doc-src/TutorialI/Inductive/document/AB.tex
author ballarin
Wed, 04 Nov 2009 22:51:27 +0100
changeset 33462 ddcf2004e215
parent 27167 a99747ccba87
child 40406 313a24b66a8d
permissions -rw-r--r--
Use PrintMode.setmp to make thread-safe; avoid code clones.
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
     1
%
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
     2
\begin{isabellebody}%
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
     3
\def\isabellecontext{AB}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
     4
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
     5
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
     6
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
     7
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
     8
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
     9
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    10
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    11
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    12
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    13
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    14
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    15
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    16
\endisadelimtheory
10225
b9fd52525b69 *** empty log message ***
nipkow
parents: 10217
diff changeset
    17
%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    18
\isamarkupsection{Case Study: A Context Free Grammar%
10395
7ef380745743 updated;
wenzelm
parents: 10299
diff changeset
    19
}
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
    20
\isamarkuptrue%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    21
%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    22
\begin{isamarkuptext}%
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    23
\label{sec:CFG}
11494
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
    24
\index{grammars!defining inductively|(}%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    25
Grammars are nothing but shorthands for inductive definitions of nonterminals
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    26
which represent sets of strings. For example, the production
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    27
$A \to B c$ is short for
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    28
\[ w \in B \Longrightarrow wc \in A \]
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    29
This section demonstrates this idea with an example
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    30
due to Hopcroft and Ullman, a grammar for generating all words with an
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    31
equal number of $a$'s and~$b$'s:
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    32
\begin{eqnarray}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    33
S &\to& \epsilon \mid b A \mid a B \nonumber\\
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    34
A &\to& a S \mid b A A \nonumber\\
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    35
B &\to& b S \mid a B B \nonumber
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    36
\end{eqnarray}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    37
At the end we say a few words about the relationship between
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    38
the original proof \cite[p.\ts81]{HopcroftUllman} and our formal version.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    39
10299
8627da9246da auto gen
paulson
parents: 10283
diff changeset
    40
We start by fixing the alphabet, which consists only of \isa{a}'s
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    41
and~\isa{b}'s:%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    42
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    43
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    44
\isacommand{datatype}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    45
\ alfa\ {\isacharequal}\ a\ {\isacharbar}\ b%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    46
\begin{isamarkuptext}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    47
\noindent
10299
8627da9246da auto gen
paulson
parents: 10283
diff changeset
    48
For convenience we include the following easy lemmas as simplification rules:%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    49
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    50
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    51
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    52
\ {\isacharbrackleft}simp{\isacharbrackright}{\isacharcolon}\ {\isachardoublequoteopen}{\isacharparenleft}x\ {\isasymnoteq}\ a{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharequal}\ b{\isacharparenright}\ {\isasymand}\ {\isacharparenleft}x\ {\isasymnoteq}\ b{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isacharequal}\ a{\isacharparenright}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    53
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    54
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    55
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    56
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    57
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    58
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    59
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    60
\ {\isacharparenleft}case{\isacharunderscore}tac\ x{\isacharcomma}\ auto{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    61
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    62
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    63
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    64
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    65
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
    66
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
    67
%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    68
\begin{isamarkuptext}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    69
\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    70
Words over this alphabet are of type \isa{alfa\ list}, and
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    71
the three nonterminals are declared as sets of such words.
