| author | wenzelm | 
| Tue, 18 Apr 2017 19:17:46 +0200 | |
| changeset 65507 | decdb95bd007 | 
| parent 63680 | 6e1e8b5abbfa | 
| child 67369 | 7360fe6bb423 | 
| permissions | -rw-r--r-- | 
| 61656 | 1 | (*:maxLineLen=78:*) | 
| 2 | ||
| 42917 | 3 | theory Synopsis | 
| 63531 | 4 | imports Main Base | 
| 42917 | 5 | begin | 
| 6 | ||
| 58618 | 7 | chapter \<open>Synopsis\<close> | 
| 42917 | 8 | |
| 58618 | 9 | section \<open>Notepad\<close> | 
| 42917 | 10 | |
| 58618 | 11 | text \<open> | 
| 42917 | 12 | An Isar proof body serves as mathematical notepad to compose logical | 
| 42918 | 13 | content, consisting of types, terms, facts. | 
| 58618 | 14 | \<close> | 
| 42917 | 15 | |
| 16 | ||
| 58618 | 17 | subsection \<open>Types and terms\<close> | 
| 42918 | 18 | |
| 19 | notepad | |
| 20 | begin | |
| 58618 | 21 | txt \<open>Locally fixed entities:\<close> | 
| 61580 | 22 | fix x \<comment> \<open>local constant, without any type information yet\<close> | 
| 23 | fix x :: 'a \<comment> \<open>variant with explicit type-constraint for subsequent use\<close> | |
| 42918 | 24 | |
| 25 | fix a b | |
| 61580 | 26 | assume "a = b" \<comment> \<open>type assignment at first occurrence in concrete term\<close> | 
| 42918 | 27 | |
| 58618 | 28 | txt \<open>Definitions (non-polymorphic):\<close> | 
| 63039 | 29 | define x :: 'a where "x = t" | 
| 42918 | 30 | |
| 58618 | 31 | txt \<open>Abbreviations (polymorphic):\<close> | 
| 42918 | 32 | let ?f = "\<lambda>x. x" | 
| 33 | term "?f ?f" | |
| 34 | ||
| 58618 | 35 | txt \<open>Notation:\<close> | 
| 42918 | 36 |   write x  ("***")
 | 
| 37 | end | |
| 38 | ||
| 39 | ||
| 58618 | 40 | subsection \<open>Facts\<close> | 
| 42917 | 41 | |
| 58618 | 42 | text \<open> | 
| 42917 | 43 | A fact is a simultaneous list of theorems. | 
| 58618 | 44 | \<close> | 
| 42917 | 45 | |
| 46 | ||
| 58618 | 47 | subsubsection \<open>Producing facts\<close> | 
| 42917 | 48 | |
| 49 | notepad | |
| 50 | begin | |
| 51 | ||
| 58618 | 52 | txt \<open>Via assumption (``lambda''):\<close> | 
| 42917 | 53 | assume a: A | 
| 54 | ||
| 58618 | 55 | txt \<open>Via proof (``let''):\<close> | 
| 62271 | 56 | have b: B \<proof> | 
| 42917 | 57 | |
| 58618 | 58 | txt \<open>Via abbreviation (``let''):\<close> | 
| 42917 | 59 | note c = a b | 
| 60 | ||
| 61 | end | |
| 62 | ||
| 63 | ||
| 58618 | 64 | subsubsection \<open>Referencing facts\<close> | 
| 42917 | 65 | |
| 66 | notepad | |
| 67 | begin | |
| 58618 | 68 | txt \<open>Via explicit name:\<close> | 
| 42917 | 69 | assume a: A | 
| 70 | note a | |
| 71 | ||
| 58618 | 72 | txt \<open>Via implicit name:\<close> | 
| 42917 | 73 | assume A | 
| 74 | note this | |
| 75 | ||
| 58618 | 76 | txt \<open>Via literal proposition (unification with results from the proof text):\<close> | 
| 42917 | 77 | assume A | 
| 58618 | 78 | note \<open>A\<close> | 
| 42917 | 79 | |
| 80 | assume "\<And>x. B x" | |
| 58618 | 81 | note \<open>B a\<close> | 
| 82 | note \<open>B b\<close> | |
| 42917 | 83 | end | 
| 84 | ||
| 85 | ||
| 58618 | 86 | subsubsection \<open>Manipulating facts\<close> | 
| 42917 | 87 | |
| 88 | notepad | |
| 89 | begin | |
| 58618 | 90 | txt \<open>Instantiation:\<close> | 
| 42917 | 91 | assume a: "\<And>x. B x" | 
| 92 | note a | |
| 93 | note a [of b] | |
| 94 | note a [where x = b] | |
| 95 | ||
| 58618 | 96 | txt \<open>Backchaining:\<close> | 
| 42917 | 97 | assume 1: A | 
| 98 | assume 2: "A \<Longrightarrow> C" | |
| 99 | note 2 [OF 1] | |
| 100 | note 1 [THEN 2] | |
| 101 | ||
| 58618 | 102 | txt \<open>Symmetric results:\<close> | 
| 42917 | 103 | assume "x = y" | 
| 104 | note this [symmetric] | |
| 105 | ||
| 106 | assume "x \<noteq> y" | |
| 107 | note this [symmetric] | |
| 108 | ||
| 58618 | 109 | txt \<open>Adhoc-simplification (take care!):\<close> | 
| 42917 | 110 | assume "P ([] @ xs)" | 
| 111 | note this [simplified] | |
| 112 | end | |
| 113 | ||
| 114 | ||
| 58618 | 115 | subsubsection \<open>Projections\<close> | 
| 42917 | 116 | |
| 58618 | 117 | text \<open> | 
| 42917 | 118 | Isar facts consist of multiple theorems. There is notation to project | 
| 119 | interval ranges. | |
| 58618 | 120 | \<close> | 
| 42917 | 121 | |
| 122 | notepad | |
| 123 | begin | |
| 124 | assume stuff: A B C D | |
| 125 | note stuff(1) | |
| 126 | note stuff(2-3) | |
| 127 | note stuff(2-) | |
| 128 | end | |
| 129 | ||
| 130 | ||
| 58618 | 131 | subsubsection \<open>Naming conventions\<close> | 
| 42917 | 132 | |
| 58618 | 133 | text \<open> | 
| 61421 | 134 | \<^item> Lower-case identifiers are usually preferred. | 
| 42917 | 135 | |
| 61421 | 136 | \<^item> Facts can be named after the main term within the proposition. | 
| 42917 | 137 | |
| 61477 | 138 | \<^item> Facts should \<^emph>\<open>not\<close> be named after the command that | 
| 42917 | 139 |   introduced them (@{command "assume"}, @{command "have"}).  This is
 | 
| 140 | misleading and hard to maintain. | |
| 141 | ||
| 61421 | 142 | \<^item> Natural numbers can be used as ``meaningless'' names (more | 
| 61493 | 143 | appropriate than \<open>a1\<close>, \<open>a2\<close> etc.) | 
| 42917 | 144 | |
| 61493 | 145 | \<^item> Symbolic identifiers are supported (e.g. \<open>*\<close>, \<open>**\<close>, \<open>***\<close>). | 
| 58618 | 146 | \<close> | 
| 42917 | 147 | |
| 148 | ||
