| author | nipkow | 
| Mon, 06 Aug 2001 13:43:24 +0200 | |
| changeset 11464 | ddea204de5bc | 
| parent 11225 | 01181fdbc9f0 | 
| child 11549 | e7265e70fd7c | 
| permissions | -rw-r--r-- | 
| 10496 | 1  | 
(* Title: HOL/BCV/Err.thy  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Tobias Nipkow  | 
|
4  | 
Copyright 2000 TUM  | 
|
5  | 
||
6  | 
The error type  | 
|
7  | 
*)  | 
|
8  | 
||
9  | 
header "The Error Type"  | 
|
10  | 
||
11  | 
theory Err = Semilat:  | 
|
12  | 
||
13  | 
datatype 'a err = Err | OK 'a  | 
|
14  | 
||
15  | 
types 'a ebinop = "'a => 'a => 'a err"  | 
|
16  | 
'a esl = "'a set * 'a ord * 'a ebinop"  | 
|
17  | 
||
18  | 
consts  | 
|
19  | 
ok_val :: "'a err => 'a"  | 
|
20  | 
primrec  | 
|
21  | 
"ok_val (OK x) = x"  | 
|
22  | 
||
23  | 
constdefs  | 
|
24  | 
 lift :: "('a => 'b err) => ('a err => 'b err)"
 | 
|
25  | 
"lift f e == case e of Err => Err | OK x => f x"  | 
|
26  | 
||
27  | 
 lift2 :: "('a => 'b => 'c err) => 'a err => 'b err => 'c err"
 | 
|
28  | 
"lift2 f e1 e2 ==  | 
|
29  | 
case e1 of Err => Err  | 
|
30  | 
| OK x => (case e2 of Err => Err | OK y => f x y)"  | 
|
31  | 
||
32  | 
le :: "'a ord => 'a err ord"  | 
|
33  | 
"le r e1 e2 ==  | 
|
34  | 
case e2 of Err => True |  | 
|
35  | 
OK y => (case e1 of Err => False | OK x => x <=_r y)"  | 
|
36  | 
||
37  | 
 sup :: "('a => 'b => 'c) => ('a err => 'b err => 'c err)"
 | 
|
38  | 
"sup f == lift2(%x y. OK(x +_f y))"  | 
|
39  | 
||
40  | 
err :: "'a set => 'a err set"  | 
|
41  | 
"err A == insert Err {x . ? y:A. x = OK y}"
 | 
|
42  | 
||
43  | 
esl :: "'a sl => 'a esl"  | 
|
44  | 
"esl == %(A,r,f). (A,r, %x y. OK(f x y))"  | 
|
45  | 
||
46  | 
sl :: "'a esl => 'a err sl"  | 
|
47  | 
"sl == %(A,r,f). (err A, le r, lift2 f)"  | 
|
48  | 
||
49  | 
syntax  | 
|
50  | 
err_semilat :: "'a esl => bool"  | 
|
51  | 
translations  | 
|
52  | 
"err_semilat L" == "semilat(Err.sl L)"  | 
|
53  | 
||
54  | 
||
| 
10812
 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 
kleing 
parents: 
10496 
diff
changeset
 | 
55  | 
consts  | 
| 
 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 
kleing 
parents: 
10496 
diff
changeset
 | 
56  | 
  strict  :: "('a => 'b err) => ('a err => 'b err)"
 | 
| 
 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 
kleing 
parents: 
10496 
diff
changeset
 | 
57  | 
primrec  | 
| 
 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 
kleing 
parents: 
10496 
diff
changeset
 | 
58  | 
"strict f Err = Err"  | 
| 
 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 
kleing 
parents: 
10496 
diff
changeset
 | 
59  | 
"strict f (OK x) = f x"  | 
| 
 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 
kleing 
parents: 
10496 
diff
changeset
 | 
60  | 
|
| 11085 | 61  | 
lemma strict_Some [simp]:  | 