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    72
The productions above are recast as a \emph{mutual} inductive
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10237
diff changeset
    73
definition\index{inductive definition!simultaneous}
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    74
of \isa{S}, \isa{A} and~\isa{B}:%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    75
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    76
\isamarkuptrue%
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    77
\isacommand{inductive{\isacharunderscore}set}\isamarkupfalse%
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    78
\isanewline
25330
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    79
\ \ S\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}alfa\ list\ set{\isachardoublequoteclose}\ \isakeyword{and}\isanewline
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    80
\ \ A\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}alfa\ list\ set{\isachardoublequoteclose}\ \isakeyword{and}\isanewline
15bf0f47a87d added inductive
nipkow
parents: 23733
diff changeset
    81
\ \ B\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequoteopen}alfa\ list\ set{\isachardoublequoteclose}\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    82
\isakeyword{where}\isanewline
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    83
\ \ {\isachardoublequoteopen}{\isacharbrackleft}{\isacharbrackright}\ {\isasymin}\ S{\isachardoublequoteclose}\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    84
{\isacharbar}\ {\isachardoublequoteopen}w\ {\isasymin}\ A\ {\isasymLongrightarrow}\ b{\isacharhash}w\ {\isasymin}\ S{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    85
{\isacharbar}\ {\isachardoublequoteopen}w\ {\isasymin}\ B\ {\isasymLongrightarrow}\ a{\isacharhash}w\ {\isasymin}\ S{\isachardoublequoteclose}\isanewline
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    86
\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    87
{\isacharbar}\ {\isachardoublequoteopen}w\ {\isasymin}\ S\ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ a{\isacharhash}w\ \ \ {\isasymin}\ A{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    88
{\isacharbar}\ {\isachardoublequoteopen}{\isasymlbrakk}\ v{\isasymin}A{\isacharsemicolon}\ w{\isasymin}A\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ b{\isacharhash}v{\isacharat}w\ {\isasymin}\ A{\isachardoublequoteclose}\isanewline
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
    89
\isanewline
23733
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    90
{\isacharbar}\ {\isachardoublequoteopen}w\ {\isasymin}\ S\ \ \ \ \ \ \ \ \ \ \ \ {\isasymLongrightarrow}\ b{\isacharhash}w\ \ \ {\isasymin}\ B{\isachardoublequoteclose}\isanewline
3f8ad7418e55 Adapted to new inductive definition package.
berghofe
parents: 23380
diff changeset
    91
{\isacharbar}\ {\isachardoublequoteopen}{\isasymlbrakk}\ v\ {\isasymin}\ B{\isacharsemicolon}\ w\ {\isasymin}\ B\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ a{\isacharhash}v{\isacharat}w\ {\isasymin}\ B{\isachardoublequoteclose}%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    92
\begin{isamarkuptext}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    93
\noindent
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    94
First we show that all words in \isa{S} contain the same number of \isa{a}'s and \isa{b}'s. Since the definition of \isa{S} is by mutual
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
    95
induction, so is the proof: we show at the same time that all words in
27167
nipkow
parents: 25330
diff changeset
    96
\isa{A} contain one more \isa{a} than \isa{b} and all words in \isa{B} contain one more \isa{b} than \isa{a}.%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
    97
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    98
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
    99
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   100
\ correctness{\isacharcolon}\isanewline
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   101
\ \ {\isachardoublequoteopen}{\isacharparenleft}w\ {\isasymin}\ S\ {\isasymlongrightarrow}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}a{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}b{\isacharbrackright}{\isacharparenright}\ \ \ \ \ {\isasymand}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   102
\ \ \ {\isacharparenleft}w\ {\isasymin}\ A\ {\isasymlongrightarrow}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}a{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}b{\isacharbrackright}\ {\isacharplus}\ {\isadigit{1}}{\isacharparenright}\ {\isasymand}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   103
\ \ \ {\isacharparenleft}w\ {\isasymin}\ B\ {\isasymlongrightarrow}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}b{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}a{\isacharbrackright}\ {\isacharplus}\ {\isadigit{1}}{\isacharparenright}{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   104
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   105
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   106
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   107
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   108