| 58618 | 149 | subsection \<open>Block structure\<close> | 
| 42917 | 150 | |
| 58618 | 151 | text \<open> | 
| 42917 | 152 | The formal notepad is block structured. The fact produced by the last | 
| 153 | entry of a block is exported into the outer context. | |
| 58618 | 154 | \<close> | 
| 42917 | 155 | |
| 156 | notepad | |
| 157 | begin | |
| 158 |   {
 | |
| 62271 | 159 | have a: A \<proof> | 
| 160 | have b: B \<proof> | |
| 42917 | 161 | note a b | 
| 162 | } | |
| 163 | note this | |
| 58618 | 164 | note \<open>A\<close> | 
| 165 | note \<open>B\<close> | |
| 42917 | 166 | end | 
| 167 | ||
| 58618 | 168 | text \<open>Explicit blocks as well as implicit blocks of nested goal | 
| 42917 | 169 |   statements (e.g.\ @{command have}) automatically introduce one extra
 | 
| 170 |   pair of parentheses in reserve.  The @{command next} command allows
 | |
| 58618 | 171 | to ``jump'' between these sub-blocks.\<close> | 
| 42917 | 172 | |
| 173 | notepad | |
| 174 | begin | |
| 175 | ||
| 176 |   {
 | |
| 62271 | 177 | have a: A \<proof> | 
| 42917 | 178 | next | 
| 179 | have b: B | |
| 180 | proof - | |
| 62271 | 181 | show B \<proof> | 
| 42917 | 182 | next | 
| 62271 | 183 | have c: C \<proof> | 
| 42917 | 184 | next | 
| 62271 | 185 | have d: D \<proof> | 
| 42917 | 186 | qed | 
| 187 | } | |
| 188 | ||
| 58618 | 189 | txt \<open>Alternative version with explicit parentheses everywhere:\<close> | 
| 42917 | 190 | |
| 191 |   {
 | |
| 192 |     {
 | |
| 62271 | 193 | have a: A \<proof> | 
| 42917 | 194 | } | 
| 195 |     {
 | |
| 196 | have b: B | |
| 197 | proof - | |
| 198 |         {
 | |
| 62271 | 199 | show B \<proof> | 
| 42917 | 200 | } | 
| 201 |         {
 | |
| 62271 | 202 | have c: C \<proof> | 
| 42917 | 203 | } | 
| 204 |         {
 | |
| 62271 | 205 | have d: D \<proof> | 
| 42917 | 206 | } | 
| 207 | qed | |
| 208 | } | |
| 209 | } | |
| 210 | ||
| 211 | end | |
| 212 | ||
| 42919 | 213 | |
| 58618 | 214 | section \<open>Calculational reasoning \label{sec:calculations-synopsis}\<close>
 | 
| 42919 | 215 | |
| 58618 | 216 | text \<open> | 
| 63680 | 217 | For example, see \<^file>\<open>~~/src/HOL/Isar_Examples/Group.thy\<close>. | 
| 58618 | 218 | \<close> | 
| 42919 | 219 | |
| 220 | ||
| 58618 | 221 | subsection \<open>Special names in Isar proofs\<close> | 
| 42919 | 222 | |
| 58618 | 223 | text \<open> | 
| 61493 | 224 | \<^item> term \<open>?thesis\<close> --- the main conclusion of the | 
| 42919 | 225 | innermost pending claim | 
| 226 | ||
| 61493 | 227 | \<^item> term \<open>\<dots>\<close> --- the argument of the last explicitly | 
| 61421 | 228 | stated result (for infix application this is the right-hand side) | 
| 42919 | 229 | |
| 61493 | 230 | \<^item> fact \<open>this\<close> --- the last result produced in the text | 
| 58618 | 231 | \<close> | 
| 42919 | 232 | |
| 233 | notepad | |
| 234 | begin | |
| 235 | have "x = y" | |
| 236 | proof - | |
| 237 | term ?thesis | |
| 62271 | 238 | show ?thesis \<proof> | 
| 61580 | 239 | term ?thesis \<comment> \<open>static!\<close> | 
| 42919 | 240 | qed | 
| 241 | term "\<dots>" | |
| 242 | thm this | |
| 243 | end | |
| 244 | ||
| 58618 | 245 | text \<open>Calculational reasoning maintains the special fact called | 
| 61493 | 246 | ``\<open>calculation\<close>'' in the background. Certain language | 
| 247 | elements combine primary \<open>this\<close> with secondary \<open>calculation\<close>.\<close> | |
| 42919 | 248 | |
| 249 | ||
| 58618 | 250 | subsection \<open>Transitive chains\<close> | 
| 42919 | 251 | |
| 61493 | 252 | text \<open>The Idea is to combine \<open>this\<close> and \<open>calculation\<close> | 
| 253 |   via typical \<open>trans\<close> rules (see also @{command
 | |
| 58618 | 254 | print_trans_rules}):\<close> | 
| 42919 | 255 | |
| 256 | thm trans | |
| 257 | thm less_trans | |
| 258 | thm less_le_trans | |
| 259 | ||
| 260 | notepad | |
| 261 | begin | |
| 58618 | 262 | txt \<open>Plain bottom-up calculation:\<close> | 
| 62271 | 263 | have "a = b" \<proof> | 
| 42919 | 264 | also | 
| 62271 | 265 | have "b = c" \<proof> | 
| 42919 | 266 | also | 
| 62271 | 267 | have "c = d" \<proof> | 
| 42919 | 268 | finally | 
| 269 | have "a = d" . | |
| 270 | ||
| 61493 | 271 | txt \<open>Variant using the \<open>\<dots>\<close> abbreviation:\<close> | 
| 62271 | 272 | have "a = b" \<proof> | 
| 42919 | 273 | also | 
| 62271 | 274 | have "\<dots> = c" \<proof> | 
| 42919 | 275 | also | 
| 62271 | 276 | have "\<dots> = d" \<proof> | 
| 42919 | 277 | finally | 
| 278 | have "a = d" . | |
| 279 | ||
| 58618 | 280 | txt \<open>Top-down version with explicit claim at the head:\<close> | 
| 42919 | 281 | have "a = d" | 
| 282 | proof - | |
| 62271 | 283 | have "a = b" \<proof> | 
| 42919 | 284 | also | 
| 62271 | 285 | have "\<dots> = c" \<proof> | 
| 42919 | 286 | also | 
| 62271 | 287 | have "\<dots> = d" \<proof> | 
| 42919 | 288 | finally | 
| 289 | show ?thesis . | |
| 290 | qed | |
| 291 | next | |
| 58618 | 292 | txt \<open>Mixed inequalities (require suitable base type):\<close> | 
| 42919 | 293 | fix a b c d :: nat | 
| 294 | ||
| 62271 | 295 | have "a < b" \<proof> | 
| 42919 | 296 | also | 
| 62271 | 297 | have "b \<le> c" \<proof> | 
| 42919 | 298 | also | 
| 62271 | 299 | have "c = d" \<proof> | 
| 42919 | 300 | finally | 
| 301 | have "a < d" . | |
| 302 | end | |
| 303 | ||