62  | 
"(strict f x = OK y) = (\<exists> z. x = OK z \<and> f z = OK y)"  | 
|
63  | 
by (cases x, auto)  | 
|
| 
10812
 
ead84e90bfeb
merged semilattice orders with <=' from Convert.thy (now defined in JVMType.thy)
 
kleing 
parents: 
10496 
diff
changeset
 | 
64  | 
|
| 10496 | 65  | 
lemma not_Err_eq:  | 
66  | 
"(x \<noteq> Err) = (\<exists>a. x = OK a)"  | 
|
67  | 
by (cases x) auto  | 
|
68  | 
||
69  | 
lemma not_OK_eq:  | 
|
70  | 
"(\<forall>y. x \<noteq> OK y) = (x = Err)"  | 
|
71  | 
by (cases x) auto  | 
|
72  | 
||
73  | 
lemma unfold_lesub_err:  | 
|
74  | 
"e1 <=_(le r) e2 == le r e1 e2"  | 
|
75  | 
by (simp add: lesub_def)  | 
|
76  | 
||
77  | 
lemma le_err_refl:  | 
|
78  | 
"!x. x <=_r x ==> e <=_(Err.le r) e"  | 
|
79  | 
apply (unfold lesub_def Err.le_def)  | 
|
80  | 
apply (simp split: err.split)  | 
|
81  | 
done  | 
|
82  | 
||
83  | 
lemma le_err_trans [rule_format]:  | 
|
84  | 
"order r ==> e1 <=_(le r) e2 --> e2 <=_(le r) e3 --> e1 <=_(le r) e3"  | 
|
85  | 
apply (unfold unfold_lesub_err le_def)  | 
|
86  | 
apply (simp split: err.split)  | 
|
87  | 
apply (blast intro: order_trans)  | 
|
88  | 
done  | 
|
89  | 
||
90  | 
lemma le_err_antisym [rule_format]:  | 
|
91  | 
"order r ==> e1 <=_(le r) e2 --> e2 <=_(le r) e1 --> e1=e2"  | 
|
92  | 
apply (unfold unfold_lesub_err le_def)  | 
|
93  | 
apply (simp split: err.split)  | 
|
94  | 
apply (blast intro: order_antisym)  | 
|
95  | 
done  | 
|
96  | 
||
97  | 
lemma OK_le_err_OK:  | 
|
98  | 
"(OK x <=_(le r) OK y) = (x <=_r y)"  | 
|
99  | 
by (simp add: unfold_lesub_err le_def)  | 
|
100  | 
||
101  | 
lemma order_le_err [iff]:  | 
|
102  | 
"order(le r) = order r"  | 
|
103  | 
apply (rule iffI)  | 
|
104  | 
apply (subst order_def)  | 
|
105  | 
apply (blast dest: order_antisym OK_le_err_OK [THEN iffD2]  | 
|
106  | 
intro: order_trans OK_le_err_OK [THEN iffD1])  | 
|
107  | 
apply (subst order_def)  | 
|
108  | 
apply (blast intro: le_err_refl le_err_trans le_err_antisym  | 
|
109  | 
dest: order_refl)  | 
|
110  | 
done  | 
|
111  | 
||
112  | 
lemma le_Err [iff]: "e <=_(le r) Err"  | 
|
113  | 
by (simp add: unfold_lesub_err le_def)  | 
|
114  | 
||
115  | 
lemma Err_le_conv [iff]:  | 
|
116  | 
"Err <=_(le r) e = (e = Err)"  | 
|
117  | 
by (simp add: unfold_lesub_err le_def split: err.split)  | 
|
118  | 
||
119  | 
lemma le_OK_conv [iff]:  | 
|
120  | 
"e <=_(le r) OK x = (? y. e = OK y & y <=_r x)"  | 
|
121  | 
by (simp add: unfold_lesub_err le_def split: err.split)  | 
|
122  | 
||
123  | 
lemma OK_le_conv:  | 
|
124  | 
"OK x <=_(le r) e = (e = Err | (? y. e = OK y & x <=_r y))"  | 
|
125  | 
by (simp add: unfold_lesub_err le_def split: err.split)  | 
|
126  | 
||
127  | 
lemma top_Err [iff]: "top (le r) Err";  | 
|
128  | 