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   109
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   110
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   111
\noindent
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   112
These propositions are expressed with the help of the predefined \isa{filter} function on lists, which has the convenient syntax \isa{{\isacharbrackleft}x{\isasymleftarrow}xs{\isachardot}\ P\ x{\isacharbrackright}}, the list of all elements \isa{x} in \isa{xs} such that \isa{P\ x}
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   113
holds. Remember that on lists \isa{size} and \isa{length} are synonymous.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   114
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   115
The proof itself is by rule induction and afterwards automatic:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   116
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   117
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   118
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   119
\ {\isacharparenleft}rule\ S{\isacharunderscore}A{\isacharunderscore}B{\isachardot}induct{\isacharcomma}\ auto{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   120
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   121
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   122
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   123
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   124
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   125
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   126
%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   127
\begin{isamarkuptext}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   128
\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   129
This may seem surprising at first, and is indeed an indication of the power
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   130
of inductive definitions. But it is also quite straightforward. For example,
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   131
consider the production $A \to b A A$: if $v,w \in A$ and the elements of $A$
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   132
contain one more $a$ than~$b$'s, then $bvw$ must again contain one more $a$
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   133
than~$b$'s.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   134
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   135
As usual, the correctness of syntactic descriptions is easy, but completeness
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   136
is hard: does \isa{S} contain \emph{all} words with an equal number of
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   137
\isa{a}'s and \isa{b}'s? It turns out that this proof requires the
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   138
following lemma: every string with two more \isa{a}'s than \isa{b}'s can be cut somewhere such that each half has one more \isa{a} than
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   139
\isa{b}. This is best seen by imagining counting the difference between the
10283
ff003e2b790c *** empty log message ***
nipkow
parents: 10242
diff changeset
   140
number of \isa{a}'s and \isa{b}'s starting at the left end of the
ff003e2b790c *** empty log message ***
nipkow
parents: 10242
diff changeset
   141
word. We start with 0 and end (at the right end) with 2. Since each move to the
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   142
right increases or decreases the difference by 1, we must have passed through
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   143
1 on our way from 0 to 2. Formally, we appeal to the following discrete
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   144
intermediate value theorem \isa{nat{\isadigit{0}}{\isacharunderscore}intermed{\isacharunderscore}int{\isacharunderscore}val}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   145
\begin{isabelle}%
19654
2c02a8054616 updated;
wenzelm
parents: 19288
diff changeset
   146
\ \ \ \ \ {\isasymlbrakk}{\isasymforall}i{\isacharless}n{\isachardot}\ {\isasymbar}f\ {\isacharparenleft}i\ {\isacharplus}\ {\isadigit{1}}{\isacharparenright}\ {\isacharminus}\ f\ i{\isasymbar}\ {\isasymle}\ {\isadigit{1}}{\isacharsemicolon}\ f\ {\isadigit{0}}\ {\isasymle}\ k{\isacharsemicolon}\ k\ {\isasymle}\ f\ n{\isasymrbrakk}\isanewline
2c02a8054616 updated;
wenzelm
parents: 19288
diff changeset
   147
\isaindent{\ \ \ \ \ }{\isasymLongrightarrow}\ {\isasymexists}i{\isasymle}n{\isachardot}\ f\ i\ {\isacharequal}\ k%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   148
\end{isabelle}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   149
where \isa{f} is of type \isa{nat\ {\isasymRightarrow}\ int}, \isa{int} are the integers,
11308
b28bbb153603 *** empty log message ***
nipkow
parents: 11257
diff changeset
   150
\isa{{\isasymbar}{\isachardot}{\isasymbar}} is the absolute value function\footnote{See
b28bbb153603 *** empty log message ***
nipkow
parents: 11257
diff changeset
   151
Table~\ref{tab:ascii} in the Appendix for the correct \textsc{ascii}
11708
d27253c4594f *** empty log message ***
wenzelm
parents: 11494
diff changeset
   152
syntax.}, and \isa{{\isadigit{1}}} is the integer 1 (see \S\ref{sec:numbers}).
