| author | wenzelm | 
| Wed, 07 Jun 2017 23:23:48 +0200 | |
| changeset 66034 | ded1c636aece | 
| parent 65578 | e4997c181cce | 
| child 66162 | 65cd285f6b9c | 
| permissions | -rw-r--r-- | 
| 60036 | 1 | (* Title: HOL/Filter.thy | 
| 2 | Author: Brian Huffman | |
| 3 | Author: Johannes Hölzl | |
| 4 | *) | |
| 5 | ||
| 60758 | 6 | section \<open>Filters on predicates\<close> | 
| 60036 | 7 | |
| 8 | theory Filter | |
| 9 | imports Set_Interval Lifting_Set | |
| 10 | begin | |
| 11 | ||
| 60758 | 12 | subsection \<open>Filters\<close> | 
| 60036 | 13 | |
| 60758 | 14 | text \<open> | 
| 60036 | 15 | This definition also allows non-proper filters. | 
| 60758 | 16 | \<close> | 
| 60036 | 17 | |
| 18 | locale is_filter = | |
| 19 |   fixes F :: "('a \<Rightarrow> bool) \<Rightarrow> bool"
 | |
| 20 | assumes True: "F (\<lambda>x. True)" | |
| 21 | assumes conj: "F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x) \<Longrightarrow> F (\<lambda>x. P x \<and> Q x)" | |
| 22 | assumes mono: "\<forall>x. P x \<longrightarrow> Q x \<Longrightarrow> F (\<lambda>x. P x) \<Longrightarrow> F (\<lambda>x. Q x)" | |
| 23 | ||
| 24 | typedef 'a filter = "{F :: ('a \<Rightarrow> bool) \<Rightarrow> bool. is_filter F}"
 | |
| 25 | proof | |
| 26 | show "(\<lambda>x. True) \<in> ?filter" by (auto intro: is_filter.intro) | |
| 27 | qed | |
| 28 | ||
| 29 | lemma is_filter_Rep_filter: "is_filter (Rep_filter F)" | |
| 30 | using Rep_filter [of F] by simp | |
| 31 | ||
| 32 | lemma Abs_filter_inverse': | |
| 33 | assumes "is_filter F" shows "Rep_filter (Abs_filter F) = F" | |
| 34 | using assms by (simp add: Abs_filter_inverse) | |
| 35 | ||
| 36 | ||
| 60758 | 37 | subsubsection \<open>Eventually\<close> | 
| 60036 | 38 | |
| 39 | definition eventually :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | |
| 40 | where "eventually P F \<longleftrightarrow> Rep_filter F P" | |
| 41 | ||
| 61953 | 42 | syntax | 
| 43 |   "_eventually" :: "pttrn => 'a filter => bool => bool"  ("(3\<forall>\<^sub>F _ in _./ _)" [0, 0, 10] 10)
 | |
| 60037 | 44 | translations | 
| 60038 | 45 | "\<forall>\<^sub>Fx in F. P" == "CONST eventually (\<lambda>x. P) F" | 
| 60037 | 46 | |
| 60036 | 47 | lemma eventually_Abs_filter: | 
| 48 | assumes "is_filter F" shows "eventually P (Abs_filter F) = F P" | |
| 49 | unfolding eventually_def using assms by (simp add: Abs_filter_inverse) | |
| 50 | ||
| 51 | lemma filter_eq_iff: | |
| 52 | shows "F = F' \<longleftrightarrow> (\<forall>P. eventually P F = eventually P F')" | |
| 53 | unfolding Rep_filter_inject [symmetric] fun_eq_iff eventually_def .. | |
| 54 | ||
| 55 | lemma eventually_True [simp]: "eventually (\<lambda>x. True) F" | |
| 56 | unfolding eventually_def | |
| 57 | by (rule is_filter.True [OF is_filter_Rep_filter]) | |
| 58 | ||
| 59 | lemma always_eventually: "\<forall>x. P x \<Longrightarrow> eventually P F" | |
| 60 | proof - | |
| 61 | assume "\<forall>x. P x" hence "P = (\<lambda>x. True)" by (simp add: ext) | |
| 62 | thus "eventually P F" by simp | |
| 63 | qed | |
| 64 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 65 | lemma eventuallyI: "(\<And>x. P x) \<Longrightarrow> eventually P F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 66 | by (auto intro: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 67 | |
| 60036 | 68 | lemma eventually_mono: | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 69 | "\<lbrakk>eventually P F; \<And>x. P x \<Longrightarrow> Q x\<rbrakk> \<Longrightarrow> eventually Q F" | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 70 | unfolding eventually_def | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 71 | by (blast intro: is_filter.mono [OF is_filter_Rep_filter]) | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 72 | |
| 60036 | 73 | lemma eventually_conj: | 
| 74 | assumes P: "eventually (\<lambda>x. P x) F" | |
| 75 | assumes Q: "eventually (\<lambda>x. Q x) F" | |
| 76 | shows "eventually (\<lambda>x. P x \<and> Q x) F" | |
| 77 | using assms unfolding eventually_def | |
| 78 | by (rule is_filter.conj [OF is_filter_Rep_filter]) | |
| 79 | ||
| 80 | lemma eventually_mp: | |
| 81 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 82 | assumes "eventually (\<lambda>x. P x) F" | |
| 83 | shows "eventually (\<lambda>x. Q x) F" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 84 | proof - | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 85 | have "eventually (\<lambda>x. (P x \<longrightarrow> Q x) \<and> P x) F" | 
| 60036 | 86 | using assms by (rule eventually_conj) | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 87 | then show ?thesis | 
| 61810 | 88 | by (blast intro: eventually_mono) | 
| 60036 | 89 | qed | 
| 90 | ||
| 91 | lemma eventually_rev_mp: | |
| 92 | assumes "eventually (\<lambda>x. P x) F" | |
| 93 | assumes "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 94 | shows "eventually (\<lambda>x. Q x) F" | |
| 95 | using assms(2) assms(1) by (rule eventually_mp) | |
| 96 | ||
| 97 | lemma eventually_conj_iff: | |
| 98 | "eventually (\<lambda>x. P x \<and> Q x) F \<longleftrightarrow> eventually P F \<and> eventually Q F" | |
| 99 | by (auto intro: eventually_conj elim: eventually_rev_mp) | |
| 100 | ||
| 101 | lemma eventually_elim2: | |
