| 17453 |      1 | 
 | 
|  |      2 | (* $Id$ *)
 | 
|  |      3 | 
 | 
|  |      4 | header {* Lambda Cube Examples *}
 | 
|  |      5 | 
 | 
|  |      6 | theory Example
 | 
|  |      7 | imports Cube
 | 
|  |      8 | begin
 | 
|  |      9 | 
 | 
|  |     10 | text {*
 | 
|  |     11 |   Examples taken from:
 | 
|  |     12 | 
 | 
|  |     13 |   H. Barendregt. Introduction to Generalised Type Systems.
 | 
|  |     14 |   J. Functional Programming.
 | 
|  |     15 | *}
 | 
|  |     16 | 
 | 
|  |     17 | method_setup depth_solve = {*
 | 
| 30549 |     18 |   Attrib.thms >> (fn thms => K (METHOD (fn facts =>
 | 
|  |     19 |   (DEPTH_SOLVE (HEADGOAL (ares_tac (facts @ thms)))))))
 | 
| 17453 |     20 | *} ""
 | 
|  |     21 | 
 | 
|  |     22 | method_setup depth_solve1 = {*
 | 
| 30549 |     23 |   Attrib.thms >> (fn thms => K (METHOD (fn facts =>
 | 
|  |     24 |   (DEPTH_SOLVE_1 (HEADGOAL (ares_tac (facts @ thms)))))))
 | 
| 17453 |     25 | *} ""
 | 
|  |     26 | 
 | 
|  |     27 | method_setup strip_asms =  {*
 | 
| 30549 |     28 |   Attrib.thms >> (fn thms => K (METHOD (fn facts =>
 | 
|  |     29 |     REPEAT (resolve_tac [@{thm strip_b}, @{thm strip_s}] 1 THEN
 | 
|  |     30 |     DEPTH_SOLVE_1 (ares_tac (facts @ thms) 1)))))
 | 
| 17453 |     31 | *} ""
 | 
|  |     32 | 
 | 
|  |     33 | 
 | 
|  |     34 | subsection {* Simple types *}
 | 
|  |     35 | 
 | 
|  |     36 | lemma "A:* |- A->A : ?T"
 | 
|  |     37 |   by (depth_solve rules)
 | 
|  |     38 | 
 | 
|  |     39 | lemma "A:* |- Lam a:A. a : ?T"
 | 
|  |     40 |   by (depth_solve rules)
 | 
|  |     41 | 
 | 
|  |     42 | lemma "A:* B:* b:B |- Lam x:A. b : ?T"
 | 
|  |     43 |   by (depth_solve rules)
 | 
|  |     44 | 
 | 
|  |     45 | lemma "A:* b:A |- (Lam a:A. a)^b: ?T"
 | 
|  |     46 |   by (depth_solve rules)
 | 
|  |     47 | 
 | 
|  |     48 | lemma "A:* B:* c:A b:B |- (Lam x:A. b)^ c: ?T"
 | 
|  |     49 |   by (depth_solve rules)
 | 
|  |     50 | 
 | 
|  |     51 | lemma "A:* B:* |- Lam a:A. Lam b:B. a : ?T"
 | 
|  |     52 |   by (depth_solve rules)
 | 
|  |     53 | 
 | 
|  |     54 | 
 | 
|  |     55 | subsection {* Second-order types *}
 | 
|  |     56 | 
 | 
|  |     57 | lemma (in L2) "|- Lam A:*. Lam a:A. a : ?T"
 | 
|  |     58 |   by (depth_solve rules)
 | 
|  |     59 | 
 | 
|  |     60 | lemma (in L2) "A:* |- (Lam B:*.Lam b:B. b)^A : ?T"
 | 
|  |     61 |   by (depth_solve rules)
 | 
|  |     62 | 
 | 
|  |     63 | lemma (in L2) "A:* b:A |- (Lam B:*.Lam b:B. b) ^ A ^ b: ?T"
 | 
