| 1459 |      1 | (*  Title:      CCL/trancl
 | 
| 0 |      2 |     ID:         $Id$
 | 
|  |      3 | 
 | 
|  |      4 | For trancl.thy.
 | 
|  |      5 | 
 | 
|  |      6 | Modified version of
 | 
| 1459 |      7 |     Title:      HOL/trancl.ML
 | 
|  |      8 |     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
| 0 |      9 |     Copyright   1992  University of Cambridge
 | 
|  |     10 | 
 | 
|  |     11 | *)
 | 
|  |     12 | 
 | 
|  |     13 | open Trancl;
 | 
|  |     14 | 
 | 
|  |     15 | (** Natural deduction for trans(r) **)
 | 
|  |     16 | 
 | 
|  |     17 | val prems = goalw Trancl.thy [trans_def]
 | 
|  |     18 |     "(!! x y z. [| <x,y>:r;  <y,z>:r |] ==> <x,z>:r) ==> trans(r)";
 | 
|  |     19 | by (REPEAT (ares_tac (prems@[allI,impI]) 1));
 | 
| 757 |     20 | qed "transI";
 | 
| 0 |     21 | 
 | 
|  |     22 | val major::prems = goalw Trancl.thy [trans_def]
 | 
|  |     23 |     "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r";
 | 
|  |     24 | by (cut_facts_tac [major] 1);
 | 
|  |     25 | by (fast_tac (FOL_cs addIs prems) 1);
 | 
| 757 |     26 | qed "transD";
 | 
| 0 |     27 | 
 | 
|  |     28 | (** Identity relation **)
 | 
|  |     29 | 
 | 
| 5062 |     30 | Goalw [id_def] "<a,a> : id";  
 | 
| 0 |     31 | by (rtac CollectI 1);
 | 
|  |     32 | by (rtac exI 1);
 | 
|  |     33 | by (rtac refl 1);
 | 
| 757 |     34 | qed "idI";
 | 
| 0 |     35 | 
 | 
|  |     36 | val major::prems = goalw Trancl.thy [id_def]
 | 
|  |     37 |     "[| p: id;  !!x.[| p = <x,x> |] ==> P  \
 | 
|  |     38 | \    |] ==>  P";  
 | 
|  |     39 | by (rtac (major RS CollectE) 1);
 | 
|  |     40 | by (etac exE 1);
 | 
|  |     41 | by (eresolve_tac prems 1);
 | 
| 757 |     42 | qed "idE";
 | 
| 0 |     43 | 
 | 
|  |     44 | (** Composition of two relations **)
 | 
|  |     45 | 
 | 
|  |     46 | val prems = goalw Trancl.thy [comp_def]
 | 
|  |     47 |     "[| <a,b>:s; <b,c>:r |] ==> <a,c> : r O s";
 | 
|  |     48 | by (fast_tac (set_cs addIs prems) 1);
 | 
| 757 |     49 | qed "compI";
 | 
| 0 |     50 | 
 | 
|  |     51 | (*proof requires higher-level assumptions or a delaying of hyp_subst_tac*)
 | 
|  |     52 | val prems = goalw Trancl.thy [comp_def]
 | 
|  |     53 |     "[| xz : r O s;  \
 | 
|  |     54 | \       !!x y z. [| xz = <x,z>;  <x,y>:s;  <y,z>:r |] ==> P \
 | 
|  |     55 | \    |] ==> P";
 | 
|  |     56 | by (cut_facts_tac prems 1);
 | 
|  |     57 | by (REPEAT (eresolve_tac [CollectE, exE, conjE] 1 ORELSE ares_tac prems 1));
 | 
| 757 |     58 | qed "compE";
 | 
| 0 |     59 | 
 | 
|  |     60 | val prems = goal Trancl.thy
 | 
|  |     61 |     "[| <a,c> : r O s;  \
 | 
|  |     62 | \       !!y. [| <a,y>:s;  <y,c>:r |] ==> P \
 | 
|  |     63 | \    |] ==> P";
 | 
|  |     64 | by (rtac compE 1);
 | 
|  |     65 | by (REPEAT (ares_tac prems 1 ORELSE eresolve_tac [pair_inject,ssubst] 1));
 | 
| 757 |     66 | qed "compEpair";
 | 
| 0 |     67 | 
 | 
|  |     68 | val comp_cs = set_cs addIs [compI,idI] 
 | 
| 1459 |     69 |                        addEs [compE,idE] 
 | 
|  |     70 |                        addSEs [pair_inject];
 | 
| 0 |     71 | 
 | 
|  |     72 | val prems = goal Trancl.thy
 | 
|  |     73 |     "[| r'<=r; s'<=s |] ==> (r' O s') <= (r O s)";
 | 
|  |     74 | by (cut_facts_tac prems 1);
 | 
|  |     75 | by (fast_tac comp_cs 1);
 | 
| 757 |     76 | qed "comp_mono";
 | 
| 0 |     77 | 
 | 
|  |     78 | (** The relation rtrancl **)
 | 
|  |     79 | 