by (simp add: top_def)  | 
|
129  | 
||
130  | 
lemma OK_less_conv [rule_format, iff]:  | 
|
131  | 
"OK x <_(le r) e = (e=Err | (? y. e = OK y & x <_r y))"  | 
|
132  | 
by (simp add: lesssub_def lesub_def le_def split: err.split)  | 
|
133  | 
||
134  | 
lemma not_Err_less [rule_format, iff]:  | 
|
135  | 
"~(Err <_(le r) x)"  | 
|
136  | 
by (simp add: lesssub_def lesub_def le_def split: err.split)  | 
|
137  | 
||
138  | 
lemma semilat_errI:  | 
|
139  | 
"semilat(A,r,f) ==> semilat(err A, Err.le r, lift2(%x y. OK(f x y)))"  | 
|
140  | 
apply (unfold semilat_Def closed_def plussub_def lesub_def lift2_def Err.le_def err_def)  | 
|
141  | 
apply (simp split: err.split)  | 
|
142  | 
done  | 
|
143  | 
||
144  | 
lemma err_semilat_eslI:  | 
|
145  | 
"!!L. semilat L ==> err_semilat(esl L)"  | 
|
146  | 
apply (unfold sl_def esl_def)  | 
|
147  | 
apply (simp (no_asm_simp) only: split_tupled_all)  | 
|
148  | 
apply (simp add: semilat_errI)  | 
|
149  | 
done  | 
|
150  | 
||
151  | 
lemma acc_err [simp, intro!]: "acc r ==> acc(le r)"  | 
|
152  | 
apply (unfold acc_def lesub_def le_def lesssub_def)  | 
|
153  | 
apply (simp add: wf_eq_minimal split: err.split)  | 
|
154  | 
apply clarify  | 
|
155  | 
apply (case_tac "Err : Q")  | 
|
156  | 
apply blast  | 
|
157  | 
apply (erule_tac x = "{a . OK a : Q}" in allE)
 | 
|
158  | 
apply (case_tac "x")  | 
|
159  | 
apply fast  | 
|
160  | 
apply blast  | 
|
161  | 
done  | 
|
162  | 
||
163  | 
lemma Err_in_err [iff]: "Err : err A"  | 
|
164  | 
by (simp add: err_def)  | 
|
165  | 
||
166  | 
lemma Ok_in_err [iff]: "(OK x : err A) = (x:A)"  | 
|
167  | 
by (auto simp add: err_def)  | 
|
168  | 
||
| 11085 | 169  | 
section {* lift *}
 | 
| 10496 | 170  | 
|
171  | 
lemma lift_in_errI:  | 
|
172  | 
"[| e : err S; !x:S. e = OK x --> f x : err S |] ==> lift f e : err S"  | 
|
173  | 
apply (unfold lift_def)  | 
|
174  | 
apply (simp split: err.split)  | 
|
175  | 
apply blast  | 
|
176  | 
done  | 
|
177  | 
||
178  | 
lemma Err_lift2 [simp]:  | 
|
179  | 
"Err +_(lift2 f) x = Err"  | 
|
180  | 
by (simp add: lift2_def plussub_def)  | 
|
181  | 
||
182  | 
lemma lift2_Err [simp]:  | 
|
183  | 
"x +_(lift2 f) Err = Err"  | 
|
184  | 
by (simp add: lift2_def plussub_def split: err.split)  | 
|
185  | 
||
186  | 
lemma OK_lift2_OK [simp]:  | 
|
187  | 
"OK x +_(lift2 f) OK y = x +_f y"  | 
|
188  | 
by (simp add: lift2_def plussub_def split: err.split)  | 
|
189  | 
||
| 11085 | 190  | 
|
191  | 
section {* sup *}
 | 
|
| 10496 | 192  | 
|
193  | 
lemma Err_sup_Err [simp]:  | 
|
194  | 
"Err +_(Err.sup f) x = Err"  | 
|
195  | 
by (simp add: plussub_def Err.sup_def Err.lift2_def)  | 
|
196  | 
||
197  | 
lemma Err_sup_Err2 [simp]:  | 
|
198  | 
"x +_(Err.sup f) Err = Err"  | 
|
199  | 
