author | Fabian Huch <huch@in.tum.de> |
Thu, 30 Nov 2023 13:44:51 +0100 | |
changeset 79084 | dd689c4ab688 |
parent 69597 | ff784d5a5bfb |
permissions | -rw-r--r-- |
42151 | 1 |
(* Title: HOL/HOLCF/Product_Cpo.thy |
29531 | 2 |
Author: Franz Regensburger |
3 |
*) |
|
4 |
||
62175 | 5 |
section \<open>The cpo of cartesian products\<close> |
29531 | 6 |
|
7 |
theory Product_Cpo |
|
67312 | 8 |
imports Adm |
29531 | 9 |
begin |
10 |
||
36452 | 11 |
default_sort cpo |
29531 | 12 |
|
67312 | 13 |
|
62175 | 14 |
subsection \<open>Unit type is a pcpo\<close> |
29531 | 15 |
|
40090 | 16 |
instantiation unit :: discrete_cpo |
29531 | 17 |
begin |
18 |
||
67312 | 19 |
definition below_unit_def [simp]: "x \<sqsubseteq> (y::unit) \<longleftrightarrow> True" |
29531 | 20 |
|
67312 | 21 |
instance |
22 |
by standard simp |
|
29531 | 23 |
|
40090 | 24 |
end |
29531 | 25 |
|
26 |
instance unit :: pcpo |
|
67312 | 27 |
by standard simp |
29531 | 28 |
|
29 |
||
62175 | 30 |
subsection \<open>Product type is a partial order\<close> |
29531 | 31 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37079
diff
changeset
|
32 |
instantiation prod :: (below, below) below |
29531 | 33 |
begin |
34 |
||
67399 | 35 |
definition below_prod_def: "(\<sqsubseteq>) \<equiv> \<lambda>p1 p2. (fst p1 \<sqsubseteq> fst p2 \<and> snd p1 \<sqsubseteq> snd p2)" |
29531 | 36 |
|
37 |
instance .. |
|
67312 | 38 |
|
29531 | 39 |
end |
40 |
||
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37079
diff
changeset
|
41 |
instance prod :: (po, po) po |
29531 | 42 |
proof |
43 |
fix x :: "'a \<times> 'b" |
|
44 |
show "x \<sqsubseteq> x" |
|
67312 | 45 |
by (simp add: below_prod_def) |
29531 | 46 |
next |
47 |
fix x y :: "'a \<times> 'b" |
|
67312 | 48 |
assume "x \<sqsubseteq> y" "y \<sqsubseteq> x" |
49 |
then show "x = y" |
|
44066
d74182c93f04
rename Pair_fst_snd_eq to prod_eq_iff (keeping old name too)
huffman
parents:
42151
diff
changeset
|
50 |
unfolding below_prod_def prod_eq_iff |
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
51 |
by (fast intro: below_antisym) |
29531 | 52 |
next |
53 |
fix x y z :: "'a \<times> 'b" |
|
67312 | 54 |
assume "x \<sqsubseteq> y" "y \<sqsubseteq> z" |
55 |
then show "x \<sqsubseteq> z" |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
56 |
unfolding below_prod_def |
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
57 |
by (fast intro: below_trans) |
29531 | 58 |
qed |
59 |
||
67312 | 60 |
|
62175 | 61 |
subsection \<open>Monotonicity of \emph{Pair}, \emph{fst}, \emph{snd}\<close> |
29531 | 62 |
|
67312 | 63 |
lemma prod_belowI: "fst p \<sqsubseteq> fst q \<Longrightarrow> snd p \<sqsubseteq> snd q \<Longrightarrow> p \<sqsubseteq> q" |
64 |
by (simp add: below_prod_def) |
|
29531 | 65 |
|
31076
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
huffman
parents:
31041
diff
changeset
|
66 |
lemma Pair_below_iff [simp]: "(a, b) \<sqsubseteq> (c, d) \<longleftrightarrow> a \<sqsubseteq> c \<and> b \<sqsubseteq> d" |
67312 | 67 |
by (simp add: below_prod_def) |
29531 | 68 |
|
62175 | 69 |
text \<open>Pair \<open>(_,_)\<close> is monotone in both arguments\<close> |
29531 | 70 |
|
71 |
lemma monofun_pair1: "monofun (\<lambda>x. (x, y))" |
|
67312 | 72 |
by (simp add: monofun_def) |
29531 | 73 |
|
74 |
lemma monofun_pair2: "monofun (\<lambda>y. (x, y))" |
|
67312 | 75 |
by (simp add: monofun_def) |
29531 | 76 |
