2112
|
1 |
functor TFL(structure Rules : Rules_sig
|
|
2 |
structure Thry : Thry_sig
|
|
3 |
structure Thms : Thms_sig
|
|
4 |
sharing type Rules.binding = Thry.binding =
|
|
5 |
Thry.USyntax.binding = Mask.binding
|
|
6 |
sharing type Rules.Type = Thry.Type = Thry.USyntax.Type
|
|
7 |
sharing type Rules.Preterm = Thry.Preterm = Thry.USyntax.Preterm
|
|
8 |
sharing type Rules.Term = Thry.Term = Thry.USyntax.Term
|
|
9 |
sharing type Thms.Thm = Rules.Thm = Thry.Thm) : TFL_sig =
|
|
10 |
struct
|
|
11 |
|
|
12 |
(* Declarations *)
|
|
13 |
structure Thms = Thms;
|
|
14 |
structure Rules = Rules;
|
|
15 |
structure Thry = Thry;
|
|
16 |
structure USyntax = Thry.USyntax;
|
|
17 |
|
|
18 |
type Preterm = Thry.USyntax.Preterm;
|
|
19 |
type Term = Thry.USyntax.Term;
|
|
20 |
type Thm = Thms.Thm;
|
|
21 |
type Thry = Thry.Thry;
|
|
22 |
type Tactic = Rules.Tactic;
|
|
23 |
|
|
24 |
|
|
25 |
(* Abbreviations *)
|
|
26 |
structure R = Rules;
|
|
27 |
structure S = USyntax;
|
|
28 |
structure U = S.Utils;
|
|
29 |
|
|
30 |
(* Declares 'a binding datatype *)
|
|
31 |
open Mask;
|
|
32 |
|
|
33 |
nonfix mem --> |-> ##;
|
|
34 |
val --> = S.-->;
|
|
35 |
val ## = U.##;
|
|
36 |
|
|
37 |
infixr 3 -->;
|
|
38 |
infixr 7 |->;
|
|
39 |
infix 4 ##;
|
|
40 |
|
|
41 |
val concl = #2 o R.dest_thm;
|
|
42 |
val hyp = #1 o R.dest_thm;
|
|
43 |
|
|
44 |
val list_mk_type = U.end_itlist (U.curry(op -->));
|
|
45 |
|
|
46 |
fun flatten [] = []
|
|
47 |
| flatten (h::t) = h@flatten t;
|
|
48 |
|
|
49 |
|
|
50 |
fun gtake f =
|
|
51 |
let fun grab(0,rst) = ([],rst)
|
|
52 |
| grab(n, x::rst) =
|
|
53 |
let val (taken,left) = grab(n-1,rst)
|
|
54 |
in (f x::taken, left) end
|
|
55 |
in grab
|
|
56 |
end;
|
|
57 |
|
|
58 |
fun enumerate L =
|
|
59 |
rev(#1(U.rev_itlist (fn x => fn (alist,i) => ((x,i)::alist, i+1)) L ([],0)));
|
|
60 |
|
|
61 |
fun stringize [] = ""
|
|
62 |
| stringize [i] = U.int_to_string i
|
|
63 |
| stringize (h::t) = (U.int_to_string h^", "^stringize t);
|
|
64 |
|
|
65 |
|
|
66 |
fun TFL_ERR{func,mesg} = U.ERR{module = "Tfl", func = func, mesg = mesg};
|
|
67 |
|
|
68 |
|
|
69 |
(*---------------------------------------------------------------------------
|
|
70 |
* The next function is common to pattern-match translation and
|
|
71 |
* proof of completeness of cases for the induction theorem.
|
|
72 |
*
|
|
73 |
* "gvvariant" make variables that are guaranteed not to be in vlist and
|
|
74 |
* furthermore, are guaranteed not to be equal to each other. The names of
|
|
75 |
* the variables will start with "v" and end in a number.
|
|
76 |
*---------------------------------------------------------------------------*)
|
|
77 |
local val counter = ref 0
|
|
78 |
in
|
|
79 |
fun gvvariant vlist =
|
|
80 |
let val slist = ref (map (#Name o S.dest_var) vlist)
|
|
81 |
val mem = U.mem (U.curry (op=))
|
|
82 |
val _ = counter := 0
|
|
83 |
fun pass str =
|
|
84 |
if (mem str (!slist))
|
|
85 |
then ( counter := !counter + 1;
|
|
86 |
pass (U.concat"v" (U.int_to_string(!counter))))
|
|
87 |
else (slist := str :: !slist; str)
|
|
88 |
in
|
|
89 |
fn ty => S.mk_var{Name=pass "v", Ty=ty}
|
|
90 |
end
|
|
91 |
end;
|
|
92 |
|
|
93 |
|
|
94 |
(*---------------------------------------------------------------------------
|
|
95 |
* Used in induction theorem production. This is the simple case of
|
|
96 |
* partitioning up pattern rows by the leading constructor.
|
|
97 |
*---------------------------------------------------------------------------*)
|
|
98 |
fun ipartition gv (constructors,rows) =
|
|
99 |
let fun pfail s = raise TFL_ERR{func = "partition.part", mesg = s}
|
|
100 |
fun part {constrs = [], rows = [], A} = rev A
|
|
101 |
| part {constrs = [], rows = _::_, A} = pfail"extra cases in defn"
|
|
102 |
| part {constrs = _::_, rows = [], A} = pfail"cases missing in defn"
|
|
103 |
| part {constrs = c::crst, rows, A} =
|
|
104 |
let val {Name,Ty} = S.dest_const c
|
|
105 |
val (L,_) = S.strip_type Ty
|
|
106 |
val (in_group, not_in_group) =
|
|
107 |
U.itlist (fn (row as (p::rst, rhs)) =>
|
|
108 |
fn (in_group,not_in_group) =>
|
|
109 |
let val (pc,args) = S.strip_comb p
|
|
110 |
in if (#Name(S.dest_const pc) = Name)
|
|
111 |
then ((args@rst, rhs)::in_group, not_in_group)
|
|
112 |
else (in_group, row::not_in_group)
|
|
113 |
end) rows ([],[])
|
|
114 |
val col_types = U.take S.type_of (length L, #1(hd in_group))
|
|
115 |
in
|
|
116 |
part{constrs = crst, rows = not_in_group,
|
|
117 |
A = {constructor = c,
|
|
118 |
new_formals = map gv col_types,
|
|
119 |
group = in_group}::A}
|
|
120 |
end
|
|
121 |
in part{constrs = constructors, rows = rows, A = []}
|
|
122 |
end;
|
|
123 |
|
|
124 |
|
|
125 |
|
|
126 |
(*---------------------------------------------------------------------------
|
|
127 |
* This datatype carries some information about the origin of a
|
|
128 |
* clause in a function definition.