| 304 | ||
| 58618 | 305 | subsubsection \<open>Notes\<close> | 
| 42919 | 306 | |
| 58618 | 307 | text \<open> | 
| 61493 | 308 | \<^item> The notion of \<open>trans\<close> rule is very general due to the | 
| 42919 | 309 | flexibility of Isabelle/Pure rule composition. | 
| 310 | ||
| 61421 | 311 | \<^item> User applications may declare their own rules, with some care | 
| 42919 | 312 | about the operational details of higher-order unification. | 
| 58618 | 313 | \<close> | 
| 42919 | 314 | |
| 315 | ||
| 62273 | 316 | subsection \<open>Degenerate calculations\<close> | 
| 42919 | 317 | |
| 62273 | 318 | text \<open>The Idea is to append \<open>this\<close> to \<open>calculation\<close>, without rule composition. | 
| 319 | This is occasionally useful to avoid naming intermediate facts.\<close> | |
| 42919 | 320 | |
| 321 | notepad | |
| 322 | begin | |
| 58618 | 323 | txt \<open>A vacuous proof:\<close> | 
| 62271 | 324 | have A \<proof> | 
| 42919 | 325 | moreover | 
| 62271 | 326 | have B \<proof> | 
| 42919 | 327 | moreover | 
| 62271 | 328 | have C \<proof> | 
| 42919 | 329 | ultimately | 
| 330 | have A and B and C . | |
| 331 | next | |
| 58618 | 332 | txt \<open>Slightly more content (trivial bigstep reasoning):\<close> | 
| 62271 | 333 | have A \<proof> | 
| 42919 | 334 | moreover | 
| 62271 | 335 | have B \<proof> | 
| 42919 | 336 | moreover | 
| 62271 | 337 | have C \<proof> | 
| 42919 | 338 | ultimately | 
| 339 | have "A \<and> B \<and> C" by blast | |
| 340 | end | |
| 341 | ||
| 62273 | 342 | text \<open>Note that For multi-branch case splitting, it is better to use @{command
 | 
| 343 | consider}.\<close> | |
| 344 | ||
| 42920 | 345 | |
| 58618 | 346 | section \<open>Induction\<close> | 
| 42921 | 347 | |
| 58618 | 348 | subsection \<open>Induction as Natural Deduction\<close> | 
| 42921 | 349 | |
| 58618 | 350 | text \<open>In principle, induction is just a special case of Natural | 
| 42921 | 351 |   Deduction (see also \secref{sec:natural-deduction-synopsis}).  For
 | 
| 58618 | 352 | example:\<close> | 
| 42921 | 353 | |
| 354 | thm nat.induct | |
| 355 | print_statement nat.induct | |
| 356 | ||
| 357 | notepad | |
| 358 | begin | |
| 359 | fix n :: nat | |
| 360 | have "P n" | |
| 61580 | 361 | proof (rule nat.induct) \<comment> \<open>fragile rule application!\<close> | 
| 62271 | 362 | show "P 0" \<proof> | 
| 42921 | 363 | next | 
| 364 | fix n :: nat | |
| 365 | assume "P n" | |
| 62271 | 366 | show "P (Suc n)" \<proof> | 
| 42921 | 367 | qed | 
| 368 | end | |
| 369 | ||
| 58618 | 370 | text \<open> | 
| 42921 | 371 | In practice, much more proof infrastructure is required. | 
| 372 | ||
| 373 |   The proof method @{method induct} provides:
 | |
| 374 | ||
| 61421 | 375 | \<^item> implicit rule selection and robust instantiation | 
| 42921 | 376 | |
| 61421 | 377 | \<^item> context elements via symbolic case names | 
| 42921 | 378 | |
| 61421 | 379 | \<^item> support for rule-structured induction statements, with local | 
| 380 | parameters, premises, etc. | |
| 58618 | 381 | \<close> | 
| 42921 | 382 | |
| 383 | notepad | |
| 384 | begin | |
| 385 | fix n :: nat | |
| 386 | have "P n" | |
| 387 | proof (induct n) | |
| 388 | case 0 | |
| 62271 | 389 | show ?case \<proof> | 
| 42921 | 390 | next | 
| 391 | case (Suc n) | |
| 62271 | 392 | from Suc.hyps show ?case \<proof> | 
| 42921 | 393 | qed | 
| 394 | end | |
| 395 | ||
| 396 | ||
| 58618 | 397 | subsubsection \<open>Example\<close> | 
| 42921 | 398 | |
| 58618 | 399 | text \<open> | 
| 42921 | 400 | The subsequent example combines the following proof patterns: | 
| 401 | ||
| 61421 | 402 | \<^item> outermost induction (over the datatype structure of natural | 
| 42921 | 403 | numbers), to decompose the proof problem in top-down manner | 
| 404 | ||
| 61421 | 405 |   \<^item> calculational reasoning (\secref{sec:calculations-synopsis})
 | 
| 42921 | 406 | to compose the result in each case | 
| 407 | ||
| 61421 | 408 | \<^item> solving local claims within the calculation by simplification | 
| 58618 | 409 | \<close> | 
| 42921 | 410 | |
| 411 | lemma | |
| 412 | fixes n :: nat | |
| 413 | shows "(\<Sum>i=0..n. i) = n * (n + 1) div 2" | |
| 414 | proof (induct n) | |
| 415 | case 0 | |
| 416 | have "(\<Sum>i=0..0. i) = (0::nat)" by simp | |
| 417 | also have "\<dots> = 0 * (0 + 1) div 2" by simp | |
| 418 | finally show ?case . | |
| 419 | next | |
| 420 | case (Suc n) | |
| 421 | have "(\<Sum>i=0..Suc n. i) = (\<Sum>i=0..n. i) + (n + 1)" by simp | |
| 422 | also have "\<dots> = n * (n + 1) div 2 + (n + 1)" by (simp add: Suc.hyps) | |
| 423 | also have "\<dots> = (n * (n + 1) + 2 * (n + 1)) div 2" by simp | |
| 424 | also have "\<dots> = (Suc n * (Suc n + 1)) div 2" by simp | |
| 425 | finally show ?case . | |
| 426 | qed | |
| 427 | ||
| 58618 | 428 | text \<open>This demonstrates how induction proofs can be done without | 
| 429 | having to consider the raw Natural Deduction structure.\<close> | |
| 42921 | 430 | |
| 431 | ||
| 58618 | 432 | subsection \<open>Induction with local parameters and premises\<close> | 
| 42921 | 433 | |
| 58618 | 434 | text \<open>Idea: Pure rule statements are passed through the induction | 
| 42921 | 435 | rule. This achieves convenient proof patterns, thanks to some | 
| 436 |   internal trickery in the @{method induct} method.