 | 
| 5062 |     80 | Goal "mono(%s. id Un (r O s))";
 | 
| 0 |     81 | by (rtac monoI 1);
 | 
|  |     82 | by (REPEAT (ares_tac [monoI, subset_refl, comp_mono, Un_mono] 1));
 | 
| 757 |     83 | qed "rtrancl_fun_mono";
 | 
| 0 |     84 | 
 | 
|  |     85 | val rtrancl_unfold = rtrancl_fun_mono RS (rtrancl_def RS def_lfp_Tarski);
 | 
|  |     86 | 
 | 
|  |     87 | (*Reflexivity of rtrancl*)
 | 
| 5062 |     88 | Goal "<a,a> : r^*";
 | 
| 2035 |     89 | by (stac rtrancl_unfold 1);
 | 
| 0 |     90 | by (fast_tac comp_cs 1);
 | 
| 757 |     91 | qed "rtrancl_refl";
 | 
| 0 |     92 | 
 | 
|  |     93 | (*Closure under composition with r*)
 | 
|  |     94 | val prems = goal Trancl.thy
 | 
|  |     95 |     "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*";
 | 
| 2035 |     96 | by (stac rtrancl_unfold 1);
 | 
| 0 |     97 | by (fast_tac (comp_cs addIs prems) 1);
 | 
| 757 |     98 | qed "rtrancl_into_rtrancl";
 | 
| 0 |     99 | 
 | 
|  |    100 | (*rtrancl of r contains r*)
 | 
|  |    101 | val [prem] = goal Trancl.thy "[| <a,b> : r |] ==> <a,b> : r^*";
 | 
|  |    102 | by (rtac (rtrancl_refl RS rtrancl_into_rtrancl) 1);
 | 
|  |    103 | by (rtac prem 1);
 | 
| 757 |    104 | qed "r_into_rtrancl";
 | 
| 0 |    105 | 
 | 
|  |    106 | 
 | 
|  |    107 | (** standard induction rule **)
 | 
|  |    108 | 
 | 
|  |    109 | val major::prems = goal Trancl.thy 
 | 
|  |    110 |   "[| <a,b> : r^*; \
 | 
|  |    111 | \     !!x. P(<x,x>); \
 | 
|  |    112 | \     !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |] \
 | 
|  |    113 | \  ==>  P(<a,b>)";
 | 
|  |    114 | by (rtac (major RS (rtrancl_def RS def_induct)) 1);
 | 
|  |    115 | by (rtac rtrancl_fun_mono 1);
 | 
|  |    116 | by (fast_tac (comp_cs addIs prems) 1);
 | 
| 757 |    117 | qed "rtrancl_full_induct";
 | 
| 0 |    118 | 
 | 
|  |    119 | (*nice induction rule*)
 | 
|  |    120 | val major::prems = goal Trancl.thy
 | 
|  |    121 |     "[| <a,b> : r^*;    \
 | 
|  |    122 | \       P(a); \
 | 
| 1459 |    123 | \       !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z) |]  \
 | 
| 0 |    124 | \     ==> P(b)";
 | 
|  |    125 | (*by induction on this formula*)
 | 
|  |    126 | by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
 | 
|  |    127 | (*now solve first subgoal: this formula is sufficient*)
 | 
|  |    128 | by (fast_tac FOL_cs 1);
 | 
|  |    129 | (*now do the induction*)
 | 
|  |    130 | by (resolve_tac [major RS rtrancl_full_induct] 1);
 | 
|  |    131 | by (fast_tac (comp_cs addIs prems) 1);
 | 
|  |    132 | by (fast_tac (comp_cs addIs prems) 1);
 | 
| 757 |    133 | qed "rtrancl_induct";
 | 
| 0 |    134 | 
 | 
|  |    135 | (*transitivity of transitive closure!! -- by induction.*)
 | 
| 5062 |    136 | Goal "trans(r^*)";
 | 
| 0 |    137 | by (rtac transI 1);
 | 
|  |    138 | by (res_inst_tac [("b","z")] rtrancl_induct 1);
 | 
|  |    139 | by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
 | 
| 757 |    140 | qed "trans_rtrancl";
 | 
| 0 |    141 | 
 | 
|  |    142 | (*elimination of rtrancl -- by induction on a special formula*)
 | 
|  |    143 | val major::prems = goal Trancl.thy
 | 
|  |    144 |     "[| <a,b> : r^*;  (a = b) ==> P; \
 | 
| 1459 |    145 | \       !!y.[| <a,y> : r^*; <y,b> : r |] ==> P |] \
 | 
| 0 |    146 | \    ==> P";
 | 
|  |    147 | by (subgoal_tac "a = b  | (EX y. <a,y> : r^* & <y,b> : r)" 1);
 | 
|  |    148 | by (rtac (major RS rtrancl_induct) 2);
 | 