|
67312 | 77 |
lemma monofun_pair: "x1 \<sqsubseteq> x2 \<Longrightarrow> y1 \<sqsubseteq> y2 \<Longrightarrow> (x1, y1) \<sqsubseteq> (x2, y2)" |
78 |
by simp |
|
29531 | 79 |
|
67312 | 80 |
lemma ch2ch_Pair [simp]: "chain X \<Longrightarrow> chain Y \<Longrightarrow> chain (\<lambda>i. (X i, Y i))" |
81 |
by (rule chainI, simp add: chainE) |
|
31112 | 82 |
|
69597 | 83 |
text \<open>\<^term>\<open>fst\<close> and \<^term>\<open>snd\<close> are monotone\<close> |
29531 | 84 |
|
35919 | 85 |
lemma fst_monofun: "x \<sqsubseteq> y \<Longrightarrow> fst x \<sqsubseteq> fst y" |
67312 | 86 |
by (simp add: below_prod_def) |
35919 | 87 |
|
88 |
lemma snd_monofun: "x \<sqsubseteq> y \<Longrightarrow> snd x \<sqsubseteq> snd y" |
|
67312 | 89 |
by (simp add: below_prod_def) |
35919 | 90 |
|
29531 | 91 |
lemma monofun_fst: "monofun fst" |
67312 | 92 |
by (simp add: monofun_def below_prod_def) |
29531 | 93 |
|
94 |
lemma monofun_snd: "monofun snd" |
|
67312 | 95 |
by (simp add: monofun_def below_prod_def) |
29531 | 96 |
|
31112 | 97 |
lemmas ch2ch_fst [simp] = ch2ch_monofun [OF monofun_fst] |
98 |
||
99 |
lemmas ch2ch_snd [simp] = ch2ch_monofun [OF monofun_snd] |
|
100 |
||
101 |
lemma prod_chain_cases: |
|
67312 | 102 |
assumes chain: "chain Y" |
31112 | 103 |
obtains A B |
104 |
where "chain A" and "chain B" and "Y = (\<lambda>i. (A i, B i))" |
|
105 |
proof |
|
67312 | 106 |
from chain show "chain (\<lambda>i. fst (Y i))" |
107 |
by (rule ch2ch_fst) |
|
108 |
from chain show "chain (\<lambda>i. snd (Y i))" |
|
109 |
by (rule ch2ch_snd) |
|
110 |
show "Y = (\<lambda>i. (fst (Y i), snd (Y i)))" |
|
111 |
by simp |
|
31112 | 112 |
qed |
113 |
||
67312 | 114 |
|
62175 | 115 |
subsection \<open>Product type is a cpo\<close> |
29531 | 116 |
|
67312 | 117 |
lemma is_lub_Pair: "range A <<| x \<Longrightarrow> range B <<| y \<Longrightarrow> range (\<lambda>i. (A i, B i)) <<| (x, y)" |
118 |
by (simp add: is_lub_def is_ub_def below_prod_def) |
|
29531 | 119 |
|
67312 | 120 |
lemma lub_Pair: "chain A \<Longrightarrow> chain B \<Longrightarrow> (\<Squnion>i. (A i, B i)) = (\<Squnion>i. A i, \<Squnion>i. B i)" |
121 |
for A :: "nat \<Rightarrow> 'a::cpo" and B :: "nat \<Rightarrow> 'b::cpo" |
|
122 |
by (fast intro: lub_eqI is_lub_Pair elim: thelubE) |
|
31112 | 123 |
|
40771 | 124 |
lemma is_lub_prod: |
29531 | 125 |
fixes S :: "nat \<Rightarrow> ('a::cpo \<times> 'b::cpo)" |
67312 | 126 |
assumes "chain S" |
29531 | 127 |
shows "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))" |
67312 | 128 |
using assms by (auto elim: prod_chain_cases simp: is_lub_Pair cpo_lubI) |
29531 | 129 |
|
67312 | 130 |
lemma lub_prod: "chain S \<Longrightarrow> (\<Squnion>i. S i) = (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))" |
131 |
for S :: "nat \<Rightarrow> 'a::cpo \<times> 'b::cpo" |
|
132 |
by (rule is_lub_prod [THEN lub_eqI]) |
|
29531 | 133 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37079
diff
changeset
|
134 |
instance prod :: (cpo, cpo) cpo |
29531 | 135 |
proof |
136 |
fix S :: "nat \<Rightarrow> ('a \<times> 'b)" |
|
137 |
assume "chain S" |
|
67312 | 138 |
then have "range S <<| (\<Squnion>i. fst (S i), \<Squnion>i. snd (S i))" |
40771 | 139 |
by (rule is_lub_prod) |
67312 | 140 |
then show "\<exists>x. range S <<| x" .. |
29531 | 141 |
qed |
142 |
||
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37079
diff