 | |
| 437 | ||
| 61493 | 438 | Important: Using compact HOL formulae with \<open>\<forall>/\<longrightarrow>\<close> is a | 
| 42921 | 439 | well-known anti-pattern! It would produce useless formal noise. | 
| 58618 | 440 | \<close> | 
| 42921 | 441 | |
| 442 | notepad | |
| 443 | begin | |
| 444 | fix n :: nat | |
| 445 | fix P :: "nat \<Rightarrow> bool" | |
| 446 | fix Q :: "'a \<Rightarrow> nat \<Rightarrow> bool" | |
| 447 | ||
| 448 | have "P n" | |
| 449 | proof (induct n) | |
| 450 | case 0 | |
| 62271 | 451 | show "P 0" \<proof> | 
| 42921 | 452 | next | 
| 453 | case (Suc n) | |
| 62271 | 454 | from \<open>P n\<close> show "P (Suc n)" \<proof> | 
| 42921 | 455 | qed | 
| 456 | ||
| 457 | have "A n \<Longrightarrow> P n" | |
| 458 | proof (induct n) | |
| 459 | case 0 | |
| 62271 | 460 | from \<open>A 0\<close> show "P 0" \<proof> | 
| 42921 | 461 | next | 
| 462 | case (Suc n) | |
| 58618 | 463 | from \<open>A n \<Longrightarrow> P n\<close> | 
| 62271 | 464 | and \<open>A (Suc n)\<close> show "P (Suc n)" \<proof> | 
| 42921 | 465 | qed | 
| 466 | ||
| 467 | have "\<And>x. Q x n" | |
| 468 | proof (induct n) | |
| 469 | case 0 | |
| 62271 | 470 | show "Q x 0" \<proof> | 
| 42921 | 471 | next | 
| 472 | case (Suc n) | |
| 62271 | 473 | from \<open>\<And>x. Q x n\<close> show "Q x (Suc n)" \<proof> | 
| 58618 | 474 | txt \<open>Local quantification admits arbitrary instances:\<close> | 
| 475 | note \<open>Q a n\<close> and \<open>Q b n\<close> | |
| 42921 | 476 | qed | 
| 477 | end | |
| 478 | ||
| 479 | ||
| 58618 | 480 | subsection \<open>Implicit induction context\<close> | 
| 42921 | 481 | |
| 58618 | 482 | text \<open>The @{method induct} method can isolate local parameters and
 | 
| 42921 | 483 | premises directly from the given statement. This is convenient in | 
| 484 | practical applications, but requires some understanding of what is | |
| 58618 | 485 | going on internally (as explained above).\<close> | 
| 42921 | 486 | |
| 487 | notepad | |
| 488 | begin | |
| 489 | fix n :: nat | |
| 490 | fix Q :: "'a \<Rightarrow> nat \<Rightarrow> bool" | |
| 491 | ||
| 492 | fix x :: 'a | |
| 493 | assume "A x n" | |
| 494 | then have "Q x n" | |
| 495 | proof (induct n arbitrary: x) | |
| 496 | case 0 | |
| 62271 | 497 | from \<open>A x 0\<close> show "Q x 0" \<proof> | 
| 42921 | 498 | next | 
| 499 | case (Suc n) | |
| 61580 | 500 | from \<open>\<And>x. A x n \<Longrightarrow> Q x n\<close> \<comment> \<open>arbitrary instances can be produced here\<close> | 
| 62271 | 501 | and \<open>A x (Suc n)\<close> show "Q x (Suc n)" \<proof> | 
| 42921 | 502 | qed | 
| 503 | end | |
| 504 | ||
| 505 | ||
| 58618 | 506 | subsection \<open>Advanced induction with term definitions\<close> | 
| 42921 | 507 | |
| 58618 | 508 | text \<open>Induction over subexpressions of a certain shape are delicate | 
| 42921 | 509 |   to formalize.  The Isar @{method induct} method provides
 | 
| 510 | infrastructure for this. | |
| 511 | ||
| 512 | Idea: sub-expressions of the problem are turned into a defined | |
| 513 | induction variable; often accompanied with fixing of auxiliary | |
| 58618 | 514 | parameters in the original expression.\<close> | 
| 42921 | 515 | |
| 516 | notepad | |
| 517 | begin | |
| 518 | fix a :: "'a \<Rightarrow> nat" | |
| 519 | fix A :: "nat \<Rightarrow> bool" | |
| 520 | ||
| 521 | assume "A (a x)" | |
| 522 | then have "P (a x)" | |
| 523 | proof (induct "a x" arbitrary: x) | |
| 524 | case 0 | |
| 58618 | 525 | note prem = \<open>A (a x)\<close> | 
| 526 | and defn = \<open>0 = a x\<close> | |
| 62271 | 527 | show "P (a x)" \<proof> | 
| 42921 | 528 | next | 
| 529 | case (Suc n) | |
| 58618 | 530 | note hyp = \<open>\<And>x. n = a x \<Longrightarrow> A (a x) \<Longrightarrow> P (a x)\<close> | 
| 531 | and prem = \<open>A (a x)\<close> | |
| 532 | and defn = \<open>Suc n = a x\<close> | |
| 62271 | 533 | show "P (a x)" \<proof> | 
| 42921 | 534 | qed | 
| 535 | end | |
| 536 | ||
| 537 | ||
| 58618 | 538 | section \<open>Natural Deduction \label{sec:natural-deduction-synopsis}\<close>
 | 
| 42920 | 539 | |
| 58618 | 540 | subsection \<open>Rule statements\<close> | 
| 42920 | 541 | |
| 58618 | 542 | text \<open> | 
| 42920 | 543 | Isabelle/Pure ``theorems'' are always natural deduction rules, | 
| 544 | which sometimes happen to consist of a conclusion only. | |
| 545 | ||
| 61493 | 546 | The framework connectives \<open>\<And>\<close> and \<open>\<Longrightarrow>\<close> indicate the | 
| 58618 | 547 | rule structure declaratively. For example:\<close> | 
| 42920 | 548 | |
| 549 | thm conjI | |
| 550 | thm impI | |
| 551 | thm nat.induct | |
| 552 | ||
| 58618 | 553 | text \<open> | 
| 42920 | 554 | The object-logic is embedded into the Pure framework via an implicit | 
| 555 |   derivability judgment @{term "Trueprop :: bool \<Rightarrow> prop"}.