by (simp add: plussub_def Err.sup_def Err.lift2_def split: err.split)  | 
|
200  | 
||
201  | 
lemma Err_sup_OK [simp]:  | 
|
202  | 
"OK x +_(Err.sup f) OK y = OK(x +_f y)"  | 
|
203  | 
by (simp add: plussub_def Err.sup_def Err.lift2_def)  | 
|
204  | 
||
205  | 
lemma Err_sup_eq_OK_conv [iff]:  | 
|
206  | 
"(Err.sup f ex ey = OK z) = (? x y. ex = OK x & ey = OK y & f x y = z)"  | 
|
207  | 
apply (unfold Err.sup_def lift2_def plussub_def)  | 
|
208  | 
apply (rule iffI)  | 
|
209  | 
apply (simp split: err.split_asm)  | 
|
210  | 
apply clarify  | 
|
211  | 
apply simp  | 
|
212  | 
done  | 
|
213  | 
||
214  | 
lemma Err_sup_eq_Err [iff]:  | 
|
215  | 
"(Err.sup f ex ey = Err) = (ex=Err | ey=Err)"  | 
|
216  | 
apply (unfold Err.sup_def lift2_def plussub_def)  | 
|
217  | 
apply (simp split: err.split)  | 
|
218  | 
done  | 
|
219  | 
||
| 11085 | 220  | 
section {* semilat (err A) (le r) f *}
 | 
| 10496 | 221  | 
|
222  | 
lemma semilat_le_err_Err_plus [simp]:  | 
|
223  | 
"[| x: err A; semilat(err A, le r, f) |] ==> Err +_f x = Err"  | 
|
224  | 
by (blast intro: le_iff_plus_unchanged [THEN iffD1] le_iff_plus_unchanged2 [THEN iffD1])  | 
|
225  | 
||
226  | 
lemma semilat_le_err_plus_Err [simp]:  | 
|
227  | 
"[| x: err A; semilat(err A, le r, f) |] ==> x +_f Err = Err"  | 
|
228  | 
by (blast intro: le_iff_plus_unchanged [THEN iffD1] le_iff_plus_unchanged2 [THEN iffD1])  | 
|
229  | 
||
230  | 
lemma semilat_le_err_OK1:  | 
|
231  | 
"[| x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z |]  | 
|
232  | 
==> x <=_r z";  | 
|
233  | 
apply (rule OK_le_err_OK [THEN iffD1])  | 
|
234  | 
apply (erule subst)  | 
|
235  | 
apply simp  | 
|
236  | 
done  | 
|
237  | 
||
238  | 
lemma semilat_le_err_OK2:  | 
|
239  | 
"[| x:A; y:A; semilat(err A, le r, f); OK x +_f OK y = OK z |]  | 
|
240  | 
==> y <=_r z"  | 
|
241  | 
apply (rule OK_le_err_OK [THEN iffD1])  | 
|
242  | 
apply (erule subst)  | 
|
243  | 
apply simp  | 
|
244  | 
done  | 
|
245  | 
||
246  | 
lemma eq_order_le:  | 
|
247  | 
"[| x=y; order r |] ==> x <=_r y"  | 
|
248  | 
apply (unfold order_def)  | 
|
249  | 
apply blast  | 
|
250  | 
done  | 
|
251  | 
||
252  | 
lemma OK_plus_OK_eq_Err_conv [simp]:  | 
|
253  | 
"[| x:A; y:A; semilat(err A, le r, fe) |] ==>  | 
|
254  | 
((OK x) +_fe (OK y) = Err) = (~(? z:A. x <=_r z & y <=_r z))"  | 
|
255  | 
proof -  | 
|
256  | 
have plus_le_conv3: "!!A x y z f r.  | 
|
257  | 
[| semilat (A,r,f); x +_f y <=_r z; x:A; y:A; z:A |]  | 
|
258  | 
==> x <=_r z \<and> y <=_r z"  | 
|
259  | 
by (rule plus_le_conv [THEN iffD1])  | 
|
260  | 
case antecedent  | 
|
261  | 
thus ?thesis  | 
|
262  | 
apply (rule_tac iffI)  | 
|
263  | 
apply clarify  | 
|
264  | 
apply (drule OK_le_err_OK [THEN iffD2])  | 
|
265  | 