|  |     64 |   by (depth_solve rules)
 | 
|  |     65 | 
 | 
|  |     66 | lemma (in L2) "|- Lam B:*.Lam a:(Pi A:*.A).a ^ ((Pi A:*.A)->B) ^ a: ?T"
 | 
|  |     67 |   by (depth_solve rules)
 | 
|  |     68 | 
 | 
|  |     69 | 
 | 
|  |     70 | subsection {* Weakly higher-order propositional logic *}
 | 
|  |     71 | 
 | 
|  |     72 | lemma (in Lomega) "|- Lam A:*.A->A : ?T"
 | 
|  |     73 |   by (depth_solve rules)
 | 
|  |     74 | 
 | 
|  |     75 | lemma (in Lomega) "B:* |- (Lam A:*.A->A) ^ B : ?T"
 | 
|  |     76 |   by (depth_solve rules)
 | 
|  |     77 | 
 | 
|  |     78 | lemma (in Lomega) "B:* b:B |- (Lam y:B. b): ?T"
 | 
|  |     79 |   by (depth_solve rules)
 | 
|  |     80 | 
 | 
|  |     81 | lemma (in Lomega) "A:* F:*->* |- F^(F^A): ?T"
 | 
|  |     82 |   by (depth_solve rules)
 | 
|  |     83 | 
 | 
|  |     84 | lemma (in Lomega) "A:* |- Lam F:*->*.F^(F^A): ?T"
 | 
|  |     85 |   by (depth_solve rules)
 | 
|  |     86 | 
 | 
|  |     87 | 
 | 
|  |     88 | subsection {* LP *}
 | 
|  |     89 | 
 | 
|  |     90 | lemma (in LP) "A:* |- A -> * : ?T"
 | 
|  |     91 |   by (depth_solve rules)
 | 
|  |     92 | 
 | 
|  |     93 | lemma (in LP) "A:* P:A->* a:A |- P^a: ?T"
 | 
|  |     94 |   by (depth_solve rules)
 | 
|  |     95 | 
 | 
|  |     96 | lemma (in LP) "A:* P:A->A->* a:A |- Pi a:A. P^a^a: ?T"
 | 
|  |     97 |   by (depth_solve rules)
 | 
|  |     98 | 
 | 
|  |     99 | lemma (in LP) "A:* P:A->* Q:A->* |- Pi a:A. P^a -> Q^a: ?T"
 | 
|  |    100 |   by (depth_solve rules)
 | 
|  |    101 | 
 | 
|  |    102 | lemma (in LP) "A:* P:A->* |- Pi a:A. P^a -> P^a: ?T"
 | 
|  |    103 |   by (depth_solve rules)
 | 
|  |    104 | 
 | 
|  |    105 | lemma (in LP) "A:* P:A->* |- Lam a:A. Lam x:P^a. x: ?T"
 | 
|  |    106 |   by (depth_solve rules)
 | 
|  |    107 | 
 | 
|  |    108 | lemma (in LP) "A:* P:A->* Q:* |- (Pi a:A. P^a->Q) -> (Pi a:A. P^a) -> Q : ?T"
 | 
|  |    109 |   by (depth_solve rules)
 | 
|  |    110 | 
 | 
|  |    111 | lemma (in LP) "A:* P:A->* Q:* a0:A |-
 | 
|  |    112 |         Lam x:Pi a:A. P^a->Q. Lam y:Pi a:A. P^a. x^a0^(y^a0): ?T"
 | 
|  |    113 |   by (depth_solve rules)
 | 
|  |    114 | 
 | 
|  |    115 | 
 | 
|  |    116 | subsection {* Omega-order types *}
 | 
|  |    117 | 
 | 
|  |    118 | lemma (in L2) "A:* B:* |- Pi C:*.(A->B->C)->C : ?T"
 | 
|  |    119 |   by (depth_solve rules)
 | 
|  |    120 | 
 | 
|  |    121 | lemma (in Lomega2) "|- Lam A:*.Lam B:*.Pi C:*.(A->B->C)->C : ?T"
 | 
|  |    122 |   by (depth_solve rules)
 | 
|  |    123 | 
 | 
|  |    124 | lemma (in Lomega2) "|- Lam A:*.Lam B:*.Lam x:A. Lam y:B. x : ?T"
 | 
|  |    125 |   by (depth_solve rules)
 | 
|  |    126 | 
 | 
|  |    127 | lemma (in Lomega2) "A:* B:* |- ?p : (A->B) -> ((B->Pi P:*.P)->(A->Pi P:*.P))"
 | 
|  |    128 |   apply (strip_asms rules)
 | 
|  |    129 |   apply (rule lam_ss)
 | 
|  |    130 |     apply (depth_solve1 rules)
 | 
|  |    131 |    prefer 2
 | 
|  |    132 |    apply (depth_solve1 rules)
 | 
|  |    133 |   apply (rule lam_ss)
 | 
|  |    134 |     apply (depth_solve1 rules)
 | 
|  |    135 |    prefer 2
 | 
|  |    136 |    apply (depth_solve1 rules)
 | 
|  |    137 |   apply (rule lam_ss)
 | 
|  |    138 |     apply assumption
 | 
|  |    139 |    prefer 2
 | 
|  |    140 |    apply (depth_solve1 rules)
 | 
|  |    141 |   apply (erule pi_elim)
 | 
|  |    142 |    apply assumption
 | 
|  |    143 |   apply (erule pi_elim)
 | 
|  |    144 |    apply assumption
 | 
|  |    145 |   apply assumption
 | 
|  |    146 |   done
 | 
|  |    147 | 
 | 
|  |    148 | 
 | 
|  |    149 | subsection {* Second-order Predicate Logic *}
 | 
|  |    150 | 
 | 
|  |    151 | lemma (in LP2) "A:* P:A->* |- Lam a:A. P^a->(Pi A:*.A) : ?T"
 | 
|  |    152 |   by (depth_solve rules)
 | 
|  |    153 | 
 | 
|  |    154 | lemma (in LP2) "A:* P:A->A->* |-
 | 
|  |    155 |     (Pi a:A. Pi b:A. P^a^b->P^b^a->Pi P:*.P) -> Pi a:A. P^a^a->Pi P:*.P : ?T"
 | 
|  |    156 |   by (depth_solve rules)
 | 
|  |    157 | 
 | 
|  |    158 | lemma (in LP2) "A:* P:A->A->* |-
 | 
|  |    159 |     ?p: (Pi a:A. Pi b:A. P^a^b->P^b^a->Pi P:*.P) -> Pi a:A. P^a^a->Pi P:*.P"
 | 
|  |    160 |   -- {* Antisymmetry implies irreflexivity: *}
 | 
|  |    161 |   apply (strip_asms rules)
 | 
|  |    162 |   apply (rule lam_ss)
 | 
|  |    163 |     apply (depth_solve1 rules)
 | 
|  |    164 |    prefer 2
 | 
|  |    165 |    apply (depth_solve1 rules)
 | 
|  |    166 |   apply (rule lam_ss)
 | 
|  |    167 |     apply assumption
 | 
|  |    168 |    prefer 2
 | 
|  |    169 |    apply (depth_solve1 rules)
 | 
|  |    170 |   apply (rule lam_ss)
 | 
|  |    171 |     apply (depth_solve1 rules)
 | 
|  |    172 |    prefer 2
 | 
|  |    173 |    apply (depth_solve1 rules)
 | 
|  |    174 |   apply (erule pi_elim, assumption, assumption?)+
 | 
|  |    175 |   done
 | 
|  |    176 | 
 | 
|  |    177 | 
 | 
|  |    178 | subsection {* LPomega *}
 | 
|  |    179 | 
 | 
|  |    180 | lemma (in LPomega) "A:* |- Lam P:A->A->*.Lam a:A. P^a^a : ?T"
 | 
|  |    181 |   by (depth_solve rules)
 | 
|  |    182 | 
 | 
|  |    183 | lemma (in LPomega) "|- Lam A:*.Lam P:A->A->*.Lam a:A. P^a^a : ?T"
 | 
|  |    184 |   by (depth_solve rules)
 | 
|  |    185 | 
 | 
|  |    186 | 
 | 
|  |    187 | subsection {* Constructions *}
 | 
|  |    188 | 
 | 
|  |    189 | lemma (in CC) "|- Lam A:*.Lam P:A->*.Lam a:A. P^a->Pi P:*.P: ?T"
 | 
|  |    190 |   by (depth_solve rules)
 | 
|  |    191 | 
 | 
|  |    192 | lemma (in CC) "|- Lam A:*.Lam P:A->*.Pi a:A. P^a: ?T"
 | 
|  |    193 |   by (depth_solve rules)
 | 
|  |    194 | 
 | 
|  |    195 | lemma (in CC) "A:* P:A->* a:A |- ?p : (Pi a:A. P^a)->P^a"
 | 
|  |    196 |   apply (strip_asms rules)
 | 
|  |    197 |   apply (rule lam_ss)
 | 
|  |    198 |     apply (depth_solve1 rules)
 | 
|  |    199 |    prefer 2
 | 
|  |    200 |    apply (depth_solve1 rules)
 | 
|  |    201 |   apply (erule pi_elim, assumption, assumption)
 | 
|  |    202 |   done
 | 
|  |    203 | 
 | 
|  |    204 | 
 | 
|  |    205 | subsection {* Some random examples *}
 | 
|  |    206 | 
 | 
|  |    207 | lemma (in LP2) "A:* c:A f:A->A |-
 | 
|  |    208 |     Lam a:A. Pi P:A->*.P^c -> (Pi x:A. P^x->P^(f^x)) -> P^a : ?T"
 | 
|  |    209 |   by (depth_solve rules)
 | 
|  |    210 | 
 | 
|  |    211 | lemma (in CC) "Lam A:*.Lam c:A. Lam f:A->A.
 | 
|  |    212 |     Lam a:A. Pi P:A->*.P^c -> (Pi x:A. P^x->P^(f^x)) -> P^a : ?T"
 | 
|  |    213 |   by (depth_solve rules)
 | 
|  |    214 | 
 | 
|  |    215 | lemma (in LP2)
 | 
|  |    216 |   "A:* a:A b:A |- ?p: (Pi P:A->*.P^a->P^b) -> (Pi P:A->*.P^b->P^a)"
 | 
|  |    217 |   -- {* Symmetry of Leibnitz equality *}
 | 
|  |    218 |   apply (strip_asms rules)
 | 
|  |    219 |   apply (rule lam_ss)
 | 
|  |    220 |     apply (depth_solve1 rules)
 | 
|  |    221 |    prefer 2
 | 
|  |    222 |    apply (depth_solve1 rules)
 | 
|  |    223 |   apply (erule_tac a = "Lam x:A. Pi Q:A->*.Q^x->Q^a" in pi_elim)
 | 
|  |    224 |    apply (depth_solve1 rules)
 | 
|  |    225 |   apply (unfold beta)
 | 
|  |    226 |   apply (erule imp_elim)
 | 
|  |    227 |    apply (rule lam_bs)
 | 
|  |    228 |      apply (depth_solve1 rules)
 | 
|  |    229 |     prefer 2
 | 
|  |    230 |     apply (depth_solve1 rules)
 | 
|  |    231 |    apply (rule lam_ss)
 | 
|  |    232 |      apply (depth_solve1 rules)
 | 
|  |    233 |     prefer 2
 | 
|  |    234 |     apply (depth_solve1 rules)
 | 
|  |    235 |    apply assumption
 | 
|  |    236 |   apply assumption
 | 
|  |    237 |   done
 | 
|  |    238 | 
 | 
|  |    239 | end
 |