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   153
11147
d848c6693185 *** empty log message ***
nipkow
parents: 10950
diff changeset
   154
First we show that our specific function, the difference between the
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   155
numbers of \isa{a}'s and \isa{b}'s, does indeed only change by 1 in every
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   156
move to the right. At this point we also start generalizing from \isa{a}'s
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   157
and \isa{b}'s to an arbitrary property \isa{P}. Otherwise we would have
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   158
to prove the desired lemma twice, once as stated above and once with the
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   159
roles of \isa{a}'s and \isa{b}'s interchanged.%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   160
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   161
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   162
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   163
\ step{\isadigit{1}}{\isacharcolon}\ {\isachardoublequoteopen}{\isasymforall}i\ {\isacharless}\ size\ w{\isachardot}\isanewline
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   164
\ \ {\isasymbar}{\isacharparenleft}int{\isacharparenleft}size{\isacharbrackleft}x{\isasymleftarrow}take\ {\isacharparenleft}i{\isacharplus}{\isadigit{1}}{\isacharparenright}\ w{\isachardot}\ P\ x{\isacharbrackright}{\isacharparenright}{\isacharminus}int{\isacharparenleft}size{\isacharbrackleft}x{\isasymleftarrow}take\ {\isacharparenleft}i{\isacharplus}{\isadigit{1}}{\isacharparenright}\ w{\isachardot}\ {\isasymnot}P\ x{\isacharbrackright}{\isacharparenright}{\isacharparenright}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   165
\ \ \ {\isacharminus}\ {\isacharparenleft}int{\isacharparenleft}size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w{\isachardot}\ P\ x{\isacharbrackright}{\isacharparenright}{\isacharminus}int{\isacharparenleft}size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w{\isachardot}\ {\isasymnot}P\ x{\isacharbrackright}{\isacharparenright}{\isacharparenright}{\isasymbar}\ {\isasymle}\ {\isadigit{1}}{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   166
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   167
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   168
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   169
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   170
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   171
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   172
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   173
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   174
The lemma is a bit hard to read because of the coercion function
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   175
\isa{int\ {\isacharcolon}{\isacharcolon}\ nat\ {\isasymRightarrow}\ int}. It is required because \isa{size} returns
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   176
a natural number, but subtraction on type~\isa{nat} will do the wrong thing.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   177
Function \isa{take} is predefined and \isa{take\ i\ xs} is the prefix of
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   178
length \isa{i} of \isa{xs}; below we also need \isa{drop\ i\ xs}, which
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   179
is what remains after that prefix has been dropped from \isa{xs}.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   180
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   181
The proof is by induction on \isa{w}, with a trivial base case, and a not
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   182
so trivial induction step. Since it is essentially just arithmetic, we do not
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   183
discuss it.%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   184
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   185
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   186
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   187
{\isacharparenleft}induct{\isacharunderscore}tac\ w{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   188
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   189
{\isacharparenleft}auto\ simp\ add{\isacharcolon}\ abs{\isacharunderscore}if\ take{\isacharunderscore}Cons\ split{\isacharcolon}\ nat{\isachardot}split{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   190
\isacommand{done}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   191
%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   192
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   193
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   194
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   195
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   196
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   197
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   198
%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   199
\begin{isamarkuptext}%
11494
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
   200
Finally we come to the above-mentioned lemma about cutting in half a word with two more elements of one sort than of the other sort:%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   201
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   202
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   203
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   204
\ part{\isadigit{1}}{\isacharcolon}\isanewline
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   205
\ {\isachardoublequoteopen}size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ P\ x{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ {\isasymnot}P\ x{\isacharbrackright}{\isacharplus}{\isadigit{2}}\ {\isasymLongrightarrow}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   206
\ \ {\isasymexists}i{\isasymle}size\ w{\isachardot}\ size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w{\isachardot}\ P\ x{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w{\isachardot}\ {\isasymnot}P\ x{\isacharbrackright}{\isacharplus}{\isadigit{1}}{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   207
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   208
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   209
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   210
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   211
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   212
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   213
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   214
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   215
This is proved by \isa{force} with the help of the intermediate value theorem,
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   216
instantiated appropriately and with its first premise disposed of by lemma
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   217
\isa{step{\isadigit{1}}}:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   218
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   219
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   220
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   221
{\isacharparenleft}insert\ nat{\isadigit{0}}{\isacharunderscore}intermed{\isacharunderscore}int{\isacharunderscore}val{\isacharbrackleft}OF\ step{\isadigit{1}}{\isacharcomma}\ of\ {\isachardoublequoteopen}P{\isachardoublequoteclose}\ {\isachardoublequoteopen}w{\isachardoublequoteclose}\ {\isachardoublequoteopen}{\isadigit{1}}{\isachardoublequoteclose}{\isacharbrackright}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   222
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   223
\ force%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   224
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   225
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   226
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   227
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   228
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   229
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   230
%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   231
\begin{isamarkuptext}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   232
\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   233
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   234
Lemma \isa{part{\isadigit{1}}} tells us only about the prefix \isa{take\ i\ w}.