apply (drule OK_le_err_OK [THEN iffD2])  | 
|
266  | 
apply (drule semilat_lub)  | 
|
267  | 
apply assumption  | 
|
268  | 
apply assumption  | 
|
269  | 
apply simp  | 
|
270  | 
apply simp  | 
|
271  | 
apply simp  | 
|
272  | 
apply simp  | 
|
273  | 
apply (case_tac "(OK x) +_fe (OK y)")  | 
|
274  | 
apply assumption  | 
|
275  | 
apply (rename_tac z)  | 
|
276  | 
apply (subgoal_tac "OK z: err A")  | 
|
277  | 
apply (drule eq_order_le)  | 
|
278  | 
apply blast  | 
|
279  | 
apply (blast dest: plus_le_conv3)  | 
|
280  | 
apply (erule subst)  | 
|
281  | 
apply (blast intro: closedD)  | 
|
282  | 
done  | 
|
283  | 
qed  | 
|
284  | 
||
| 11085 | 285  | 
section {* semilat (err(Union AS)) *}
 | 
| 10496 | 286  | 
|
287  | 
(* FIXME? *)  | 
|
288  | 
lemma all_bex_swap_lemma [iff]:  | 
|
289  | 
"(!x. (? y:A. x = f y) --> P x) = (!y:A. P(f y))"  | 
|
290  | 
by blast  | 
|
291  | 
||
292  | 
lemma closed_err_Union_lift2I:  | 
|
293  | 
  "[| !A:AS. closed (err A) (lift2 f); AS ~= {}; 
 | 
|
294  | 
!A:AS.!B:AS. A~=B --> (!a:A.!b:B. a +_f b = Err) |]  | 
|
295  | 
==> closed (err(Union AS)) (lift2 f)"  | 
|
296  | 
apply (unfold closed_def err_def)  | 
|
297  | 
apply simp  | 
|
298  | 
apply clarify  | 
|
299  | 
apply simp  | 
|
300  | 
apply fast  | 
|
301  | 
done  | 
|
302  | 
||
| 11085 | 303  | 
text {* 
 | 
304  | 
  If @{term "AS = {}"} the thm collapses to
 | 
|
305  | 
  @{prop "order r & closed {Err} f & Err +_f Err = Err"}
 | 
|
306  | 
which may not hold  | 
|
307  | 
*}  | 
|
| 10496 | 308  | 
lemma err_semilat_UnionI:  | 
309  | 
  "[| !A:AS. err_semilat(A, r, f); AS ~= {}; 
 | 
|
310  | 
!A:AS.!B:AS. A~=B --> (!a:A.!b:B. ~ a <=_r b & a +_f b = Err) |]  | 
|
311  | 
==> err_semilat(Union AS, r, f)"  | 
|
312  | 
apply (unfold semilat_def sl_def)  | 
|
313  | 
apply (simp add: closed_err_Union_lift2I)  | 
|
314  | 
apply (rule conjI)  | 
|
315  | 
apply blast  | 
|
316  | 
apply (simp add: err_def)  | 
|
317  | 
apply (rule conjI)  | 
|
318  | 
apply clarify  | 
|
319  | 
apply (rename_tac A a u B b)  | 
|
320  | 
apply (case_tac "A = B")  | 
|
321  | 
apply simp  | 
|
322  | 
apply simp  | 
|
323  | 
apply (rule conjI)  | 
|
324  | 
apply clarify  | 
|
325  | 
apply (rename_tac A a u B b)  | 
|
326  | 
apply (case_tac "A = B")  | 
|
327  | 
apply simp  | 
|
328  | 
apply simp  | 
|
329  | 
apply clarify  | 
|
330  | 
apply (rename_tac A ya yb B yd z C c a b)  | 
|
331  | 
apply (case_tac "A = B")  | 
|
332  | 
apply (case_tac "A = C")  | 
|
333  | 
apply simp  | 
|
334  | 
apply (rotate_tac -1)  | 
|
335  | 
apply simp  | 
|
336  | 
apply (rotate_tac -1)  | 
|
337  | 
apply (case_tac "B = C")  | 
|
338  | 
apply simp  | 
|
339  | 
apply (rotate_tac -1)  | 
|
340  | 
apply simp  | 
|
341  | 
done  | 
|
342  | 
||
343  | 
end  |