|
|
129 |
*---------------------------------------------------------------------------*)
|
|
130 |
datatype pattern = GIVEN of S.Preterm * int
|
|
131 |
| OMITTED of S.Preterm * int
|
|
132 |
|
|
133 |
fun psubst theta (GIVEN (tm,i)) = GIVEN(S.subst theta tm, i)
|
|
134 |
| psubst theta (OMITTED (tm,i)) = OMITTED(S.subst theta tm, i);
|
|
135 |
|
|
136 |
fun dest_pattern (GIVEN (tm,i)) = ((GIVEN,i),tm)
|
|
137 |
| dest_pattern (OMITTED (tm,i)) = ((OMITTED,i),tm);
|
|
138 |
|
|
139 |
val pat_of = #2 o dest_pattern;
|
|
140 |
val row_of_pat = #2 o #1 o dest_pattern;
|
|
141 |
|
|
142 |
(*---------------------------------------------------------------------------
|
|
143 |
* Produce an instance of a constructor, plus genvars for its arguments.
|
|
144 |
*---------------------------------------------------------------------------*)
|
|
145 |
fun fresh_constr ty_match colty gv c =
|
|
146 |
let val {Ty,...} = S.dest_const c
|
|
147 |
val (L,ty) = S.strip_type Ty
|
|
148 |
val ty_theta = ty_match ty colty
|
|
149 |
val c' = S.inst ty_theta c
|
|
150 |
val gvars = map (S.inst ty_theta o gv) L
|
|
151 |
in (c', gvars)
|
|
152 |
end;
|
|
153 |
|
|
154 |
|
|
155 |
(*---------------------------------------------------------------------------
|
|
156 |
* Goes through a list of rows and picks out the ones beginning with a
|
|
157 |
* pattern with constructor = Name.
|
|
158 |
*---------------------------------------------------------------------------*)
|
|
159 |
fun mk_group Name rows =
|
|
160 |
U.itlist (fn (row as ((prefix, p::rst), rhs)) =>
|
|
161 |
fn (in_group,not_in_group) =>
|
|
162 |
let val (pc,args) = S.strip_comb p
|
|
163 |
in if ((#Name(S.dest_const pc) = Name) handle _ => false)
|
|
164 |
then (((prefix,args@rst), rhs)::in_group, not_in_group)
|
|
165 |
else (in_group, row::not_in_group) end)
|
|
166 |
rows ([],[]);
|
|
167 |
|
|
168 |
(*---------------------------------------------------------------------------
|
|
169 |
* Partition the rows. Not efficient: we should use hashing.
|
|
170 |
*---------------------------------------------------------------------------*)
|
|
171 |
fun partition _ _ (_,_,_,[]) = raise TFL_ERR{func="partition", mesg="no rows"}
|
|
172 |
| partition gv ty_match
|
|
173 |
(constructors, colty, res_ty, rows as (((prefix,_),_)::_)) =
|
|
174 |
let val fresh = fresh_constr ty_match colty gv
|
|
175 |
fun part {constrs = [], rows, A} = rev A
|
|
176 |
| part {constrs = c::crst, rows, A} =
|
|
177 |
let val (c',gvars) = fresh c
|
|
178 |
val {Name,Ty} = S.dest_const c'
|
|
179 |
val (in_group, not_in_group) = mk_group Name rows
|
|
180 |
val in_group' =
|
|
181 |
if (null in_group) (* Constructor not given *)
|
|
182 |
then [((prefix, #2(fresh c)), OMITTED (S.ARB res_ty, ~1))]
|
|
183 |
else in_group
|
|
184 |
in
|
|
185 |
part{constrs = crst,
|
|
186 |
rows = not_in_group,
|
|
187 |
A = {constructor = c',
|
|
188 |
new_formals = gvars,
|
|
189 |
group = in_group'}::A}
|
|
190 |
end
|
|
191 |
in part{constrs=constructors, rows=rows, A=[]}
|
|
192 |
end;
|
|
193 |
|
|
194 |
(*---------------------------------------------------------------------------
|
|
195 |
* Misc. routines used in mk_case
|
|
196 |
*---------------------------------------------------------------------------*)
|
|
197 |
|
|
198 |
fun mk_pat c =
|
|
199 |
let val L = length(#1(S.strip_type(S.type_of c)))
|
|
200 |
fun build (prefix,tag,plist) =
|
|
201 |
let val (args,plist') = gtake U.I (L, plist)
|
|
202 |
in (prefix,tag,S.list_mk_comb(c,args)::plist') end
|
|
203 |
in map build
|
|
204 |
end;
|
|
205 |
|
|
206 |
fun v_to_prefix (prefix, v::pats) = (v::prefix,pats)
|
|
207 |
| v_to_prefix _ = raise TFL_ERR{func="mk_case", mesg="v_to_prefix"};
|
|
208 |
|
|
209 |
fun v_to_pats (v::prefix,tag, pats) = (prefix, tag, v::pats)
|
|
210 |
| v_to_pats _ = raise TFL_ERR{func="mk_case", mesg="v_to_pats"};
|
|
211 |
|
|
212 |
|
|
213 |
(*----------------------------------------------------------------------------
|
|
214 |
* Translation of pattern terms into nested case expressions.
|
|
215 |
*
|
|
216 |
* This performs the translation and also builds the full set of patterns.
|
|
217 |
* Thus it supports the construction of induction theorems even when an
|
|
218 |
* incomplete set of patterns is given.
|
|
219 |
*---------------------------------------------------------------------------*)
|
|
220 |
|
|
221 |
fun mk_case ty_info ty_match FV range_ty =
|
|
222 |
let
|
|
223 |
fun mk_case_fail s = raise TFL_ERR{func = "mk_case", mesg = s}
|
|
224 |
val fresh_var = gvvariant FV
|
|
225 |
val divide = partition fresh_var ty_match
|
|
226 |
fun expand constructors ty ((_,[]), _) = mk_case_fail"expand_var_row"
|
|
227 |
| expand constructors ty (row as ((prefix, p::rst), rhs)) =
|
|
228 |
if (S.is_var p)
|
|
229 |
then let val fresh = fresh_constr ty_match ty fresh_var
|
|
230 |
fun expnd (c,gvs) =
|
|
231 |
let val capp = S.list_mk_comb(c,gvs)
|
|
232 |
in ((prefix, capp::rst), psubst[p |-> capp] rhs)
|
|
233 |
end
|
|
234 |
in map expnd (map fresh constructors) end
|
|
235 |
else [row]
|
|
236 |
fun mk{rows=[],...} = mk_case_fail"no rows"
|
|
237 |
| mk{path=[], rows = ((prefix, []), rhs)::_} = (* Done *)
|
|
238 |
let val (tag,tm) = dest_pattern rhs
|
|
239 |
in ([(prefix,tag,[])], tm)
|
|
240 |
end
|
|
241 |
| mk{path=[], rows = _::_} = mk_case_fail"blunder"
|
|
242 |
| mk{path as u::rstp, rows as ((prefix, []), rhs)::rst} =
|
|
243 |
mk{path = path,
|
|
244 |
rows = ((prefix, [fresh_var(S.type_of u)]), rhs)::rst}
|
|
245 |
| mk{path = u::rstp, rows as ((_, p::_), _)::_} =
|
|
246 |
let val (pat_rectangle,rights) = U.unzip rows
|
|
247 |
val col0 = map(hd o #2) pat_rectangle
|
|
248 |
in
|
|
249 |
if (U.all S.is_var col0)
|
|
250 |
then let val rights' = map(fn(v,e) => psubst[v|->u] e) (U.zip col0 rights)
|
|
251 |
val pat_rectangle' = map v_to_prefix pat_rectangle
|
|
252 |
val (pref_patl,tm) = mk{path = rstp,
|
|
253 |
rows = U.zip pat_rectangle' rights'}
|
|
254 |
in (map v_to_pats pref_patl, tm)
|
|
255 |
end
|
|
256 |
else
|
|
257 |