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   235
An easy lemma deals with the suffix \isa{drop\ i\ w}:%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   236
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   237
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   238
\isacommand{lemma}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   239
\ part{\isadigit{2}}{\isacharcolon}\isanewline
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   240
\ \ {\isachardoublequoteopen}{\isasymlbrakk}size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w\ {\isacharat}\ drop\ i\ w{\isachardot}\ P\ x{\isacharbrackright}\ {\isacharequal}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   241
\ \ \ \ size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w\ {\isacharat}\ drop\ i\ w{\isachardot}\ {\isasymnot}P\ x{\isacharbrackright}{\isacharplus}{\isadigit{2}}{\isacharsemicolon}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   242
\ \ \ \ size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w{\isachardot}\ P\ x{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}take\ i\ w{\isachardot}\ {\isasymnot}P\ x{\isacharbrackright}{\isacharplus}{\isadigit{1}}{\isasymrbrakk}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   243
\ \ \ {\isasymLongrightarrow}\ size{\isacharbrackleft}x{\isasymleftarrow}drop\ i\ w{\isachardot}\ P\ x{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}drop\ i\ w{\isachardot}\ {\isasymnot}P\ x{\isacharbrackright}{\isacharplus}{\isadigit{1}}{\isachardoublequoteclose}\isanewline
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   244
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   245
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   246
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   247
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   248
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   249
\isatagproof
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   250
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   251
{\isacharparenleft}simp\ del{\isacharcolon}\ append{\isacharunderscore}take{\isacharunderscore}drop{\isacharunderscore}id{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   252
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   253
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   254
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   255
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   256
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   257
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   258
%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   259
\begin{isamarkuptext}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   260
\noindent
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11158
diff changeset
   261
In the proof we have disabled the normally useful lemma
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   262
\begin{isabelle}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   263
\isa{take\ n\ xs\ {\isacharat}\ drop\ n\ xs\ {\isacharequal}\ xs}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   264
\rulename{append_take_drop_id}
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   265
\end{isabelle}
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11158
diff changeset
   266
to allow the simplifier to apply the following lemma instead:
622331bbdb7f *** empty log message ***
nipkow
parents: 11158
diff changeset
   267
\begin{isabelle}%
622331bbdb7f *** empty log message ***
nipkow
parents: 11158
diff changeset
   268
\ \ \ \ \ {\isacharbrackleft}x{\isasymin}xs{\isacharat}ys{\isachardot}\ P\ x{\isacharbrackright}\ {\isacharequal}\ {\isacharbrackleft}x{\isasymin}xs{\isachardot}\ P\ x{\isacharbrackright}\ {\isacharat}\ {\isacharbrackleft}x{\isasymin}ys{\isachardot}\ P\ x{\isacharbrackright}%
622331bbdb7f *** empty log message ***
nipkow
parents: 11158
diff changeset
   269
\end{isabelle}
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   270
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   271
To dispose of trivial cases automatically, the rules of the inductive
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   272
definition are declared simplification rules:%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   273
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   274
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   275
\isacommand{declare}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   276
\ S{\isacharunderscore}A{\isacharunderscore}B{\isachardot}intros{\isacharbrackleft}simp{\isacharbrackright}%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   277
\begin{isamarkuptext}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   278
\noindent
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   279
This could have been done earlier but was not necessary so far.