changeset
|
143 |
instance prod :: (discrete_cpo, discrete_cpo) discrete_cpo |
29531 | 144 |
proof |
145 |
fix x y :: "'a \<times> 'b" |
|
146 |
show "x \<sqsubseteq> y \<longleftrightarrow> x = y" |
|
67312 | 147 |
by (simp add: below_prod_def prod_eq_iff) |
29531 | 148 |
qed |
149 |
||
67312 | 150 |
|
62175 | 151 |
subsection \<open>Product type is pointed\<close> |
29531 | 152 |
|
40771 | 153 |
lemma minimal_prod: "(\<bottom>, \<bottom>) \<sqsubseteq> p" |
67312 | 154 |
by (simp add: below_prod_def) |
29531 | 155 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37079
diff
changeset
|
156 |
instance prod :: (pcpo, pcpo) pcpo |
67312 | 157 |
by intro_classes (fast intro: minimal_prod) |
29531 | 158 |
|
40771 | 159 |
lemma inst_prod_pcpo: "\<bottom> = (\<bottom>, \<bottom>)" |
67312 | 160 |
by (rule minimal_prod [THEN bottomI, symmetric]) |
29531 | 161 |
|
40321
d065b195ec89
rename lemmas *_defined_iff and *_strict_iff to *_bottom_iff
huffman
parents:
40090
diff
changeset
|
162 |
lemma Pair_bottom_iff [simp]: "(x, y) = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" |
67312 | 163 |
by (simp add: inst_prod_pcpo) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
164 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
165 |
lemma fst_strict [simp]: "fst \<bottom> = \<bottom>" |
67312 | 166 |
unfolding inst_prod_pcpo by (rule fst_conv) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
167 |
|
33506 | 168 |
lemma snd_strict [simp]: "snd \<bottom> = \<bottom>" |
67312 | 169 |
unfolding inst_prod_pcpo by (rule snd_conv) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
170 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
171 |
lemma Pair_strict [simp]: "(\<bottom>, \<bottom>) = \<bottom>" |
67312 | 172 |
by simp |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
173 |
|
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
58880
diff
changeset
|
174 |
lemma split_strict [simp]: "case_prod f \<bottom> = f \<bottom> \<bottom>" |
67312 | 175 |
by (simp add: split_def) |
176 |
||
29531 | 177 |
|
62175 | 178 |
subsection \<open>Continuity of \emph{Pair}, \emph{fst}, \emph{snd}\<close> |
29531 | 179 |
|
180 |
lemma cont_pair1: "cont (\<lambda>x. (x, y))" |
|
67312 | 181 |
apply (rule contI) |
182 |
apply (rule is_lub_Pair) |
|
183 |
apply (erule cpo_lubI) |
|
184 |
apply (rule is_lub_const) |
|
185 |
done |
|
29531 | 186 |
|
187 |
lemma cont_pair2: "cont (\<lambda>y. (x, y))" |
|
67312 | 188 |
apply (rule contI) |
189 |
apply (rule is_lub_Pair) |
|
190 |
apply (rule is_lub_const) |
|
191 |
apply (erule cpo_lubI) |
|
192 |
done |
|
29531 | 193 |
|
35914 | 194 |
lemma cont_fst: "cont fst" |
67312 | 195 |
apply (rule contI) |
196 |
apply (simp add: lub_prod) |
|
197 |
apply (erule cpo_lubI [OF ch2ch_fst]) |
|
198 |
done |
|
29531 | 199 |
|
200 |
lemma cont_snd: "cont snd" |
|
67312 | 201 |
apply (rule contI) |
202 |
apply (simp add: lub_prod) |
|
203 |
apply (erule cpo_lubI [OF ch2ch_snd]) |
|
204 |
done |
|
29531 | 205 |
|
37079
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
huffman
parents:
36452
diff
changeset
|
206 |
lemma cont2cont_Pair [simp, cont2cont]: |
29531 | 207 |
assumes f: "cont (\<lambda>x. f x)" |
208 |
assumes g: "cont (\<lambda>x. g x)" |
|
209 |
shows "cont (\<lambda>x. (f x, g x))" |
|
67312 | 210 |
apply (rule cont_apply [OF f cont_pair1]) |
211 |
apply (rule cont_apply [OF g cont_pair2]) |
|
212 |
apply (rule cont_const) |
|
213 |
done |
|
29531 | 214 |
|
37079
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
huffman
parents:
36452
diff
changeset
|
215 |
lemmas cont2cont_fst [simp, cont2cont] = cont_compose [OF cont_fst] |
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
216 |
|
37079
0cd15d8c90a0
remove cont2cont simproc; instead declare cont2cont rules as simp rules
huffman
parents:
36452
diff
changeset
|
217 |
lemmas cont2cont_snd [simp, cont2cont] = cont_compose [OF cont_snd] |
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
218 |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
44066
diff
changeset
|
219 |
lemma cont2cont_case_prod: |
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
220 |
assumes f1: "\<And>a b. cont (\<lambda>x. f x a b)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
221 |
assumes f2: "\<And>x b. cont (\<lambda>a. f x a b)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
222 |
assumes f3: "\<And>x a. cont (\<lambda>b. f x a b)" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
223 |
assumes g: "cont (\<lambda>x. g x)" |
39144 | 224 |
shows "cont (\<lambda>x. case g x of (a, b) \<Rightarrow> f x a b)" |
67312 | 225 |
unfolding split_def |
226 |
apply (rule cont_apply [OF g]) |
|
227 |
apply (rule cont_apply [OF cont_fst f2]) |
|
228 |
apply (rule cont_apply [OF cont_snd f3]) |
|
229 |
apply (rule cont_const) |
|
230 |
apply (rule f1) |
|
231 |
done |
|
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
232 |
|
39808
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
233 |
lemma prod_contI: |
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
234 |
assumes f1: "\<And>y. cont (\<lambda>x. f (x, y))" |
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
235 |
assumes f2: "\<And>x. cont (\<lambda>y. f (x, y))" |
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
236 |
shows "cont f" |
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
237 |
proof - |
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
238 |
have "cont (\<lambda>(x, y). f (x, y))" |
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
44066
diff
changeset
|
239 |
by (intro cont2cont_case_prod f1 f2 cont2cont) |
67312 | 240 |
then show "cont f" |
61424
c3658c18b7bc
prod_case as canonical name for product type eliminator
haftmann
parents:
58880
diff
changeset
|
241 |
by (simp only: case_prod_eta) |
39808
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
242 |
qed |
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
243 |
|
67312 | 244 |
lemma prod_cont_iff: "cont f \<longleftrightarrow> (\<forall>y. cont (\<lambda>x. f (x, y))) \<and> (\<forall>x. cont (\<lambda>y. f (x, y)))" |
245 |
apply safe |
|
246 |
apply (erule cont_compose [OF _ cont_pair1]) |
|
247 |
apply (erule cont_compose [OF _ cont_pair2]) |
|
248 |
apply (simp only: prod_contI) |
|
249 |
done |
|
39808
1410c84013b9
rename cont2cont_split to cont2cont_prod_case; add lemmas prod_contI, prod_cont_iff; simplify some proofs
huffman
parents:
39144
diff
changeset
|
250 |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
44066
diff
changeset
|
251 |
lemma cont2cont_case_prod' [simp, cont2cont]: |
31041
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
252 |
assumes f: "cont (\<lambda>p. f (fst p) (fst (snd p)) (snd (snd p)))" |
85b4843d9939
replace cont2cont_apply with cont_apply; add new cont2cont lemmas