 | |
| 556 | ||
| 557 | Thus any HOL formulae appears atomic to the Pure framework, while | |
| 558 | the rule structure outlines the corresponding proof pattern. | |
| 559 | ||
| 560 | This can be made explicit as follows: | |
| 58618 | 561 | \<close> | 
| 42920 | 562 | |
| 563 | notepad | |
| 564 | begin | |
| 565 |   write Trueprop  ("Tr")
 | |
| 566 | ||
| 567 | thm conjI | |
| 568 | thm impI | |
| 569 | thm nat.induct | |
| 570 | end | |
| 571 | ||
| 58618 | 572 | text \<open> | 
| 42920 | 573 | Isar provides first-class notation for rule statements as follows. | 
| 58618 | 574 | \<close> | 
| 42920 | 575 | |
| 576 | print_statement conjI | |
| 577 | print_statement impI | |
| 578 | print_statement nat.induct | |
| 579 | ||
| 580 | ||
| 58618 | 581 | subsubsection \<open>Examples\<close> | 
| 42920 | 582 | |
| 58618 | 583 | text \<open> | 
| 42920 | 584 | Introductions and eliminations of some standard connectives of | 
| 585 | the object-logic can be written as rule statements as follows. (The | |
| 586 |   proof ``@{command "by"}~@{method blast}'' serves as sanity check.)
 | |
| 58618 | 587 | \<close> | 
| 42920 | 588 | |
| 589 | lemma "(P \<Longrightarrow> False) \<Longrightarrow> \<not> P" by blast | |
| 590 | lemma "\<not> P \<Longrightarrow> P \<Longrightarrow> Q" by blast | |
| 591 | ||
| 592 | lemma "P \<Longrightarrow> Q \<Longrightarrow> P \<and> Q" by blast | |
| 593 | lemma "P \<and> Q \<Longrightarrow> (P \<Longrightarrow> Q \<Longrightarrow> R) \<Longrightarrow> R" by blast | |
| 594 | ||
| 595 | lemma "P \<Longrightarrow> P \<or> Q" by blast | |
| 596 | lemma "Q \<Longrightarrow> P \<or> Q" by blast | |
| 597 | lemma "P \<or> Q \<Longrightarrow> (P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" by blast | |
| 598 | ||
| 599 | lemma "(\<And>x. P x) \<Longrightarrow> (\<forall>x. P x)" by blast | |
| 600 | lemma "(\<forall>x. P x) \<Longrightarrow> P x" by blast | |
| 601 | ||
| 602 | lemma "P x \<Longrightarrow> (\<exists>x. P x)" by blast | |
| 603 | lemma "(\<exists>x. P x) \<Longrightarrow> (\<And>x. P x \<Longrightarrow> R) \<Longrightarrow> R" by blast | |
| 604 | ||
| 605 | lemma "x \<in> A \<Longrightarrow> x \<in> B \<Longrightarrow> x \<in> A \<inter> B" by blast | |
| 606 | lemma "x \<in> A \<inter> B \<Longrightarrow> (x \<in> A \<Longrightarrow> x \<in> B \<Longrightarrow> R) \<Longrightarrow> R" by blast | |
| 607 | ||
| 608 | lemma "x \<in> A \<Longrightarrow> x \<in> A \<union> B" by blast | |
| 609 | lemma "x \<in> B \<Longrightarrow> x \<in> A \<union> B" by blast | |
| 610 | lemma "x \<in> A \<union> B \<Longrightarrow> (x \<in> A \<Longrightarrow> R) \<Longrightarrow> (x \<in> B \<Longrightarrow> R) \<Longrightarrow> R" by blast | |
| 611 | ||
| 612 | ||
| 58618 | 613 | subsection \<open>Isar context elements\<close> | 
| 42920 | 614 | |
| 58618 | 615 | text \<open>We derive some results out of the blue, using Isar context | 
| 42920 | 616 | elements and some explicit blocks. This illustrates their meaning | 
| 58618 | 617 | wrt.\ Pure connectives, without goal states getting in the way.\<close> | 
| 42920 | 618 | |
| 619 | notepad | |
| 620 | begin | |
| 621 |   {
 | |
| 622 | fix x | |
| 62271 | 623 | have "B x" \<proof> | 
| 42920 | 624 | } | 
| 625 | have "\<And>x. B x" by fact | |
| 626 | ||
| 627 | next | |
| 628 | ||
| 629 |   {
 | |
| 630 | assume A | |
| 62271 | 631 | have B \<proof> | 
| 42920 | 632 | } | 
| 633 | have "A \<Longrightarrow> B" by fact | |
| 634 | ||
| 635 | next | |
| 636 | ||
| 637 |   {
 | |
| 63039 | 638 | define x where "x = t" | 
| 62271 | 639 | have "B x" \<proof> | 
| 42920 | 640 | } | 
| 641 | have "B t" by fact | |
| 642 | ||
| 643 | next | |
| 644 | ||
| 645 |   {
 | |
| 62271 | 646 | obtain x :: 'a where "B x" \<proof> | 
| 647 | have C \<proof> | |
| 42920 | 648 | } | 
| 649 | have C by fact | |
| 650 | ||
| 651 | end | |
| 652 | ||
| 653 | ||
| 58618 | 654 | subsection \<open>Pure rule composition\<close> | 
| 42920 | 655 | |
| 58618 | 656 | text \<open> | 
| 42920 | 657 | The Pure framework provides means for: | 
| 658 | ||
| 61421 | 659 |   \<^item> backward-chaining of rules by @{inference resolution}
 | 
| 42920 | 660 | |
| 61421 | 661 |   \<^item> closing of branches by @{inference assumption}
 | 
| 42920 | 662 | |
| 663 | ||
| 61493 | 664 | Both principles involve higher-order unification of \<open>\<lambda>\<close>-terms | 
| 665 | modulo \<open>\<alpha>\<beta>\<eta>\<close>-equivalence (cf.\ Huet and Miller). | |
| 61458 | 666 | \<close> | 
| 42920 | 667 | |
| 668 | notepad | |
| 669 | begin | |
| 670 | assume a: A and b: B | |
| 671 | thm conjI | |
| 61580 | 672 | thm conjI [of A B] \<comment> "instantiation" | 
| 673 | thm conjI [of A B, OF a b] \<comment> "instantiation and composition" | |
| 674 | thm conjI [OF a b] \<comment> "composition via unification (trivial)" | |
| 58618 | 675 | thm conjI [OF \<open>A\<close> \<open>B\<close>] | 
| 42920 | 676 | |
| 677 | thm conjI [OF disjI1] | |
| 678 | end | |
| 679 | ||
| 58618 | 680 | text \<open>Note: Low-level rule composition is tedious and leads to | 
| 681 | unreadable~/ unmaintainable expressions in the text.\<close> | |
| 42920 | 682 | |
| 683 | ||
| 58618 | 684 | subsection \<open>Structured backward reasoning\<close> | 
| 42920 | 685 | |
| 58618 | 686 | text \<open>Idea: Canonical proof decomposition via @{command fix}~/
 | 
| 42920 | 687 |   @{command assume}~/ @{command show}, where the body produces a
 | 
| 58618 | 688 | natural deduction rule to refine some goal.\<close> | 
| 42920 | 689 | |
| 690 | notepad | |
| 691 | begin | |
| 692 | fix A B :: "'a \<Rightarrow> bool" | |
| 693 | ||
| 694 | have "\<And>x. A x \<Longrightarrow> B x" | |
| 695 | proof - | |
| 696 | fix x | |
| 697 | assume "A x" | |
| 62271 | 698 | show "B x" \<proof> | 
| 42920 | 699 | qed | 
| 700 | ||
| 701 | have "\<And>x. A x \<Longrightarrow> B x" | |
| 702 | proof - | |
| 703 |     {
 | |
| 704 | fix x | |
| 705 | assume "A x" | |
| 62271 | 706 | show "B x" \<proof> | 
| 61580 | 707 | } \<comment> "implicit block structure made explicit" | 
| 58618 | 708 | note \<open>\<And>x. A x \<Longrightarrow> B x\<close> | 
| 61580 | 709 | \<comment> "side exit for the resulting rule" | 