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   280
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   281
The completeness theorem tells us that if a word has the same number of
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   282
\isa{a}'s and \isa{b}'s, then it is in \isa{S}, and similarly 
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   283
for \isa{A} and \isa{B}:%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   284
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   285
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   286
\isacommand{theorem}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   287
\ completeness{\isacharcolon}\isanewline
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   288
\ \ {\isachardoublequoteopen}{\isacharparenleft}size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}a{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}b{\isacharbrackright}\ \ \ \ \ {\isasymlongrightarrow}\ w\ {\isasymin}\ S{\isacharparenright}\ {\isasymand}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   289
\ \ \ {\isacharparenleft}size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}a{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}b{\isacharbrackright}\ {\isacharplus}\ {\isadigit{1}}\ {\isasymlongrightarrow}\ w\ {\isasymin}\ A{\isacharparenright}\ {\isasymand}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   290
\ \ \ {\isacharparenleft}size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}b{\isacharbrackright}\ {\isacharequal}\ size{\isacharbrackleft}x{\isasymleftarrow}w{\isachardot}\ x{\isacharequal}a{\isacharbrackright}\ {\isacharplus}\ {\isadigit{1}}\ {\isasymlongrightarrow}\ w\ {\isasymin}\ B{\isacharparenright}{\isachardoublequoteclose}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   291
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   292
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   293
\endisadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   294
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   295
\isatagproof
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   296
%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   297
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   298
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   299
The proof is by induction on \isa{w}. Structural induction would fail here
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   300
because, as we can see from the grammar, we need to make bigger steps than
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   301
merely appending a single letter at the front. Hence we induct on the length
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   302
of \isa{w}, using the induction rule \isa{length{\isacharunderscore}induct}:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   303
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   304
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   305
\isacommand{apply}\isamarkupfalse%
27167
nipkow
parents: 25330
diff changeset
   306
{\isacharparenleft}induct{\isacharunderscore}tac\ w\ rule{\isacharcolon}\ length{\isacharunderscore}induct{\isacharparenright}\isanewline
nipkow
parents: 25330
diff changeset
   307
\isacommand{apply}\isamarkupfalse%
nipkow
parents: 25330
diff changeset
   308
{\isacharparenleft}rename{\isacharunderscore}tac\ w{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   309
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   310
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   311
The \isa{rule} parameter tells \isa{induct{\isacharunderscore}tac} explicitly which induction
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   312
rule to use. For details see \S\ref{sec:complete-ind} below.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   313
In this case the result is that we may assume the lemma already
27167
nipkow
parents: 25330
diff changeset
   314
holds for all words shorter than \isa{w}. Because the induction step renames
nipkow
parents: 25330
diff changeset
   315
the induction variable we rename it back to \isa{w}.
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   316
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   317
The proof continues with a case distinction on \isa{w},
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   318
on whether \isa{w} is empty or not.%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   319
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   320
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   321
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   322
{\isacharparenleft}case{\isacharunderscore}tac\ w{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   323
\ \isacommand{apply}\isamarkupfalse%
17181
5f42dd5e6570 updated;
wenzelm
parents: 17175
diff changeset
   324
{\isacharparenleft}simp{\isacharunderscore}all{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   325
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   326
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   327
Simplification disposes of the base case and leaves only a conjunction
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   328
of two step cases to be proved:
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   329
if \isa{w\ {\isacharequal}\ a\ {\isacharhash}\ v} and \begin{isabelle}%
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   330
\ \ \ \ \ length\ {\isacharparenleft}if\ x\ {\isacharequal}\ a\ then\ {\isacharbrackleft}x\ {\isasymin}\ v{\isacharbrackright}\ else\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\isanewline
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   331
\isaindent{\ \ \ \ \ }length\ {\isacharparenleft}if\ x\ {\isacharequal}\ b\ then\ {\isacharbrackleft}x\ {\isasymin}\ v{\isacharbrackright}\ else\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharplus}\ {\isadigit{2}}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   332
\end{isabelle} then
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   333
\isa{b\ {\isacharhash}\ v\ {\isasymin}\ A}, and similarly for \isa{w\ {\isacharequal}\ b\ {\isacharhash}\ v}.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   334
We only consider the first case in detail.