huffman
parents:
29535
diff
changeset
|
253 |
assumes g: "cont (\<lambda>x. g x)" |
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
44066
diff
changeset
|
254 |
shows "cont (\<lambda>x. case_prod (f x) (g x))" |
67312 | 255 |
using assms by (simp add: cont2cont_case_prod prod_cont_iff) |
29531 | 256 |
|
62175 | 257 |
text \<open>The simple version (due to Joachim Breitner) is needed if |
258 |
either element type of the pair is not a cpo.\<close> |
|
39144 | 259 |
|
260 |
lemma cont2cont_split_simple [simp, cont2cont]: |
|
67312 | 261 |
assumes "\<And>a b. cont (\<lambda>x. f x a b)" |
262 |
shows "cont (\<lambda>x. case p of (a, b) \<Rightarrow> f x a b)" |
|
263 |
using assms by (cases p) auto |
|
39144 | 264 |
|
62175 | 265 |
text \<open>Admissibility of predicates on product types.\<close> |
40619 | 266 |
|
55414
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
blanchet
parents:
44066
diff
changeset
|
267 |
lemma adm_case_prod [simp]: |
40619 | 268 |
assumes "adm (\<lambda>x. P x (fst (f x)) (snd (f x)))" |
269 |
shows "adm (\<lambda>x. case f x of (a, b) \<Rightarrow> P x a b)" |
|
67312 | 270 |
unfolding case_prod_beta using assms . |
271 |
||
40619 | 272 |
|
62175 | 273 |
subsection \<open>Compactness and chain-finiteness\<close> |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
274 |
|
67312 | 275 |
lemma fst_below_iff: "fst x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (y, snd x)" |
276 |
for x :: "'a \<times> 'b" |
|
277 |
by (simp add: below_prod_def) |
|
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
278 |
|
67312 | 279 |
lemma snd_below_iff: "snd x \<sqsubseteq> y \<longleftrightarrow> x \<sqsubseteq> (fst x, y)" |
280 |
for x :: "'a \<times> 'b" |
|
281 |
by (simp add: below_prod_def) |
|
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
282 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
283 |
lemma compact_fst: "compact x \<Longrightarrow> compact (fst x)" |
67312 | 284 |
by (rule compactI) (simp add: fst_below_iff) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
285 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
286 |
lemma compact_snd: "compact x \<Longrightarrow> compact (snd x)" |
67312 | 287 |
by (rule compactI) (simp add: snd_below_iff) |
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
288 |
|
67312 | 289 |
lemma compact_Pair: "compact x \<Longrightarrow> compact y \<Longrightarrow> compact (x, y)" |
290 |
by (rule compactI) (simp add: below_prod_def) |
|
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
291 |
|
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
292 |
lemma compact_Pair_iff [simp]: "compact (x, y) \<longleftrightarrow> compact x \<and> compact y" |
67312 | 293 |
apply (safe intro!: compact_Pair) |
294 |
apply (drule compact_fst, simp) |
|
295 |
apply (drule compact_snd, simp) |
|
296 |
done |
|
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
297 |
|
37678
0040bafffdef
"prod" and "sum" replace "*" and "+" respectively
haftmann
parents:
37079
diff
changeset
|
298 |
instance prod :: (chfin, chfin) chfin |
67312 | 299 |
apply intro_classes |
300 |
apply (erule compact_imp_max_in_chain) |
|
301 |
apply (case_tac "\<Squnion>i. Y i", simp) |
|
302 |
done |
|
29535
08824fad8879
add strictness and compactness lemmas to Product_Cpo.thy
huffman
parents:
29533
diff
changeset
|
303 |
|
29531 | 304 |
end |