| 42920 | 710 | qed | 
| 711 | end | |
| 712 | ||
| 713 | ||
| 58618 | 714 | subsection \<open>Structured rule application\<close> | 
| 42920 | 715 | |
| 58618 | 716 | text \<open> | 
| 42920 | 717 | Idea: Previous facts and new claims are composed with a rule from | 
| 718 | the context (or background library). | |
| 58618 | 719 | \<close> | 
| 42920 | 720 | |
| 721 | notepad | |
| 722 | begin | |
| 62272 | 723 | assume r\<^sub>1: "A \<Longrightarrow> B \<Longrightarrow> C" \<comment> \<open>simple rule (Horn clause)\<close> | 
| 42920 | 724 | |
| 62271 | 725 | have A \<proof> \<comment> "prefix of facts via outer sub-proof" | 
| 42920 | 726 | then have C | 
| 62272 | 727 | proof (rule r\<^sub>1) | 
| 62271 | 728 | show B \<proof> \<comment> "remaining rule premises via inner sub-proof" | 
| 42920 | 729 | qed | 
| 730 | ||
| 731 | have C | |
| 62272 | 732 | proof (rule r\<^sub>1) | 
| 62271 | 733 | show A \<proof> | 
| 734 | show B \<proof> | |
| 42920 | 735 | qed | 
| 736 | ||
| 62271 | 737 | have A and B \<proof> | 
| 42920 | 738 | then have C | 
| 62272 | 739 | proof (rule r\<^sub>1) | 
| 42920 | 740 | qed | 
| 741 | ||
| 62271 | 742 | have A and B \<proof> | 
| 62272 | 743 | then have C by (rule r\<^sub>1) | 
| 42920 | 744 | |
| 745 | next | |
| 746 | ||
| 62272 | 747 | assume r\<^sub>2: "A \<Longrightarrow> (\<And>x. B\<^sub>1 x \<Longrightarrow> B\<^sub>2 x) \<Longrightarrow> C" \<comment> \<open>nested rule\<close> | 
| 42920 | 748 | |
| 62271 | 749 | have A \<proof> | 
| 42920 | 750 | then have C | 
| 62272 | 751 | proof (rule r\<^sub>2) | 
| 42920 | 752 | fix x | 
| 62272 | 753 | assume "B\<^sub>1 x" | 
| 754 | show "B\<^sub>2 x" \<proof> | |
| 42920 | 755 | qed | 
| 756 | ||
| 62272 | 757 |   txt \<open>The compound rule premise @{prop "\<And>x. B\<^sub>1 x \<Longrightarrow> B\<^sub>2 x"} is better
 | 
| 42920 | 758 |     addressed via @{command fix}~/ @{command assume}~/ @{command show}
 | 
| 58618 | 759 | in the nested proof body.\<close> | 
| 42920 | 760 | end | 
| 761 | ||
| 762 | ||
| 58618 | 763 | subsection \<open>Example: predicate logic\<close> | 
| 42920 | 764 | |
| 58618 | 765 | text \<open> | 
| 42920 | 766 | Using the above principles, standard introduction and elimination proofs | 
| 767 | of predicate logic connectives of HOL work as follows. | |
| 58618 | 768 | \<close> | 
| 42920 | 769 | |
| 770 | notepad | |
| 771 | begin | |
| 62271 | 772 | have "A \<longrightarrow> B" and A \<proof> | 
| 42920 | 773 | then have B .. | 
| 774 | ||
| 62271 | 775 | have A \<proof> | 
| 42920 | 776 | then have "A \<or> B" .. | 
| 777 | ||
| 62271 | 778 | have B \<proof> | 
| 42920 | 779 | then have "A \<or> B" .. | 
| 780 | ||
| 62271 | 781 | have "A \<or> B" \<proof> | 
| 42920 | 782 | then have C | 
| 783 | proof | |
| 784 | assume A | |
| 62271 | 785 | then show C \<proof> | 
| 42920 | 786 | next | 
| 787 | assume B | |
| 62271 | 788 | then show C \<proof> | 
| 42920 | 789 | qed | 
| 790 | ||
| 62271 | 791 | have A and B \<proof> | 
| 42920 | 792 | then have "A \<and> B" .. | 
| 793 | ||
| 62271 | 794 | have "A \<and> B" \<proof> | 
| 42920 | 795 | then have A .. | 
| 796 | ||
| 62271 | 797 | have "A \<and> B" \<proof> | 
| 42920 | 798 | then have B .. | 
| 799 | ||
| 62271 | 800 | have False \<proof> | 
| 42920 | 801 | then have A .. | 
| 802 | ||
| 803 | have True .. | |
| 804 | ||
| 805 | have "\<not> A" | |
| 806 | proof | |
| 807 | assume A | |
| 62271 | 808 | then show False \<proof> | 
| 42920 | 809 | qed | 
| 810 | ||
| 62271 | 811 | have "\<not> A" and A \<proof> | 
| 42920 | 812 | then have B .. | 
| 813 | ||
| 814 | have "\<forall>x. P x" | |
| 815 | proof | |
| 816 | fix x | |
| 62271 | 817 | show "P x" \<proof> | 
| 42920 | 818 | qed | 
| 819 | ||
| 62271 | 820 | have "\<forall>x. P x" \<proof> | 
| 42920 | 821 | then have "P a" .. | 
| 822 | ||
| 823 | have "\<exists>x. P x" | |
| 824 | proof | |
| 62271 | 825 | show "P a" \<proof> | 
| 42920 | 826 | qed | 
| 827 | ||
| 62271 | 828 | have "\<exists>x. P x" \<proof> | 
| 42920 | 829 | then have C | 
| 830 | proof | |
| 831 | fix a | |
| 832 | assume "P a" | |
| 62271 | 833 | show C \<proof> | 
| 42920 | 834 | qed | 
| 835 | ||
| 58618 | 836 |   txt \<open>Less awkward version using @{command obtain}:\<close>
 | 
| 62271 | 837 | have "\<exists>x. P x" \<proof> | 
| 42920 | 838 | then obtain a where "P a" .. | 
| 839 | end | |
| 840 | ||
| 58618 | 841 | text \<open>Further variations to illustrate Isar sub-proofs involving | 
| 842 |   @{command show}:\<close>
 | |
| 42920 | 843 | |
| 844 | notepad | |
| 845 | begin | |
| 846 | have "A \<and> B" | |
| 61580 | 847 | proof \<comment> \<open>two strictly isolated subproofs\<close> | 
| 62271 | 848 | show A \<proof> | 
| 42920 | 849 | next | 
| 62271 | 850 | show B \<proof> | 
| 42920 | 851 | qed | 
| 852 | ||
| 853 | have "A \<and> B" | |
| 61580 | 854 | proof \<comment> \<open>one simultaneous sub-proof\<close> | 
| 62271 | 855 | show A and B \<proof> | 
| 42920 | 856 | qed | 
| 857 | ||
| 858 | have "A \<and> B" | |
| 61580 | 859 | proof \<comment> \<open>two subproofs in the same context\<close> | 
| 62271 | 860 | show A \<proof> | 
| 861 | show B \<proof> | |
| 42920 | 862 | qed | 
| 863 | ||
| 864 | have "A \<and> B" | |
| 61580 | 865 | proof \<comment> \<open>swapped order\<close> | 
| 62271 | 866 | show B \<proof> | 
| 867 | show A \<proof> | |
| 42920 | 868 | qed | 
| 869 | ||
| 870 | have "A \<and> B" | |
| 61580 | 871 | proof \<comment> \<open>sequential subproofs\<close> | 
| 62271 | 872 | show A \<proof> | 
| 873 | show B using \<open>A\<close> \<proof> | |
| 42920 | 874 | qed | 
| 875 | end | |
| 876 | ||
| 877 | ||
| 58618 | 878 | subsubsection \<open>Example: set-theoretic operators\<close> | 
| 42920 | 879 | |
| 61493 | 880 | text \<open>There is nothing special about logical connectives (\<open>\<and>\<close>, \<open>\<or>\<close>, \<open>\<forall>\<close>, \<open>\<exists>\<close> etc.). Operators from | 
| 45103 | 881 | set-theory or lattice-theory work analogously. It is only a matter | 
| 42920 | 882 | of rule declarations in the library; rules can be also specified | 
| 883 | explicitly. | |
| 58618 | 884 | \<close> | 
| 42920 | 885 | |
| 886 | notepad | |