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   335
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   336
After breaking the conjunction up into two cases, we can apply
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   337
\isa{part{\isadigit{1}}} to the assumption that \isa{w} contains two more \isa{a}'s than \isa{b}'s.%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   338
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   339
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   340
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   341
{\isacharparenleft}rule\ conjI{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   342
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   343
{\isacharparenleft}clarify{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   344
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   345
{\isacharparenleft}frule\ part{\isadigit{1}}{\isacharbrackleft}of\ {\isachardoublequoteopen}{\isasymlambda}x{\isachardot}\ x{\isacharequal}a{\isachardoublequoteclose}{\isacharcomma}\ simplified{\isacharbrackright}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   346
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   347
{\isacharparenleft}clarify{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   348
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   349
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   350
This yields an index \isa{i\ {\isasymle}\ length\ v} such that
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   351
\begin{isabelle}%
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   352
\ \ \ \ \ length\ {\isacharbrackleft}x{\isasymleftarrow}take\ i\ v\ {\isachardot}\ x\ {\isacharequal}\ a{\isacharbrackright}\ {\isacharequal}\ length\ {\isacharbrackleft}x{\isasymleftarrow}take\ i\ v\ {\isachardot}\ x\ {\isacharequal}\ b{\isacharbrackright}\ {\isacharplus}\ {\isadigit{1}}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   353
\end{isabelle}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   354
With the help of \isa{part{\isadigit{2}}} it follows that
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   355
\begin{isabelle}%
23380
15f7a6745cce fixed filter syntax
nipkow
parents: 19654
diff changeset
   356
\ \ \ \ \ length\ {\isacharbrackleft}x{\isasymleftarrow}drop\ i\ v\ {\isachardot}\ x\ {\isacharequal}\ a{\isacharbrackright}\ {\isacharequal}\ length\ {\isacharbrackleft}x{\isasymleftarrow}drop\ i\ v\ {\isachardot}\ x\ {\isacharequal}\ b{\isacharbrackright}\ {\isacharplus}\ {\isadigit{1}}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   357
\end{isabelle}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   358
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   359
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   360
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   361
{\isacharparenleft}drule\ part{\isadigit{2}}{\isacharbrackleft}of\ {\isachardoublequoteopen}{\isasymlambda}x{\isachardot}\ x{\isacharequal}a{\isachardoublequoteclose}{\isacharcomma}\ simplified{\isacharbrackright}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   362
\ \ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   363
{\isacharparenleft}assumption{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   364
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   365
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   366
Now it is time to decompose \isa{v} in the conclusion \isa{b\ {\isacharhash}\ v\ {\isasymin}\ A}
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   367
into \isa{take\ i\ v\ {\isacharat}\ drop\ i\ v},%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   368
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   369
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   370
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   371
{\isacharparenleft}rule{\isacharunderscore}tac\ n{\isadigit{1}}{\isacharequal}i\ \isakeyword{and}\ t{\isacharequal}v\ \isakeyword{in}\ subst{\isacharbrackleft}OF\ append{\isacharunderscore}take{\isacharunderscore}drop{\isacharunderscore}id{\isacharbrackright}{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   372
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   373
\noindent
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   374
(the variables \isa{n{\isadigit{1}}} and \isa{t} are the result of composing the
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   375
theorems \isa{subst} and \isa{append{\isacharunderscore}take{\isacharunderscore}drop{\isacharunderscore}id})
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   376
after which the appropriate rule of the grammar reduces the goal
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   377
to the two subgoals \isa{take\ i\ v\ {\isasymin}\ A} and \isa{drop\ i\ v\ {\isasymin}\ A}:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   378
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   379
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   380
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   381
{\isacharparenleft}rule\ S{\isacharunderscore}A{\isacharunderscore}B{\isachardot}intros{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   382
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   383
Both subgoals follow from the induction hypothesis because both \isa{take\ i\ v} and \isa{drop\ i\ v} are shorter than \isa{w}:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   384
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   385
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   386
\ \ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   387
{\isacharparenleft}force\ simp\ add{\isacharcolon}\ min{\isacharunderscore}less{\isacharunderscore}iff{\isacharunderscore}disj{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   388
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   389
{\isacharparenleft}force\ split\ add{\isacharcolon}\ nat{\isacharunderscore}diff{\isacharunderscore}split{\isacharparenright}%
16069
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   390
\begin{isamarkuptxt}%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   391
The case \isa{w\ {\isacharequal}\ b\ {\isacharhash}\ v} is proved analogously:%
3f2a9f400168 *** empty log message ***
nipkow
parents: 15481
diff changeset
   392
\end{isamarkuptxt}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   393
\isamarkuptrue%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   394
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   395
{\isacharparenleft}clarify{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   396
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   397
{\isacharparenleft}frule\ part{\isadigit{1}}{\isacharbrackleft}of\ {\isachardoublequoteopen}{\isasymlambda}x{\isachardot}\ x{\isacharequal}b{\isachardoublequoteclose}{\isacharcomma}\ simplified{\isacharbrackright}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   398