let val pty = S.type_of p
|
|
258 |
val ty_name = (#Tyop o S.dest_type) pty
|
|
259 |
in
|
|
260 |
case (ty_info ty_name)
|
|
261 |
of U.NONE => mk_case_fail("Not a known datatype: "^ty_name)
|
|
262 |
| U.SOME{case_const,constructors} =>
|
|
263 |
let val case_const_name = #Name(S.dest_const case_const)
|
|
264 |
val nrows = flatten (map (expand constructors pty) rows)
|
|
265 |
val subproblems = divide(constructors, pty, range_ty, nrows)
|
|
266 |
val groups = map #group subproblems
|
|
267 |
and new_formals = map #new_formals subproblems
|
|
268 |
and constructors' = map #constructor subproblems
|
|
269 |
val news = map (fn (nf,rows) => {path = nf@rstp, rows=rows})
|
|
270 |
(U.zip new_formals groups)
|
|
271 |
val rec_calls = map mk news
|
|
272 |
val (pat_rect,dtrees) = U.unzip rec_calls
|
|
273 |
val case_functions = map S.list_mk_abs(U.zip new_formals dtrees)
|
|
274 |
val types = map S.type_of (case_functions@[u]) @ [range_ty]
|
|
275 |
val case_const' = S.mk_const{Name = case_const_name,
|
|
276 |
Ty = list_mk_type types}
|
|
277 |
val tree = S.list_mk_comb(case_const', case_functions@[u])
|
|
278 |
val pat_rect1 = flatten(U.map2 mk_pat constructors' pat_rect)
|
|
279 |
in (pat_rect1,tree)
|
|
280 |
end
|
|
281 |
end end
|
|
282 |
in mk
|
|
283 |
end;
|
|
284 |
|
|
285 |
|
|
286 |
(* Repeated variable occurrences in a pattern are not allowed. *)
|
|
287 |
fun FV_multiset tm =
|
|
288 |
case (S.dest_term tm)
|
|
289 |
of S.VAR v => [S.mk_var v]
|
|
290 |
| S.CONST _ => []
|
|
291 |
| S.COMB{Rator, Rand} => FV_multiset Rator @ FV_multiset Rand
|
|
292 |
| S.LAMB _ => raise TFL_ERR{func = "FV_multiset", mesg = "lambda"};
|
|
293 |
|
|
294 |
fun no_repeat_vars thy pat =
|
|
295 |
let fun check [] = true
|
|
296 |
| check (v::rst) =
|
|
297 |
if (U.mem S.aconv v rst)
|
|
298 |
then raise TFL_ERR{func = "no_repeat_vars",
|
|
299 |
mesg = U.concat(U.quote(#Name(S.dest_var v)))
|
|
300 |
(U.concat" occurs repeatedly in the pattern "
|
|
301 |
(U.quote(S.Term_to_string (Thry.typecheck thy pat))))}
|
|
302 |
else check rst
|
|
303 |
in check (FV_multiset pat)
|
|
304 |
end;
|
|
305 |
|
|
306 |
local fun paired1{lhs,rhs} = (lhs,rhs)
|
|
307 |
and paired2{Rator,Rand} = (Rator,Rand)
|
|
308 |
fun mk_functional_err s = raise TFL_ERR{func = "mk_functional", mesg=s}
|
|
309 |
in
|
|
310 |
fun mk_functional thy eqs =
|
|
311 |
let val clauses = S.strip_conj eqs
|
|
312 |
val (L,R) = U.unzip (map (paired1 o S.dest_eq o U.snd o S.strip_forall)
|
|
313 |
clauses)
|
|
314 |
val (funcs,pats) = U.unzip(map (paired2 o S.dest_comb) L)
|
|
315 |
val [f] = U.mk_set (S.aconv) funcs
|
|
316 |
handle _ => mk_functional_err "function name not unique"
|
|
317 |
val _ = map (no_repeat_vars thy) pats
|
|
318 |
val rows = U.zip (map (fn x => ([],[x])) pats) (map GIVEN (enumerate R))
|
|
319 |
val fvs = S.free_varsl R
|
|
320 |
val a = S.variant fvs (S.mk_var{Name="a", Ty = S.type_of(hd pats)})
|
|
321 |
val FV = a::fvs
|
|
322 |
val ty_info = Thry.match_info thy
|
|
323 |
val ty_match = Thry.match_type thy
|
|
324 |
val range_ty = S.type_of (hd R)
|
|
325 |
val (patts, case_tm) = mk_case ty_info ty_match FV range_ty
|
|
326 |
{path=[a], rows=rows}
|
|
327 |
val patts1 = map (fn (_,(tag,i),[pat]) => tag (pat,i)) patts handle _
|
|
328 |
=> mk_functional_err "error in pattern-match translation"
|
|
329 |
val patts2 = U.sort(fn p1=>fn p2=> row_of_pat p1 < row_of_pat p2) patts1
|
|
330 |
val finals = map row_of_pat patts2
|
|
331 |
val originals = map (row_of_pat o #2) rows
|
|
332 |
fun int_eq i1 (i2:int) = (i1=i2)
|
|
333 |
val _ = case (U.set_diff int_eq originals finals)
|
|
334 |
of [] => ()
|
|
335 |
| L => mk_functional_err("The following rows (counting from zero)\
|
|
336 |
\ are inaccessible: "^stringize L)
|
|
337 |
in {functional = S.list_mk_abs ([f,a], case_tm),
|
|
338 |
pats = patts2}
|
|
339 |
end end;
|
|
340 |
|
|
341 |
|
|
342 |
(*----------------------------------------------------------------------------
|
|
343 |
*
|
|
344 |
* PRINCIPLES OF DEFINITION
|
|
345 |
*
|
|
346 |
*---------------------------------------------------------------------------*)
|
|
347 |
|
|
348 |
|
|
349 |
(*----------------------------------------------------------------------------
|
|
350 |
* This basic principle of definition takes a functional M and a relation R
|
|
351 |
* and specializes the following theorem
|
|
352 |
*
|
|
353 |
* |- !M R f. (f = WFREC R M) ==> WF R ==> !x. f x = M (f%R,x) x
|
|
354 |
*
|
|
355 |
* to them (getting "th1", say). Then we make the definition "f = WFREC R M"
|
|
356 |
* and instantiate "th1" to the constant "f" (getting th2). Then we use the
|
|
357 |
* definition to delete the first antecedent to th2. Hence the result in
|
|
358 |
* the "corollary" field is
|
|
359 |
*
|
|
360 |
* |- WF R ==> !x. f x = M (f%R,x) x
|
|
361 |
*
|
|
362 |
*---------------------------------------------------------------------------*)
|
|
363 |
|
|
364 |
fun prim_wfrec_definition thy {R, functional} =
|
|
365 |
let val tych = Thry.typecheck thy
|
|
366 |
val {Bvar,...} = S.dest_abs functional
|
|
367 |
val {Name,...} = S.dest_var Bvar (* Intended name of definition *)
|
|
368 |
val cor1 = R.ISPEC (tych functional) Thms.WFREC_COROLLARY
|
|
369 |
val cor2 = R.ISPEC (tych R) cor1
|
|
370 |
val f_eq_WFREC_R_M = (#ant o S.dest_imp o #Body
|
|
371 |
o S.dest_forall o concl) cor2
|
|
372 |
val {lhs,rhs} = S.dest_eq f_eq_WFREC_R_M
|
|
373 |
val {Ty, ...} = S.dest_var lhs
|
|
374 |
val def_term = S.mk_eq{lhs = S.mk_var{Name=Name,Ty=Ty}, rhs=rhs}
|
|
375 |
val (def_thm,thy1) = Thry.make_definition thy
|
|
376 |
(U.concat Name "_def") def_term
|
|
377 |
val (_,[f,_]) = (S.strip_comb o concl) def_thm
|
|
378 |
val cor3 = R.ISPEC (Thry.typecheck thy1 f) cor2
|
|
379 |
in
|
|
380 |
{theory = thy1, def=def_thm, corollary=R.MP cor3 def_thm}
|
|
381 |
end;
|
|
382 |
|
|
383 |
|
|
384 |
(*---------------------------------------------------------------------------
|
|
385 |
* This structure keeps track of congruence rules that aren't derived
|
|
386 |
* from a datatype definition.
|
|
387 |
*---------------------------------------------------------------------------*)
|
|
388 |
structure Context =
|
|
389 |
struct
|
|
390 |
val non_datatype_context = ref []:Rules.Thm list ref
|
|
391 |
fun read() = !non_datatype_context
|
|
392 |
fun write L = (non_datatype_context := L)
|
|
393 |
end;
|
|
394 |
|
|
395 |
fun extraction_thms thy =
|
|
396 |
let val {case_rewrites,case_congs} = Thry.extract_info thy
|
|
397 |
in (case_rewrites, case_congs@Context.read())
|
|
398 |
end;
|
|
399 |
|
|
400 |
|
|
401 |
(*---------------------------------------------------------------------------
|
|
402 |
* Pair patterns with termination conditions. The full list of patterns for
|
|
403 |
* a definition is merged with the TCs arising from the user-given clauses.
|
|
404 |
* There can be fewer clauses than the full list, if the user omitted some
|
|
405 |
* cases. This routine is used to prepare input for mk_induction.
|
|
406 |
*---------------------------------------------------------------------------*)
|
|
407 |
fun merge full_pats TCs =
|
|
408 |
let fun insert (p,TCs) =
|
|
409 |
let fun insrt ((x as (h,[]))::rst) =
|
|
410 |
if (S.aconv p h) then (p,TCs)::rst else x::insrt rst
|
|
411 |
| insrt (x::rst) = x::insrt rst
|
|
412 |
| insrt[] = raise TFL_ERR{func="merge.insert",mesg="pat not found"}
|
|
413 |
in insrt end
|
|
414 |
fun pass ([],ptcl_final) = ptcl_final
|
|
415 |
| pass (ptcs::tcl, ptcl) = pass(tcl, insert ptcs ptcl)
|
|
416 |
in
|
|
417 |
pass (TCs, map (fn p => (p,[])) full_pats)
|
|
418 |
end;
|
|
419 |
|
|
420 |
fun not_omitted (GIVEN(tm,_)) = tm
|
|
421 |
| not_omitted (OMITTED _) = raise TFL_ERR{func="not_omitted",mesg=""}
|
|
422 |
val givens = U.mapfilter not_omitted;
|
|
423 |
|
|
424 |
|
|
425 |
(*--------------------------------------------------------------------------
|
|
426 |
* This is a wrapper for "prim_wfrec_definition": it builds a functional,
|
|
427 |
* calls "prim_wfrec_definition", then specializes the result. This gives a
|
|
428 |
* list of rewrite rules where the right hand sides are quite ugly, so we
|
|
429 |
* simplify to get rid of the case statements. In essence, this function
|
|
430 |
* performs pre- and post-processing for patterns. As well, after
|
|
431 |
* simplification, termination conditions are extracted.
|
|
432 |
*-------------------------------------------------------------------------*)
|
|
433 |
|
|
434 |
fun gen_wfrec_definition thy {R, eqs} =
|
|
435 |
let val {functional,pats} = mk_functional thy eqs
|
|
436 |
val given_pats = givens pats
|
|
437 |
val {def,corollary,theory} = prim_wfrec_definition thy
|
|
438 |
{R=R, functional=functional}
|
|
439 |
val tych = Thry.typecheck theory
|
|
440 |
val {lhs=f,...} = S.dest_eq(concl def)
|
|
441 |
val WFR = #ant(S.dest_imp(concl corollary))
|
|
442 |
val corollary' = R.UNDISCH corollary (* put WF R on assums *)
|
|
443 |
val corollaries = map (U.C R.SPEC corollary' o tych) given_pats
|
|
444 |
val (case_rewrites,context_congs) = extraction_thms thy
|
|
445 |
val corollaries' = map(R.simplify case_rewrites) corollaries
|
|
446 |
fun xtract th = R.CONTEXT_REWRITE_RULE(f,R)
|
|
447 |
{thms = [(R.ISPECL o map tych)[f,R] Thms.CUT_LEMMA],
|
|
448 |
congs = context_congs,
|
|
449 |
th = th}
|
|
450 |
val (rules, TCs) = U.unzip (map xtract corollaries')
|
|
451 |
val rules0 = map (R.simplify [Thms.CUT_DEF]) rules
|
|
452 |
val mk_cond_rule = R.FILTER_DISCH_ALL(not o S.aconv WFR)
|
|
453 |
val rules1 = R.LIST_CONJ(map mk_cond_rule rules0)
|
|
454 |
in
|
|
455 |
{theory = theory, (* holds def, if it's needed *)
|
|
456 |
rules = rules1,
|
|
457 |
full_pats_TCs = merge (map pat_of pats) (U.zip given_pats TCs),
|
|
458 |
TCs = TCs,
|
|
459 |
patterns = pats}
|
|
460 |
end;
|
|
461 |
|
|
462 |
|
|
463 |
(*---------------------------------------------------------------------------
|
|
464 |
* Perform the extraction without making the definition. Definition and
|
|
465 |
* extraction commute for the non-nested case. For hol90 users, this
|
|
466 |
* function can be invoked without being in draft mode.
|
|
467 |
*---------------------------------------------------------------------------*)
|
|
468 |
fun wfrec_eqns thy eqns =
|
|
469 |
let val {functional,pats} = mk_functional thy eqns
|
|
470 |
val given_pats = givens pats
|
|
471 |
val {Bvar = f, Body} = S.dest_abs functional
|
|
472 |
val {Bvar = x, ...} = S.dest_abs Body
|
|
473 |
val {Name,Ty = fty} = S.dest_var f
|
|
474 |
val {Tyop="fun", Args = [f_dty, f_rty]} = S.dest_type fty
|
|
475 |
val (case_rewrites,context_congs) = extraction_thms thy
|
|
476 |
val tych = Thry.typecheck thy
|
|
477 |
val WFREC_THM0 = R.ISPEC (tych functional) Thms.WFREC_COROLLARY
|
|
478 |
val R = S.variant(S.free_vars eqns)
|
|
479 |
(#Bvar(S.dest_forall(concl WFREC_THM0)))
|
|
480 |
val WFREC_THM = R.ISPECL [tych R, tych f] WFREC_THM0
|
|
481 |
val ([proto_def, WFR],_) = S.strip_imp(concl WFREC_THM)
|
|
482 |
val R1 = S.rand WFR
|
|
483 |
val corollary' = R.UNDISCH(R.UNDISCH WFREC_THM)
|
|
484 |
val corollaries = map (U.C R.SPEC corollary' o tych) given_pats
|
|
485 |
val corollaries' = map (R.simplify case_rewrites) corollaries
|
|
486 |
fun extract th = R.CONTEXT_REWRITE_RULE(f,R1)
|
|
487 |
{thms = [(R.ISPECL o map tych)[f,R1] Thms.CUT_LEMMA],
|
|
488 |
congs = context_congs,
|
|
489 |
th = th}
|
|
490 |
in {proto_def=proto_def,
|
|
491 |
WFR=WFR,
|
|
492 |
pats=pats,
|
|
493 |
extracta = map extract corollaries'}
|
|
494 |
end;
|
|
495 |
|
|
496 |
|
|
497 |
(*---------------------------------------------------------------------------
|
|
498 |
* Define the constant after extracting the termination conditions. The
|
|
499 |
* wellfounded relation used in the definition is computed by using the
|
|
500 |
* choice operator on the extracted conditions (plus the condition that
|
|
501 |
* such a relation must be wellfounded).
|
|
502 |
*---------------------------------------------------------------------------*)
|
|
503 |
fun lazyR_def thy eqns =
|
|
504 |
let val {proto_def,WFR,pats,extracta} = wfrec_eqns thy eqns
|
|
505 |
val R1 = S.rand WFR
|
|
506 |
val f = S.lhs proto_def
|
|
507 |
val {Name,...} = S.dest_var f
|
|
508 |
val (extractants,TCl) = U.unzip extracta
|
|
509 |
val TCs = U.Union S.aconv TCl
|
|
510 |
val full_rqt = WFR::TCs
|
|
511 |
val R' = S.mk_select{Bvar=R1, Body=S.list_mk_conj full_rqt}
|
|
512 |
val R'abs = S.rand R'
|
|
513 |
val (def,theory) = Thry.make_definition thy (U.concat Name "_def")
|
|
514 |
(S.subst[R1 |-> R'] proto_def)
|
|
515 |
val fconst = #lhs(S.dest_eq(concl def))
|
|
516 |
val tych = Thry.typecheck theory
|
|
517 |
val baz = R.DISCH (tych proto_def)
|
|
518 |
(U.itlist (R.DISCH o tych) full_rqt (R.LIST_CONJ extractants))
|
|
519 |
val def' = R.MP (R.SPEC (tych fconst)
|
|
520 |
(R.SPEC (tych R') (R.GENL[tych R1, tych f] baz)))
|
|
521 |
def
|
|
522 |
val body_th = R.LIST_CONJ (map (R.ASSUME o tych) full_rqt)
|
|
523 |
val bar = R.MP (R.BETA_RULE(R.ISPECL[tych R'abs, tych R1] Thms.SELECT_AX))
|
|
524 |
body_th
|
|
525 |
in {theory = theory, R=R1,
|
|
526 |
rules = U.rev_itlist (U.C R.MP) (R.CONJUNCTS bar) def',
|
|
527 |
full_pats_TCs = merge (map pat_of pats) (U.zip (givens pats) TCl),
|
|
528 |
patterns = pats}
|
|
529 |
end;
|
|
530 |
|
|
531 |
|
|
532 |
|
|
533 |
(*----------------------------------------------------------------------------
|
|
534 |
*
|
|
535 |
* INDUCTION THEOREM
|
|
536 |
*
|
|
537 |
*---------------------------------------------------------------------------*)
|
|
538 |
|
|
539 |
|
|
540 |
(*------------------------ Miscellaneous function --------------------------
|
|
541 |
*
|
|
542 |
* [x_1,...,x_n] ?v_1...v_n. M[v_1,...,v_n]
|
|
543 |
* -----------------------------------------------------------
|
|
544 |
* ( M[x_1,...,x_n], [(x_i,?v_1...v_n. M[v_1,...,v_n]),
|
|
545 |
* ...
|
|
546 |
* (x_j,?v_n. M[x_1,...,x_(n-1),v_n])] )
|
|
547 |
*
|
|
548 |
* This function is totally ad hoc. Used in the production of the induction
|
|
549 |
* theorem. The nchotomy theorem can have clauses that look like
|
|
550 |
*
|
|
551 |
* ?v1..vn. z = C vn..v1
|
|
552 |
*
|
|
553 |
* in which the order of quantification is not the order of occurrence of the
|
|
554 |
* quantified variables as arguments to C. Since we have no control over this
|
|
555 |
* aspect of the nchotomy theorem, we make the correspondence explicit by
|
|
556 |
* pairing the incoming new variable with the term it gets beta-reduced into.
|
|
557 |
*---------------------------------------------------------------------------*)
|
|
558 |
|
|
559 |
fun alpha_ex_unroll xlist tm =
|
|
560 |
let val (qvars,body) = S.strip_exists tm
|
|
561 |
val vlist = #2(S.strip_comb (S.rhs body))
|
|
562 |
val plist = U.zip vlist xlist
|
|
563 |
val args = map (U.C (U.assoc1 (U.uncurry S.aconv)) plist) qvars
|
|
564 |
val args' = map (fn U.SOME(_,v) => v
|
|
565 |
| U.NONE => raise TFL_ERR{func = "alpha_ex_unroll",
|
|
566 |
mesg = "no correspondence"}) args
|
|
567 |
fun build ex [] = []
|
|
568 |
| build ex (v::rst) =
|
|
569 |
let val ex1 = S.beta_conv(S.mk_comb{Rator=S.rand ex, Rand=v})
|
|
570 |
in ex1::build ex1 rst
|
|
571 |
end
|
|
572 |
val (nex::exl) = rev (tm::build tm args')
|
|
573 |
in
|
|
574 |
(nex, U.zip args' (rev exl))
|
|
575 |
end;
|
|
576 |
|
|
577 |
|
|
578 |
|
|
579 |
(*----------------------------------------------------------------------------
|
|
580 |
*
|
|
581 |
* PROVING COMPLETENESS OF PATTERNS
|
|
582 |
*
|
|
583 |
*---------------------------------------------------------------------------*)
|
|
584 |
|
|
585 |
fun mk_case ty_info FV thy =
|
|
586 |
let
|
|
587 |
val divide = ipartition (gvvariant FV)
|
|
588 |
val tych = Thry.typecheck thy
|
|
589 |
fun tych_binding(x|->y) = (tych x |-> tych y)
|
|
590 |
fun fail s = raise TFL_ERR{func = "mk_case", mesg = s}
|
|
591 |
fun mk{rows=[],...} = fail"no rows"
|
|
592 |
| mk{path=[], rows = [([], (thm, bindings))]} =
|
|
593 |
R.IT_EXISTS (map tych_binding bindings) thm
|
|
594 |
| mk{path = u::rstp, rows as (p::_, _)::_} =
|
|
595 |
let val (pat_rectangle,rights) = U.unzip rows
|
|
596 |
val col0 = map hd pat_rectangle
|
|
597 |
val pat_rectangle' = map tl pat_rectangle
|
|
598 |
in
|
|
599 |
if (U.all S.is_var col0) (* column 0 is all variables *)
|
|
600 |
then let val rights' = map (fn ((thm,theta),v) => (thm,theta@[u|->v]))
|
|
601 |
(U.zip rights col0)
|
|
602 |
in mk{path = rstp, rows = U.zip pat_rectangle' rights'}
|
|
603 |
end
|
|
604 |
else (* column 0 is all constructors *)
|
|
605 |
let val ty_name = (#Tyop o S.dest_type o S.type_of) p
|
|
606 |
in
|
|
607 |
case (ty_info ty_name)
|
|
608 |
of U.NONE => fail("Not a known datatype: "^ty_name)
|
|
609 |
| U.SOME{constructors,nchotomy} =>
|
|
610 |
let val thm' = R.ISPEC (tych u) nchotomy
|
|
611 |
val disjuncts = S.strip_disj (concl thm')
|
|
612 |
val subproblems = divide(constructors, rows)
|
|
613 |
val groups = map #group subproblems
|
|
614 |
and new_formals = map #new_formals subproblems
|
|
615 |
val existentials = U.map2 alpha_ex_unroll new_formals disjuncts
|
|
616 |
val constraints = map #1 existentials
|
|
617 |
val vexl = map #2 existentials
|
|
618 |
fun expnd tm (pats,(th,b)) = (pats,(R.SUBS[R.ASSUME(tych tm)]th,b))
|
|
619 |
val news = map (fn (nf,rows,c) => {path = nf@rstp,
|
|
620 |
rows = map (expnd c) rows})
|
|
621 |
(U.zip3 new_formals groups constraints)
|
|
622 |
val recursive_thms = map mk news
|
|
623 |
val build_exists = U.itlist(R.CHOOSE o (tych##(R.ASSUME o tych)))
|
|
624 |
val thms' = U.map2 build_exists vexl recursive_thms
|
|
625 |
val same_concls = R.EVEN_ORS thms'
|
|
626 |
in R.DISJ_CASESL thm' same_concls
|
|
627 |
end
|
|
628 |
end end
|
|
629 |
in mk
|
|
630 |
end;
|
|
631 |
|
|
632 |
|
|
633 |
fun complete_cases thy =
|
|
634 |
let val tych = Thry.typecheck thy
|
|
635 |
fun pmk_var n ty = S.mk_var{Name = n,Ty = ty}
|
|
636 |
val ty_info = Thry.induct_info thy
|
|
637 |
in fn pats =>
|
|
638 |
let val FV0 = S.free_varsl pats
|
|
639 |
val a = S.variant FV0 (pmk_var "a" (S.type_of(hd pats)))
|
|
640 |
val v = S.variant (a::FV0) (pmk_var "v" (S.type_of a))
|
|
641 |
val FV = a::v::FV0
|
|
642 |
val a_eq_v = S.mk_eq{lhs = a, rhs = v}
|
|
643 |
val ex_th0 = R.EXISTS ((tych##tych) (S.mk_exists{Bvar=v,Body=a_eq_v},a))
|
|
644 |
(R.REFL (tych a))
|
|
645 |
val th0 = R.ASSUME (tych a_eq_v)
|
|
646 |
val rows = map (fn x => ([x], (th0,[]))) pats
|
|
647 |
in
|
|
648 |
R.GEN (tych a)
|
|
649 |
(R.RIGHT_ASSOC
|
|
650 |
(R.CHOOSE(tych v, ex_th0)
|
|
651 |
(mk_case ty_info FV thy {path=[v], rows=rows})))
|
|
652 |
end end;
|
|
653 |
|
|
654 |
|
|
655 |
(*---------------------------------------------------------------------------
|
|
656 |
* Constructing induction hypotheses: one for each recursive call.
|
|
657 |
*
|
|
658 |
* Note. R will never occur as a variable in the ind_clause, because
|
|
659 |
* to do so, it would have to be from a nested definition, and we don't
|
|
660 |
* allow nested defns to have R variable.
|
|
661 |
*
|
|
662 |
* Note. When the context is empty, there can be no local variables.
|
|
663 |
*---------------------------------------------------------------------------*)
|
|
664 |
|
|
665 |
local nonfix ^ ; infix 9 ^ ; infix 5 ==>
|
|
666 |
fun (tm1 ^ tm2) = S.mk_comb{Rator = tm1, Rand = tm2}
|
|
667 |
fun (tm1 ==> tm2) = S.mk_imp{ant = tm1, conseq = tm2}
|
|
668 |
in
|
|
669 |
fun build_ih f P (pat,TCs) =
|
|
670 |
let val globals = S.free_vars_lr pat
|
|
671 |
fun nested tm = U.can(S.find_term (S.aconv f)) tm handle _ => false
|
|
672 |
fun dest_TC tm =
|
|
673 |
let val (cntxt,R_y_pat) = S.strip_imp(#2(S.strip_forall tm))
|
|
674 |
val (R,y,_) = S.dest_relation R_y_pat
|
|
675 |
val P_y = if (nested tm) then R_y_pat ==> P^y else P^y
|
|
676 |
in case cntxt
|
|
677 |
of [] => (P_y, (tm,[]))
|
|
678 |
| _ => let
|
|
679 |
val imp = S.list_mk_conj cntxt ==> P_y
|
|
680 |
val lvs = U.set_diff S.aconv (S.free_vars_lr imp) globals
|
|
681 |
val locals = #2(U.pluck (S.aconv P) lvs) handle _ => lvs
|
|
682 |
in (S.list_mk_forall(locals,imp), (tm,locals)) end
|
|
683 |
end
|
|
684 |
in case TCs
|
|
685 |
of [] => (S.list_mk_forall(globals, P^pat), [])
|
|
686 |
| _ => let val (ihs, TCs_locals) = U.unzip(map dest_TC TCs)
|
|
687 |
val ind_clause = S.list_mk_conj ihs ==> P^pat
|
|
688 |
in (S.list_mk_forall(globals,ind_clause), TCs_locals)
|
|
689 |
end
|
|
690 |
end
|
|
691 |
end;
|
|
692 |
|
|
693 |
|
|
694 |
|
|
695 |
(*---------------------------------------------------------------------------
|
|
696 |
* This function makes good on the promise made in "build_ih: we prove
|
|
697 |
* <something>.
|
|
698 |
*
|
|
699 |
* Input is tm = "(!y. R y pat ==> P y) ==> P pat",
|
|
700 |
* TCs = TC_1[pat] ... TC_n[pat]
|
|
701 |
* thm = ih1 /\ ... /\ ih_n |- ih[pat]
|
|
702 |
*---------------------------------------------------------------------------*)
|
|
703 |
fun prove_case f thy (tm,TCs_locals,thm) =
|
|
704 |
let val tych = Thry.typecheck thy
|
|
705 |
val antc = tych(#ant(S.dest_imp tm))
|
|
706 |
val thm' = R.SPEC_ALL thm
|
|
707 |
fun nested tm = U.can(S.find_term (S.aconv f)) tm handle _ => false
|
|
708 |
fun get_cntxt TC = tych(#ant(S.dest_imp(#2(S.strip_forall(concl TC)))))
|
|
709 |
fun mk_ih ((TC,locals),th2,nested) =
|
|
710 |
R.GENL (map tych locals)
|
|
711 |
(if nested
|
|
712 |
then R.DISCH (get_cntxt TC) th2 handle _ => th2
|
|
713 |
else if S.is_imp(concl TC)
|
|
714 |
then R.IMP_TRANS TC th2
|
|
715 |
else R.MP th2 TC)
|
|
716 |
in
|
|
717 |
R.DISCH antc
|
|
718 |
(if S.is_imp(concl thm') (* recursive calls in this clause *)
|
|
719 |
then let val th1 = R.ASSUME antc
|
|
720 |
val TCs = map #1 TCs_locals
|
|
721 |
val ylist = map (#2 o S.dest_relation o #2 o S.strip_imp o
|
|
722 |
#2 o S.strip_forall) TCs
|
|
723 |
val TClist = map (fn(TC,lvs) => (R.SPEC_ALL(R.ASSUME(tych TC)),lvs))
|
|
724 |
TCs_locals
|
|
725 |
val th2list = map (U.C R.SPEC th1 o tych) ylist
|
|
726 |
val nlist = map nested TCs
|
|
727 |
val triples = U.zip3 TClist th2list nlist
|
|
728 |
val Pylist = map mk_ih triples
|
|
729 |
in R.MP thm' (R.LIST_CONJ Pylist) end
|
|
730 |
else thm')
|
|
731 |
end;
|
|
732 |
|
|
733 |
|
|
734 |
(*---------------------------------------------------------------------------
|
|
735 |
*
|
|
736 |
* x = (v1,...,vn) |- M[x]
|
|
737 |
* ---------------------------------------------
|
|
738 |
* ?v1 ... vn. x = (v1,...,vn) |- M[x]
|
|
739 |
*
|
|
740 |
*---------------------------------------------------------------------------*)
|
|
741 |
fun LEFT_ABS_VSTRUCT tych thm =
|
|
742 |
let fun CHOOSER v (tm,thm) =
|
|
743 |
let val ex_tm = S.mk_exists{Bvar=v,Body=tm}
|
|
744 |
in (ex_tm, R.CHOOSE(tych v, R.ASSUME (tych ex_tm)) thm)
|
|
745 |
end
|
|
746 |
val [veq] = U.filter (U.can S.dest_eq) (#1 (R.dest_thm thm))
|
|
747 |
val {lhs,rhs} = S.dest_eq veq
|
|
748 |
val L = S.free_vars_lr rhs
|
|
749 |
in U.snd(U.itlist CHOOSER L (veq,thm))
|
|
750 |
end;
|
|
751 |
|
|
752 |
|
|
753 |
fun combize M N = S.mk_comb{Rator=M,Rand=N};
|
|
754 |
fun eq v tm = S.mk_eq{lhs=v,rhs=tm};
|
|
755 |
|
|
756 |
|
|
757 |
(*----------------------------------------------------------------------------
|
|
758 |
* Input : f, R, and [(pat1,TCs1),..., (patn,TCsn)]
|
|
759 |
*
|
|
760 |
* Instantiates WF_INDUCTION_THM, getting Sinduct and then tries to prove
|
|
761 |
* recursion induction (Rinduct) by proving the antecedent of Sinduct from
|
|
762 |
* the antecedent of Rinduct.
|
|
763 |
*---------------------------------------------------------------------------*)
|
|
764 |
fun mk_induction thy f R pat_TCs_list =
|
|
765 |
let val tych = Thry.typecheck thy
|
|
766 |
val Sinduction = R.UNDISCH (R.ISPEC (tych R) Thms.WF_INDUCTION_THM)
|
|
767 |
val (pats,TCsl) = U.unzip pat_TCs_list
|
|
768 |
val case_thm = complete_cases thy pats
|
|
769 |
val domain = (S.type_of o hd) pats
|
|
770 |
val P = S.variant (S.all_varsl (pats@flatten TCsl))
|
|
771 |
(S.mk_var{Name="P", Ty=domain --> S.bool})
|
|
772 |
val Sinduct = R.SPEC (tych P) Sinduction
|
|
773 |
val Sinduct_assumf = S.rand ((#ant o S.dest_imp o concl) Sinduct)
|
|
774 |
val Rassums_TCl' = map (build_ih f P) pat_TCs_list
|
|
775 |
val (Rassums,TCl') = U.unzip Rassums_TCl'
|
|
776 |
val Rinduct_assum = R.ASSUME (tych (S.list_mk_conj Rassums))
|
|
777 |
val cases = map (S.beta_conv o combize Sinduct_assumf) pats
|
|
778 |
val tasks = U.zip3 cases TCl' (R.CONJUNCTS Rinduct_assum)
|
|
779 |
val proved_cases = map (prove_case f thy) tasks
|
|
780 |
val v = S.variant (S.free_varsl (map concl proved_cases))
|
|
781 |
(S.mk_var{Name="v", Ty=domain})
|
|
782 |
val vtyped = tych v
|
|
783 |
val substs = map (R.SYM o R.ASSUME o tych o eq v) pats
|
|
784 |
val proved_cases1 = U.map2 (fn th => R.SUBS[th]) substs proved_cases
|
|
785 |
val abs_cases = map (LEFT_ABS_VSTRUCT tych) proved_cases1
|
|
786 |
val dant = R.GEN vtyped (R.DISJ_CASESL (R.ISPEC vtyped case_thm) abs_cases)
|
|
787 |
val dc = R.MP Sinduct dant
|
|
788 |
val Parg_ty = S.type_of(#Bvar(S.dest_forall(concl dc)))
|
|
789 |
val vars = map (gvvariant[P]) (S.strip_prod_type Parg_ty)
|
|
790 |
val dc' = U.itlist (R.GEN o tych) vars
|
|
791 |
(R.SPEC (tych(S.mk_vstruct Parg_ty vars)) dc)
|
|
792 |
in
|
|
793 |
R.GEN (tych P) (R.DISCH (tych(concl Rinduct_assum)) dc')
|
|
794 |
end
|
|
795 |
handle _ => raise TFL_ERR{func = "mk_induction", mesg = "failed derivation"};
|
|
796 |
|
|
797 |
|
|
798 |
|
|
799 |
(*---------------------------------------------------------------------------
|
|
800 |
*
|
|
801 |
* POST PROCESSING
|
|
802 |
*
|
|
803 |
*---------------------------------------------------------------------------*)
|
|
804 |
|
|
805 |
|
|
806 |
fun simplify_induction thy hth ind =
|
|
807 |
let val tych = Thry.typecheck thy
|
|
808 |
val (asl,_) = R.dest_thm ind
|
|
809 |
val (_,tc_eq_tc') = R.dest_thm hth
|
|
810 |
val tc = S.lhs tc_eq_tc'
|
|
811 |
fun loop [] = ind
|
|
812 |
| loop (asm::rst) =
|
|
813 |
if (U.can (Thry.match_term thy asm) tc)
|
|
814 |
then R.UNDISCH
|
|
815 |
(R.MATCH_MP
|
|
816 |
(R.MATCH_MP Thms.simp_thm (R.DISCH (tych asm) ind))
|
|
817 |
hth)
|
|
818 |
else loop rst
|
|
819 |
in loop asl
|
|
820 |
end;
|
|
821 |
|
|
822 |
|
|
823 |
(*---------------------------------------------------------------------------
|
|
824 |
* The termination condition is an antecedent to the rule, and an
|
|
825 |
* assumption to the theorem.
|
|
826 |
*---------------------------------------------------------------------------*)
|
|
827 |
fun elim_tc tcthm (rule,induction) =
|
|
828 |
(R.MP rule tcthm, R.PROVE_HYP tcthm induction)
|
|
829 |
|
|
830 |
|
|
831 |
fun postprocess{WFtac, terminator, simplifier} theory {rules,induction,TCs} =
|
|
832 |
let val tych = Thry.typecheck theory
|
|
833 |
|
|
834 |
(*---------------------------------------------------------------------
|
|
835 |
* Attempt to eliminate WF condition. It's the only assumption of rules
|
|
836 |
*---------------------------------------------------------------------*)
|
|
837 |
val (rules1,induction1) =
|
|
838 |
let val thm = R.prove(tych(hd(#1(R.dest_thm rules))),WFtac)
|
|
839 |
in (R.PROVE_HYP thm rules, R.PROVE_HYP thm induction)
|
|
840 |
end handle _ => (rules,induction)
|
|
841 |
|
|
842 |
(*----------------------------------------------------------------------
|
|
843 |
* The termination condition (tc) is simplified to |- tc = tc' (there
|
|
844 |
* might not be a change!) and then 3 attempts are made:
|
|
845 |
*
|
|
846 |
* 1. if |- tc = T, then eliminate it with eqT; otherwise,
|
|
847 |
* 2. apply the terminator to tc'. If |- tc' = T then eliminate; else
|
|
848 |
* 3. replace tc by tc' in both the rules and the induction theorem.
|
|
849 |
*---------------------------------------------------------------------*)
|
|
850 |
fun simplify_tc tc (r,ind) =
|
|
851 |
let val tc_eq = simplifier (tych tc)
|
|
852 |
in
|
|
853 |
elim_tc (R.MATCH_MP Thms.eqT tc_eq) (r,ind)
|
|
854 |
handle _ =>
|
|
855 |
(elim_tc (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
|
|
856 |
(R.prove(tych(S.rhs(concl tc_eq)),terminator)))
|
|
857 |
(r,ind)
|
|
858 |
handle _ =>
|
|
859 |
(R.UNDISCH(R.MATCH_MP (R.MATCH_MP Thms.simp_thm r) tc_eq),
|
|
860 |
simplify_induction theory tc_eq ind))
|
|
861 |
end
|
|
862 |
|
|
863 |
(*----------------------------------------------------------------------
|
|
864 |
* Nested termination conditions are harder to get at, since they are
|
|
865 |
* left embedded in the body of the function (and in induction
|
|
866 |
* theorem hypotheses). Our "solution" is to simplify them, and try to
|
|
867 |
* prove termination, but leave the application of the resulting theorem
|
|
868 |
* to a higher level. So things go much as in "simplify_tc": the
|
|
869 |
* termination condition (tc) is simplified to |- tc = tc' (there might
|
|
870 |
* not be a change) and then 2 attempts are made:
|
|
871 |
*
|
|
872 |
* 1. if |- tc = T, then return |- tc; otherwise,
|
|
873 |
* 2. apply the terminator to tc'. If |- tc' = T then return |- tc; else
|
|
874 |
* 3. return |- tc = tc'
|
|
875 |
*---------------------------------------------------------------------*)
|
|
876 |
fun simplify_nested_tc tc =
|
|
877 |
let val tc_eq = simplifier (tych (#2 (S.strip_forall tc)))
|
|
878 |
in
|
|
879 |
R.GEN_ALL
|
|
880 |
(R.MATCH_MP Thms.eqT tc_eq
|
|
881 |
handle _
|
|
882 |
=> (R.MATCH_MP(R.MATCH_MP Thms.rev_eq_mp tc_eq)
|
|
883 |
(R.prove(tych(S.rhs(concl tc_eq)),terminator))
|
|
884 |
handle _ => tc_eq))
|
|
885 |
end
|
|
886 |
|
|
887 |
(*-------------------------------------------------------------------
|
|
888 |
* Attempt to simplify the termination conditions in each rule and
|
|
889 |
* in the induction theorem.
|
|
890 |
*-------------------------------------------------------------------*)
|
|
891 |
fun strip_imp tm = if S.is_neg tm then ([],tm) else S.strip_imp tm
|
|
892 |
fun loop ([],extras,R,ind) = (rev R, ind, extras)
|
|
893 |
| loop ((r,ftcs)::rst, nthms, R, ind) =
|
|
894 |
let val tcs = #1(strip_imp (concl r))
|
|
895 |
val extra_tcs = U.set_diff S.aconv ftcs tcs
|
|
896 |
val extra_tc_thms = map simplify_nested_tc extra_tcs
|
|
897 |
val (r1,ind1) = U.rev_itlist simplify_tc tcs (r,ind)
|
|
898 |
val r2 = R.FILTER_DISCH_ALL(not o S.is_WFR) r1
|
|
899 |
in loop(rst, nthms@extra_tc_thms, r2::R, ind1)
|
|
900 |
end
|
|
901 |
val rules_tcs = U.zip (R.CONJUNCTS rules1) TCs
|
|
902 |
val (rules2,ind2,extras) = loop(rules_tcs,[],[],induction1)
|
|
903 |
in
|
|
904 |
{induction = ind2, rules = R.LIST_CONJ rules2, nested_tcs = extras}
|
|
905 |
end;
|
|
906 |
|
|
907 |
|
|
908 |
(*---------------------------------------------------------------------------
|
|
909 |
* Extract termination goals so that they can be put it into a goalstack, or
|
|
910 |
* have a tactic directly applied to them.
|
|
911 |
*--------------------------------------------------------------------------*)
|
|
912 |
local exception IS_NEG
|
|
913 |
fun strip_imp tm = if S.is_neg tm then raise IS_NEG else S.strip_imp tm
|
|
914 |
in
|
|
915 |
fun termination_goals rules =
|
|
916 |
U.itlist (fn th => fn A =>
|
|
917 |
let val tcl = (#1 o S.strip_imp o #2 o S.strip_forall o concl) th
|
|
918 |
in tcl@A
|
|
919 |
end handle _ => A) (R.CONJUNCTS rules) (hyp rules)
|
|
920 |
end;
|
|
921 |
|
|
922 |
end; (* TFL *)
|