| 887 | begin | |
| 62271 | 888 | have "x \<in> A" and "x \<in> B" \<proof> | 
| 42920 | 889 | then have "x \<in> A \<inter> B" .. | 
| 890 | ||
| 62271 | 891 | have "x \<in> A" \<proof> | 
| 42920 | 892 | then have "x \<in> A \<union> B" .. | 
| 893 | ||
| 62271 | 894 | have "x \<in> B" \<proof> | 
| 42920 | 895 | then have "x \<in> A \<union> B" .. | 
| 896 | ||
| 62271 | 897 | have "x \<in> A \<union> B" \<proof> | 
| 42920 | 898 | then have C | 
| 899 | proof | |
| 900 | assume "x \<in> A" | |
| 62271 | 901 | then show C \<proof> | 
| 42920 | 902 | next | 
| 903 | assume "x \<in> B" | |
| 62271 | 904 | then show C \<proof> | 
| 42920 | 905 | qed | 
| 906 | ||
| 907 | next | |
| 908 | have "x \<in> \<Inter>A" | |
| 909 | proof | |
| 910 | fix a | |
| 911 | assume "a \<in> A" | |
| 62271 | 912 | show "x \<in> a" \<proof> | 
| 42920 | 913 | qed | 
| 914 | ||
| 62271 | 915 | have "x \<in> \<Inter>A" \<proof> | 
| 42920 | 916 | then have "x \<in> a" | 
| 917 | proof | |
| 62271 | 918 | show "a \<in> A" \<proof> | 
| 42920 | 919 | qed | 
| 920 | ||
| 62271 | 921 | have "a \<in> A" and "x \<in> a" \<proof> | 
| 42920 | 922 | then have "x \<in> \<Union>A" .. | 
| 923 | ||
| 62271 | 924 | have "x \<in> \<Union>A" \<proof> | 
| 42920 | 925 | then obtain a where "a \<in> A" and "x \<in> a" .. | 
| 926 | end | |
| 927 | ||
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 928 | |
| 58618 | 929 | section \<open>Generalized elimination and cases\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 930 | |
| 58618 | 931 | subsection \<open>General elimination rules\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 932 | |
| 58618 | 933 | text \<open> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 934 | The general format of elimination rules is illustrated by the | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 935 | following typical representatives: | 
| 58618 | 936 | \<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 937 | |
| 61580 | 938 | thm exE \<comment> \<open>local parameter\<close> | 
| 939 | thm conjE \<comment> \<open>local premises\<close> | |
| 940 | thm disjE \<comment> \<open>split into cases\<close> | |
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 941 | |
| 58618 | 942 | text \<open> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 943 | Combining these characteristics leads to the following general scheme | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 944 | for elimination rules with cases: | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 945 | |
| 61421 | 946 | \<^item> prefix of assumptions (or ``major premises'') | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 947 | |
| 61421 | 948 | \<^item> one or more cases that enable to establish the main conclusion | 
| 949 | in an augmented context | |
| 58618 | 950 | \<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 951 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 952 | notepad | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 953 | begin | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 954 | assume r: | 
| 62272 | 955 | "A\<^sub>1 \<Longrightarrow> A\<^sub>2 \<Longrightarrow> (* assumptions *) | 
| 956 | (\<And>x y. B\<^sub>1 x y \<Longrightarrow> C\<^sub>1 x y \<Longrightarrow> R) \<Longrightarrow> (* case 1 *) | |
| 957 | (\<And>x y. B\<^sub>2 x y \<Longrightarrow> C\<^sub>2 x y \<Longrightarrow> R) \<Longrightarrow> (* case 2 *) | |
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 958 | R (* main conclusion *)" | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 959 | |
| 62272 | 960 | have A\<^sub>1 and A\<^sub>2 \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 961 | then have R | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 962 | proof (rule r) | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 963 | fix x y | 
| 62272 | 964 | assume "B\<^sub>1 x y" and "C\<^sub>1 x y" | 
| 62271 | 965 | show ?thesis \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 966 | next | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 967 | fix x y | 
| 62272 | 968 | assume "B\<^sub>2 x y" and "C\<^sub>2 x y" | 
| 62271 | 969 | show ?thesis \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 970 | qed | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 971 | end | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 972 | |
| 61493 | 973 | text \<open>Here \<open>?thesis\<close> is used to refer to the unchanged goal | 
| 58618 | 974 | statement.\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 975 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 976 | |
| 58618 | 977 | subsection \<open>Rules with cases\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 978 | |
| 58618 | 979 | text \<open> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 980 | Applying an elimination rule to some goal, leaves that unchanged | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 981 | but allows to augment the context in the sub-proof of each case. | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 982 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 983 | Isar provides some infrastructure to support this: | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 984 | |
| 61421 | 985 | \<^item> native language elements to state eliminations | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 986 | |
| 61421 | 987 | \<^item> symbolic case names | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 988 | |
| 61421 | 989 |   \<^item> method @{method cases} to recover this structure in a
 | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 990 | sub-proof | 
| 58618 | 991 | \<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 992 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 993 | print_statement exE | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 994 | print_statement conjE | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 995 | print_statement disjE | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 996 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 997 | lemma | 
| 62272 | 998 | assumes A\<^sub>1 and A\<^sub>2 \<comment> \<open>assumptions\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 999 | obtains | 