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   399
{\isacharparenleft}clarify{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   400
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   401
{\isacharparenleft}drule\ part{\isadigit{2}}{\isacharbrackleft}of\ {\isachardoublequoteopen}{\isasymlambda}x{\isachardot}\ x{\isacharequal}b{\isachardoublequoteclose}{\isacharcomma}\ simplified{\isacharbrackright}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   402
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   403
{\isacharparenleft}assumption{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   404
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   405
{\isacharparenleft}rule{\isacharunderscore}tac\ n{\isadigit{1}}{\isacharequal}i\ \isakeyword{and}\ t{\isacharequal}v\ \isakeyword{in}\ subst{\isacharbrackleft}OF\ append{\isacharunderscore}take{\isacharunderscore}drop{\isacharunderscore}id{\isacharbrackright}{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   406
\isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   407
{\isacharparenleft}rule\ S{\isacharunderscore}A{\isacharunderscore}B{\isachardot}intros{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   408
\ \isacommand{apply}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   409
{\isacharparenleft}force\ simp\ add{\isacharcolon}\ min{\isacharunderscore}less{\isacharunderscore}iff{\isacharunderscore}disj{\isacharparenright}\isanewline
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   410
\isacommand{by}\isamarkupfalse%
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   411
{\isacharparenleft}force\ simp\ add{\isacharcolon}\ min{\isacharunderscore}less{\isacharunderscore}iff{\isacharunderscore}disj\ split\ add{\isacharcolon}\ nat{\isacharunderscore}diff{\isacharunderscore}split{\isacharparenright}%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   412
\endisatagproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   413
{\isafoldproof}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   414
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   415
\isadelimproof
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   416
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   417
\endisadelimproof
11866
fbd097aec213 updated;
wenzelm
parents: 11708
diff changeset
   418
%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   419
\begin{isamarkuptext}%
10878
b254d5ad6dd4 auto update
paulson
parents: 10696
diff changeset
   420
We conclude this section with a comparison of our proof with 
11494
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
   421
Hopcroft\index{Hopcroft, J. E.} and Ullman's\index{Ullman, J. D.}
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
   422
\cite[p.\ts81]{HopcroftUllman}.
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
   423
For a start, the textbook
11257
622331bbdb7f *** empty log message ***
nipkow
parents: 11158
diff changeset
   424
grammar, for no good reason, excludes the empty word, thus complicating
622331bbdb7f *** empty log message ***
nipkow
parents: 11158
diff changeset
   425
matters just a little bit: they have 8 instead of our 7 productions.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   426
11158
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   427
More importantly, the proof itself is different: rather than
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   428
separating the two directions, they perform one induction on the
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   429
length of a word. This deprives them of the beauty of rule induction,
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   430
and in the easy direction (correctness) their reasoning is more
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   431
detailed than our \isa{auto}. For the hard part (completeness), they
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   432
consider just one of the cases that our \isa{simp{\isacharunderscore}all} disposes of
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   433
automatically. Then they conclude the proof by saying about the
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   434
remaining cases: ``We do this in a manner similar to our method of
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   435
proof for part (1); this part is left to the reader''. But this is
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   436
precisely the part that requires the intermediate value theorem and
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   437
thus is not at all similar to the other cases (which are automatic in
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   438
Isabelle). The authors are at least cavalier about this point and may
5652018b809a *** empty log message ***
nipkow
parents: 11147
diff changeset
   439
even have overlooked the slight difficulty lurking in the omitted
11494
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
   440
cases.  Such errors are found in many pen-and-paper proofs when they
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
   441
are scrutinized formally.%
23a118849801 revisions and indexing
paulson
parents: 11310
diff changeset
   442
\index{grammars!defining inductively|)}%
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10225
diff changeset
   443
\end{isamarkuptext}%
17175
1eced27ee0e1 updated;
wenzelm
parents: 17056
diff changeset
   444
\isamarkuptrue%
17056
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   445
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   446
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   447
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   448
\endisadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   449
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   450
\isatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   451
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   452
\endisatagtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   453
{\isafoldtheory}%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   454
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   455
\isadelimtheory
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   456
%
05fc32a23b8b updated;
wenzelm
parents: 16585
diff changeset
   457
\endisadelimtheory
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   458
\end{isabellebody}%
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   459
%%% Local Variables:
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   460
%%% mode: latex
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   461
%%% TeX-master: "root"
e61e7e1eacaf *** empty log message ***
nipkow
parents:
diff changeset
   462
%%% End: