| author | blanchet | 
| Mon, 30 Jan 2012 17:15:59 +0100 | |
| changeset 46368 | ded0390eceae | 
| parent 44563 | 01b2732cf4ad | 
| child 47232 | e2f0176149d0 | 
| permissions | -rw-r--r-- | 
| 43146 | 1 | (* Author: Florian Haftmann, TU Muenchen *) | 
| 2 | ||
| 3 | header {* Canonical implementation of sets by distinct lists *}
 | |
| 4 | ||
| 5 | theory Dlist_Cset | |
| 44558 | 6 | imports Dlist Cset | 
| 43146 | 7 | begin | 
| 8 | ||
| 9 | definition Set :: "'a dlist \<Rightarrow> 'a Cset.set" where | |
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 10 | "Set dxs = Cset.set (list_of_dlist dxs)" | 
| 43146 | 11 | |
| 12 | definition Coset :: "'a dlist \<Rightarrow> 'a Cset.set" where | |
| 44558 | 13 | "Coset dxs = Cset.coset (list_of_dlist dxs)" | 
| 43146 | 14 | |
| 15 | code_datatype Set Coset | |
| 16 | ||
| 17 | lemma Set_Dlist [simp]: | |
| 44558 | 18 | "Set (Dlist xs) = Cset.set xs" | 
| 43146 | 19 | by (rule Cset.set_eqI) (simp add: Set_def) | 
| 20 | ||
| 21 | lemma Coset_Dlist [simp]: | |
| 44558 | 22 | "Coset (Dlist xs) = Cset.coset xs" | 
| 43146 | 23 | by (rule Cset.set_eqI) (simp add: Coset_def) | 
| 24 | ||
| 25 | lemma member_Set [simp]: | |
| 26 | "Cset.member (Set dxs) = List.member (list_of_dlist dxs)" | |
| 44558 | 27 | by (simp add: Set_def fun_eq_iff List.member_def) | 
| 43146 | 28 | |
| 29 | lemma member_Coset [simp]: | |
| 30 | "Cset.member (Coset dxs) = Not \<circ> List.member (list_of_dlist dxs)" | |
| 44558 | 31 | by (simp add: Coset_def fun_eq_iff List.member_def) | 
| 43146 | 32 | |
| 33 | lemma Set_dlist_of_list [code]: | |
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 34 | "Cset.set xs = Set (dlist_of_list xs)" | 
| 43146 | 35 | by (rule Cset.set_eqI) simp | 
| 36 | ||
| 37 | lemma Coset_dlist_of_list [code]: | |
| 44558 | 38 | "Cset.coset xs = Coset (dlist_of_list xs)" | 
| 43146 | 39 | by (rule Cset.set_eqI) simp | 
| 40 | ||
| 41 | lemma is_empty_Set [code]: | |
| 42 | "Cset.is_empty (Set dxs) \<longleftrightarrow> Dlist.null dxs" | |
| 44558 | 43 | by (simp add: Dlist.null_def List.null_def Set_def) | 
| 43146 | 44 | |
| 45 | lemma bot_code [code]: | |
| 46 | "bot = Set Dlist.empty" | |
| 47 | by (simp add: empty_def) | |
| 48 | ||
| 49 | lemma top_code [code]: | |
| 50 | "top = Coset Dlist.empty" | |
| 44558 | 51 | by (simp add: empty_def Cset.coset_def) | 
| 43146 | 52 | |
| 53 | lemma insert_code [code]: | |
| 54 | "Cset.insert x (Set dxs) = Set (Dlist.insert x dxs)" | |
| 55 | "Cset.insert x (Coset dxs) = Coset (Dlist.remove x dxs)" | |
| 44558 | 56 | by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def) | 
| 43146 | 57 | |
| 58 | lemma remove_code [code]: | |
| 59 | "Cset.remove x (Set dxs) = Set (Dlist.remove x dxs)" | |
| 60 | "Cset.remove x (Coset dxs) = Coset (Dlist.insert x dxs)" | |
| 44558 | 61 | by (simp_all add: Dlist.insert_def Dlist.remove_def Cset.set_def Cset.coset_def Set_def Coset_def Compl_insert) | 
| 43146 | 62 | |
| 63 | lemma member_code [code]: | |
| 64 | "Cset.member (Set dxs) = Dlist.member dxs" | |
| 65 | "Cset.member (Coset dxs) = Not \<circ> Dlist.member dxs" | |
| 44558 | 66 | by (simp_all add: List.member_def member_def fun_eq_iff Dlist.member_def) | 
| 43146 | 67 | |
| 68 | lemma compl_code [code]: | |
| 69 | "- Set dxs = Coset dxs" | |
| 70 | "- Coset dxs = Set dxs" | |
| 44558 | 71 | by (rule Cset.set_eqI, simp add: fun_eq_iff List.member_def Set_def Coset_def)+ | 
| 43146 | 72 | |
| 73 | lemma map_code [code]: | |
| 74 | "Cset.map f (Set dxs) = Set (Dlist.map f dxs)" | |
| 44558 | 75 | by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def) | 
| 43146 | 76 | |
| 77 | lemma filter_code [code]: | |
| 78 | "Cset.filter f (Set dxs) = Set (Dlist.filter f dxs)" | |
| 44558 | 79 | by (rule Cset.set_eqI) (simp add: fun_eq_iff List.member_def Set_def) | 
| 43146 | 80 | |
| 81 | lemma forall_Set [code]: | |
| 82 | "Cset.forall P (Set xs) \<longleftrightarrow> list_all P (list_of_dlist xs)" | |
| 44558 | 83 | by (simp add: Set_def list_all_iff) | 
| 43146 | 84 | |
| 85 | lemma exists_Set [code]: | |
| 86 | "Cset.exists P (Set xs) \<longleftrightarrow> list_ex P (list_of_dlist xs)" | |
| 44558 | 87 | by (simp add: Set_def list_ex_iff) | 
| 43146 | 88 | |
| 89 | lemma card_code [code]: | |
| 90 | "Cset.card (Set dxs) = Dlist.length dxs" | |
| 44558 | 91 | by (simp add: length_def Set_def distinct_card) | 
| 43146 | 92 | |
| 93 | lemma inter_code [code]: | |
| 94 | "inf A (Set xs) = Set (Dlist.filter (Cset.member A) xs)" | |
| 95 | "inf A (Coset xs) = Dlist.foldr Cset.remove xs A" | |
| 96 | by (simp_all only: Set_def Coset_def foldr_def inter_project list_of_dlist_filter) | |
| 97 | ||
| 98 | lemma subtract_code [code]: | |
| 99 | "A - Set xs = Dlist.foldr Cset.remove xs A" | |
| 100 | "A - Coset xs = Set (Dlist.filter (Cset.member A) xs)" | |
| 101 | by (simp_all only: Set_def Coset_def foldr_def subtract_remove list_of_dlist_filter) | |
| 102 | ||
| 103 | lemma union_code [code]: | |
| 104 | "sup (Set xs) A = Dlist.foldr Cset.insert xs A" | |
| 105 | "sup (Coset xs) A = Coset (Dlist.filter (Not \<circ> Cset.member A) xs)" | |
| 106 | by (simp_all only: Set_def Coset_def foldr_def union_insert list_of_dlist_filter) | |
| 107 | ||
| 108 | context complete_lattice | |
| 109 | begin | |
| 110 | ||
| 111 | lemma Infimum_code [code]: | |
| 112 | "Infimum (Set As) = Dlist.foldr inf As top" | |
| 113 | by (simp only: Set_def Infimum_inf foldr_def inf.commute) | |
| 114 | ||
| 115 | lemma Supremum_code [code]: | |
| 116 | "Supremum (Set As) = Dlist.foldr sup As bot" | |
| 117 | by (simp only: Set_def Supremum_sup foldr_def sup.commute) | |
| 118 | ||
| 119 | end | |
| 120 | ||
| 44563 | 121 | declare Cset.single_code [code] | 
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 122 | |
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 123 | lemma bind_set [code]: | 
| 44558 | 124 | "Cset.bind (Dlist_Cset.Set xs) f = fold (sup \<circ> f) (list_of_dlist xs) Cset.empty" | 
| 125 | by (simp add: Cset.bind_set Set_def) | |
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 126 | hide_fact (open) bind_set | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 127 | |
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 128 | lemma pred_of_cset_set [code]: | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 129 | "pred_of_cset (Dlist_Cset.Set xs) = foldr sup (map Predicate.single (list_of_dlist xs)) bot" | 
| 44558 | 130 | by (simp add: Cset.pred_of_cset_set Dlist_Cset.Set_def) | 
| 43971 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 131 | hide_fact (open) pred_of_cset_set | 
| 
892030194015
added operations to Cset with code equations in backing implementations
 Andreas Lochbihler parents: 
43241diff
changeset | 132 | |
| 43146 | 133 | end |