| 62272 | 1000 | (case\<^sub>1) x y where "B\<^sub>1 x y" and "C\<^sub>1 x y" | 
| 1001 | | (case\<^sub>2) x y where "B\<^sub>2 x y" and "C\<^sub>2 x y" | |
| 62271 | 1002 | \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1003 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1004 | |
| 58618 | 1005 | subsubsection \<open>Example\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1006 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1007 | lemma tertium_non_datur: | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1008 | obtains | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1009 | (T) A | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1010 | | (F) "\<not> A" | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1011 | by blast | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1012 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1013 | notepad | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1014 | begin | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1015 | fix x y :: 'a | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1016 | have C | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1017 | proof (cases "x = y" rule: tertium_non_datur) | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1018 | case T | 
| 62271 | 1019 | from \<open>x = y\<close> show ?thesis \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1020 | next | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1021 | case F | 
| 62271 | 1022 | from \<open>x \<noteq> y\<close> show ?thesis \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1023 | qed | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1024 | end | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1025 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1026 | |
| 58618 | 1027 | subsubsection \<open>Example\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1028 | |
| 58618 | 1029 | text \<open> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1030 | Isabelle/HOL specification mechanisms (datatype, inductive, etc.) | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1031 | provide suitable derived cases rules. | 
| 58618 | 1032 | \<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1033 | |
| 58310 | 1034 | datatype foo = Foo | Bar foo | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1035 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1036 | notepad | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1037 | begin | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1038 | fix x :: foo | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1039 | have C | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1040 | proof (cases x) | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1041 | case Foo | 
| 62271 | 1042 | from \<open>x = Foo\<close> show ?thesis \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1043 | next | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1044 | case (Bar a) | 
| 62271 | 1045 | from \<open>x = Bar a\<close> show ?thesis \<proof> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1046 | qed | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1047 | end | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1048 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1049 | |
| 62273 | 1050 | subsection \<open>Elimination statements and case-splitting\<close> | 
| 1051 | ||
| 1052 | text \<open> | |
| 1053 |   The @{command consider} states rules for generalized elimination and case
 | |
| 1054 | splitting. This is like a toplevel statement \<^theory_text>\<open>theorem obtains\<close> used within | |
| 1055 | a proof body; or like a multi-branch \<^theory_text>\<open>obtain\<close> without activation of the | |
| 1056 | local context elements yet. | |
| 1057 | ||
| 1058 |   The proof method @{method cases} is able to use such rules with
 | |
| 1059 | forward-chaining (e.g.\ via \<^theory_text>\<open>then\<close>). This leads to the subsequent pattern | |
| 1060 | for case-splitting in a particular situation within a proof. | |
| 1061 | \<close> | |
| 1062 | ||
| 1063 | notepad | |
| 1064 | begin | |
| 1065 | consider (a) A | (b) B | (c) C | |
| 1066 | \<proof> \<comment> \<open>typically \<^theory_text>\<open>by auto\<close>, \<^theory_text>\<open>by blast\<close> etc.\<close> | |
| 1067 | then have something | |
| 1068 | proof cases | |
| 1069 | case a | |
| 1070 | then show ?thesis \<proof> | |
| 1071 | next | |
| 1072 | case b | |
| 1073 | then show ?thesis \<proof> | |
| 1074 | next | |
| 1075 | case c | |
| 1076 | then show ?thesis \<proof> | |
| 1077 | qed | |
| 1078 | end | |
| 1079 | ||
| 58618 | 1080 | subsection \<open>Obtaining local contexts\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1081 | |
| 58618 | 1082 | text \<open>A single ``case'' branch may be inlined into Isar proof text | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1083 |   via @{command obtain}.  This proves @{prop "(\<And>x. B x \<Longrightarrow> thesis) \<Longrightarrow>
 | 
| 58618 | 1084 | thesis"} on the spot, and augments the context afterwards.\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1085 | |
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1086 | notepad | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1087 | begin | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1088 | fix B :: "'a \<Rightarrow> bool" | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1089 | |
| 62271 | 1090 | obtain x where "B x" \<proof> | 
| 58618 | 1091 | note \<open>B x\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1092 | |
| 58618 | 1093 |   txt \<open>Conclusions from this context may not mention @{term x} again!\<close>
 | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1094 |   {
 | 
| 62271 | 1095 | obtain x where "B x" \<proof> | 
| 1096 | from \<open>B x\<close> have C \<proof> | |
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1097 | } | 
| 58618 | 1098 | note \<open>C\<close> | 
| 42922 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1099 | end | 
| 
91e229959d4c
some material on "Generalized elimination and cases";
 wenzelm parents: 
42921diff
changeset | 1100 | |
| 45103 | 1101 | end |