 
lemma remove_simp [simp]:
  | 
| 
 | 
   283  | 
  "remove x A = Fset (member A - {x})"
 | 
| 
 | 
   284  | 
  by (simp add: List_Set.remove_def)
  | 
| 
 | 
   285  | 
declare remove_def [simp del]
  | 
| 
 | 
   286  | 
  | 
| 
31847
 | 
   287  | 
lemma filter_simp [simp]:
  | 
| 
 | 
   288  | 
  "filter P A = Fset {x \<in> member A. P x}"
 | 
| 
31846
 | 
   289  | 
  by (simp add: List_Set.project_def)
  | 
| 
31847
 | 
   290  | 
declare filter_def [simp del]
  | 
| 
31846
 | 
   291  | 
  | 
| 
 | 
   292  | 
declare mem_def [simp del]
  | 
| 
 | 
   293  | 
  | 
| 
31849
 | 
   294  | 
  | 
| 
34048
 | 
   295  | 
hide (open) const is_empty insert remove map filter forall exists card
  | 
| 
 | 
   296  | 
  Inter Union
  | 
| 
31849
 | 
   297  | 
  | 
| 
31807
 | 
   298  | 
end
  |