|  |    149 | by (fast_tac (set_cs addIs prems) 2);
 | 
|  |    150 | by (fast_tac (set_cs addIs prems) 2);
 | 
|  |    151 | by (REPEAT (eresolve_tac ([asm_rl,exE,disjE,conjE]@prems) 1));
 | 
| 757 |    152 | qed "rtranclE";
 | 
| 0 |    153 | 
 | 
|  |    154 | 
 | 
|  |    155 | (**** The relation trancl ****)
 | 
|  |    156 | 
 | 
|  |    157 | (** Conversions between trancl and rtrancl **)
 | 
|  |    158 | 
 | 
|  |    159 | val [major] = goalw Trancl.thy [trancl_def]
 | 
|  |    160 |     "[| <a,b> : r^+ |] ==> <a,b> : r^*";
 | 
|  |    161 | by (resolve_tac [major RS compEpair] 1);
 | 
|  |    162 | by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
 | 
| 757 |    163 | qed "trancl_into_rtrancl";
 | 
| 0 |    164 | 
 | 
|  |    165 | (*r^+ contains r*)
 | 
|  |    166 | val [prem] = goalw Trancl.thy [trancl_def]
 | 
|  |    167 |    "[| <a,b> : r |] ==> <a,b> : r^+";
 | 
|  |    168 | by (REPEAT (ares_tac [prem,compI,rtrancl_refl] 1));
 | 
| 757 |    169 | qed "r_into_trancl";
 | 
| 0 |    170 | 
 | 
|  |    171 | (*intro rule by definition: from rtrancl and r*)
 | 
|  |    172 | val prems = goalw Trancl.thy [trancl_def]
 | 
|  |    173 |     "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+";
 | 
|  |    174 | by (REPEAT (resolve_tac ([compI]@prems) 1));
 | 
| 757 |    175 | qed "rtrancl_into_trancl1";
 | 
| 0 |    176 | 
 | 
|  |    177 | (*intro rule from r and rtrancl*)
 | 
|  |    178 | val prems = goal Trancl.thy
 | 
|  |    179 |     "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+";
 | 
|  |    180 | by (resolve_tac (prems RL [rtranclE]) 1);
 | 
|  |    181 | by (etac subst 1);
 | 
|  |    182 | by (resolve_tac (prems RL [r_into_trancl]) 1);
 | 
|  |    183 | by (rtac (trans_rtrancl RS transD RS rtrancl_into_trancl1) 1);
 | 
|  |    184 | by (REPEAT (ares_tac (prems@[r_into_rtrancl]) 1));
 | 
| 757 |    185 | qed "rtrancl_into_trancl2";
 | 
| 0 |    186 | 
 | 
|  |    187 | (*elimination of r^+ -- NOT an induction rule*)
 | 
|  |    188 | val major::prems = goal Trancl.thy
 | 
|  |    189 |     "[| <a,b> : r^+;  \
 | 
|  |    190 | \       <a,b> : r ==> P; \
 | 
| 1459 |    191 | \       !!y.[| <a,y> : r^+;  <y,b> : r |] ==> P  \
 | 
| 0 |    192 | \    |] ==> P";
 | 
|  |    193 | by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+  &  <y,b> : r)" 1);
 | 
|  |    194 | by (REPEAT (eresolve_tac ([asm_rl,disjE,exE,conjE]@prems) 1));
 | 
|  |    195 | by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
 | 
|  |    196 | by (etac rtranclE 1);
 | 
|  |    197 | by (fast_tac comp_cs 1);
 | 
|  |    198 | by (fast_tac (comp_cs addSIs [rtrancl_into_trancl1]) 1);
 | 
| 757 |    199 | qed "tranclE";
 | 
| 0 |    200 | 
 | 
|  |    201 | (*Transitivity of r^+.
 | 
|  |    202 |   Proved by unfolding since it uses transitivity of rtrancl. *)
 | 
| 5062 |    203 | Goalw [trancl_def] "trans(r^+)";
 | 
| 0 |    204 | by (rtac transI 1);
 | 
|  |    205 | by (REPEAT (etac compEpair 1));
 | 
|  |    206 | by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
 | 
|  |    207 | by (REPEAT (assume_tac 1));
 | 
| 757 |    208 | qed "trans_trancl";
 | 
| 0 |    209 | 
 | 
|  |    210 | val prems = goal Trancl.thy
 | 
|  |    211 |     "[| <a,b> : r;  <b,c> : r^+ |]   ==>  <a,c> : r^+";
 | 
|  |    212 | by (rtac (r_into_trancl RS (trans_trancl RS transD)) 1);
 | 
|  |    213 | by (resolve_tac prems 1);
 | 
|  |    214 | by (resolve_tac prems 1);
 | 
| 757 |    215 | qed "trancl_into_trancl2";
 |