| 102 | assumes "eventually (\<lambda>i. P i) F" | |
| 103 | assumes "eventually (\<lambda>i. Q i) F" | |
| 104 | assumes "\<And>i. P i \<Longrightarrow> Q i \<Longrightarrow> R i" | |
| 105 | shows "eventually (\<lambda>i. R i) F" | |
| 106 | using assms by (auto elim!: eventually_rev_mp) | |
| 107 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 108 | lemma eventually_ball_finite_distrib: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 109 | "finite A \<Longrightarrow> (eventually (\<lambda>x. \<forall>y\<in>A. P x y) net) \<longleftrightarrow> (\<forall>y\<in>A. eventually (\<lambda>x. P x y) net)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 110 | by (induction A rule: finite_induct) (auto simp: eventually_conj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 111 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 112 | lemma eventually_ball_finite: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 113 | "finite A \<Longrightarrow> \<forall>y\<in>A. eventually (\<lambda>x. P x y) net \<Longrightarrow> eventually (\<lambda>x. \<forall>y\<in>A. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 114 | by (auto simp: eventually_ball_finite_distrib) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 115 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 116 | lemma eventually_all_finite: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 117 | fixes P :: "'a \<Rightarrow> 'b::finite \<Rightarrow> bool" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 118 | assumes "\<And>y. eventually (\<lambda>x. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 119 | shows "eventually (\<lambda>x. \<forall>y. P x y) net" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 120 | using eventually_ball_finite [of UNIV P] assms by simp | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 121 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 122 | lemma eventually_ex: "(\<forall>\<^sub>Fx in F. \<exists>y. P x y) \<longleftrightarrow> (\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 123 | proof | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 124 | assume "\<forall>\<^sub>Fx in F. \<exists>y. P x y" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 125 | then have "\<forall>\<^sub>Fx in F. P x (SOME y. P x y)" | 
| 61810 | 126 | by (auto intro: someI_ex eventually_mono) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 127 | then show "\<exists>Y. \<forall>\<^sub>Fx in F. P x (Y x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 128 | by auto | 
| 61810 | 129 | qed (auto intro: eventually_mono) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 130 | |
| 60036 | 131 | lemma not_eventually_impI: "eventually P F \<Longrightarrow> \<not> eventually Q F \<Longrightarrow> \<not> eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | 
| 132 | by (auto intro: eventually_mp) | |
| 133 | ||
| 134 | lemma not_eventuallyD: "\<not> eventually P F \<Longrightarrow> \<exists>x. \<not> P x" | |
| 135 | by (metis always_eventually) | |
| 136 | ||
| 137 | lemma eventually_subst: | |
| 138 | assumes "eventually (\<lambda>n. P n = Q n) F" | |
| 139 | shows "eventually P F = eventually Q F" (is "?L = ?R") | |
| 140 | proof - | |
| 141 | from assms have "eventually (\<lambda>x. P x \<longrightarrow> Q x) F" | |
| 142 | and "eventually (\<lambda>x. Q x \<longrightarrow> P x) F" | |
| 61810 | 143 | by (auto elim: eventually_mono) | 
| 60036 | 144 | then show ?thesis by (auto elim: eventually_elim2) | 
| 145 | qed | |
| 146 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 147 | subsection \<open> Frequently as dual to eventually \<close> | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 148 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 149 | definition frequently :: "('a \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 150 | where "frequently P F \<longleftrightarrow> \<not> eventually (\<lambda>x. \<not> P x) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 151 | |
| 61953 | 152 | syntax | 
| 153 |   "_frequently" :: "pttrn \<Rightarrow> 'a filter \<Rightarrow> bool \<Rightarrow> bool"  ("(3\<exists>\<^sub>F _ in _./ _)" [0, 0, 10] 10)
 | |
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 154 | translations | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 155 | "\<exists>\<^sub>Fx in F. P" == "CONST frequently (\<lambda>x. P) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 156 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 157 | lemma not_frequently_False [simp]: "\<not> (\<exists>\<^sub>Fx in F. False)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 158 | by (simp add: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 159 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 160 | lemma frequently_ex: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>x. P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 161 | by (auto simp: frequently_def dest: not_eventuallyD) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 162 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 163 | lemma frequentlyE: assumes "frequently P F" obtains x where "P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 164 | using frequently_ex[OF assms] by auto | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 165 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 166 | lemma frequently_mp: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 167 | assumes ev: "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x" and P: "\<exists>\<^sub>Fx in F. P x" shows "\<exists>\<^sub>Fx in F. Q x" | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 168 | proof - | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 169 | from ev have "eventually (\<lambda>x. \<not> Q x \<longrightarrow> \<not> P x) F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 170 | by (rule eventually_rev_mp) (auto intro!: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 171 | from eventually_mp[OF this] P show ?thesis | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 172 | by (auto simp: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 173 | qed | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 174 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 175 | lemma frequently_rev_mp: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 176 | assumes "\<exists>\<^sub>Fx in F. P x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 177 | assumes "\<forall>\<^sub>Fx in F. P x \<longrightarrow> Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 178 | shows "\<exists>\<^sub>Fx in F. Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 179 | using assms(2) assms(1) by (rule frequently_mp) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 180 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 181 | lemma frequently_mono: "(\<forall>x. P x \<longrightarrow> Q x) \<Longrightarrow> frequently P F \<Longrightarrow> frequently Q F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 182 | using frequently_mp[of P Q] by (simp add: always_eventually) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 183 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 184 | lemma frequently_elim1: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> (\<And>i. P i \<Longrightarrow> Q i) \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 185 | by (metis frequently_mono) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 186 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 187 | lemma frequently_disj_iff: "(\<exists>\<^sub>Fx in F. P x \<or> Q x) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<or> (\<exists>\<^sub>Fx in F. Q x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 188 | by (simp add: frequently_def eventually_conj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 189 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 190 | lemma frequently_disj: "\<exists>\<^sub>Fx in F. P x \<Longrightarrow> \<exists>\<^sub>Fx in F. Q x \<Longrightarrow> \<exists>\<^sub>Fx in F. P x \<or> Q x" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 191 | by (simp add: frequently_disj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 192 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 193 | lemma frequently_bex_finite_distrib: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 194 | assumes "finite A" shows "(\<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y) \<longleftrightarrow> (\<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 195 | using assms by induction (auto simp: frequently_disj_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 196 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 197 | lemma frequently_bex_finite: "finite A \<Longrightarrow> \<exists>\<^sub>Fx in F. \<exists>y\<in>A. P x y \<Longrightarrow> \<exists>y\<in>A. \<exists>\<^sub>Fx in F. P x y" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 198 | by (simp add: frequently_bex_finite_distrib) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 199 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 200 | lemma frequently_all: "(\<exists>\<^sub>Fx in F. \<forall>y. P x y) \<longleftrightarrow> (\<forall>Y. \<exists>\<^sub>Fx in F. P x (Y x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 201 | using eventually_ex[of "\<lambda>x y. \<not> P x y" F] by (simp add: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 202 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 203 | lemma | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 204 | shows not_eventually: "\<not> eventually P F \<longleftrightarrow> (\<exists>\<^sub>Fx in F. \<not> P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 205 | and not_frequently: "\<not> frequently P F \<longleftrightarrow> (\<forall>\<^sub>Fx in F. \<not> P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 206 | by (auto simp: frequently_def) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 207 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 208 | lemma frequently_imp_iff: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 209 | "(\<exists>\<^sub>Fx in F. P x \<longrightarrow> Q x) \<longleftrightarrow> (eventually P F \<longrightarrow> frequently Q F)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 210 | unfolding imp_conv_disj frequently_disj_iff not_eventually[symmetric] .. | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 211 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 212 | lemma eventually_frequently_const_simps: | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 213 | "(\<exists>\<^sub>Fx in F. P x \<and> C) \<longleftrightarrow> (\<exists>\<^sub>Fx in F. P x) \<and> C" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 214 | "(\<exists>\<^sub>Fx in F. C \<and> P x) \<longleftrightarrow> C \<and> (\<exists>\<^sub>Fx in F. P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 215 | "(\<forall>\<^sub>Fx in F. P x \<or> C) \<longleftrightarrow> (\<forall>\<^sub>Fx in F. P x) \<or> C" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 216 | "(\<forall>\<^sub>Fx in F. C \<or> P x) \<longleftrightarrow> C \<or> (\<forall>\<^sub>Fx in F. P x)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 217 | "(\<forall>\<^sub>Fx in F. P x \<longrightarrow> C) \<longleftrightarrow> ((\<exists>\<^sub>Fx in F. P x) \<longrightarrow> C)" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 218 | "(\<forall>\<^sub>Fx in F. C \<longrightarrow> P x) \<longleftrightarrow> (C \<longrightarrow> (\<forall>\<^sub>Fx in F. P x))" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 219 | by (cases C; simp add: not_frequently)+ | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 220 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 221 | lemmas eventually_frequently_simps = | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 222 | eventually_frequently_const_simps | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 223 | not_eventually | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 224 | eventually_conj_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 225 | eventually_ball_finite_distrib | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 226 | eventually_ex | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 227 | not_frequently | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 228 | frequently_disj_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 229 | frequently_bex_finite_distrib | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 230 | frequently_all | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 231 | frequently_imp_iff | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 232 | |
| 60758 | 233 | ML \<open> | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 234 | fun eventually_elim_tac facts = | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 235 | CONTEXT_SUBGOAL (fn (goal, i) => fn (ctxt, st) => | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 236 | let | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 237 |         val mp_thms = facts RL @{thms eventually_rev_mp}
 | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 238 | val raw_elim_thm = | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 239 |           (@{thm allI} RS @{thm always_eventually})
 | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 240 | |> fold (fn thm1 => fn thm2 => thm2 RS thm1) mp_thms | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 241 |           |> fold (fn _ => fn thm => @{thm impI} RS thm) facts
 | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 242 | val cases_prop = | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 243 | Thm.prop_of | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 244 | (Rule_Cases.internalize_params (raw_elim_thm RS Goal.init (Thm.cterm_of ctxt goal))) | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 245 |         val cases = Rule_Cases.make_common ctxt cases_prop [(("elim", []), [])]
 | 
| 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 246 | in CONTEXT_CASES cases (resolve_tac ctxt [raw_elim_thm] i) (ctxt, st) end) | 
| 60758 | 247 | \<close> | 
| 60036 | 248 | |
| 60758 | 249 | method_setup eventually_elim = \<open> | 
| 61841 
4d3527b94f2a
more general types Proof.method / context_tactic;
 wenzelm parents: 
61810diff
changeset | 250 | Scan.succeed (fn _ => CONTEXT_METHOD (fn facts => eventually_elim_tac facts 1)) | 
| 60758 | 251 | \<close> "elimination of eventually quantifiers" | 
| 60036 | 252 | |
| 60758 | 253 | subsubsection \<open>Finer-than relation\<close> | 
| 60036 | 254 | |
| 60758 | 255 | text \<open>@{term "F \<le> F'"} means that filter @{term F} is finer than
 | 
| 256 | filter @{term F'}.\<close>
 | |
| 60036 | 257 | |
| 258 | instantiation filter :: (type) complete_lattice | |
| 259 | begin | |
| 260 | ||
| 261 | definition le_filter_def: | |
| 262 | "F \<le> F' \<longleftrightarrow> (\<forall>P. eventually P F' \<longrightarrow> eventually P F)" | |
| 263 | ||
| 264 | definition | |
| 265 | "(F :: 'a filter) < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F" | |
| 266 | ||
| 267 | definition | |
| 268 | "top = Abs_filter (\<lambda>P. \<forall>x. P x)" | |
| 269 | ||
| 270 | definition | |
| 271 | "bot = Abs_filter (\<lambda>P. True)" | |
| 272 | ||
| 273 | definition | |
| 274 | "sup F F' = Abs_filter (\<lambda>P. eventually P F \<and> eventually P F')" | |
| 275 | ||
| 276 | definition | |
| 277 | "inf F F' = Abs_filter | |
| 278 | (\<lambda>P. \<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 279 | ||
| 280 | definition | |
| 281 | "Sup S = Abs_filter (\<lambda>P. \<forall>F\<in>S. eventually P F)" | |
| 282 | ||
| 283 | definition | |
| 284 |   "Inf S = Sup {F::'a filter. \<forall>F'\<in>S. F \<le> F'}"
 | |
| 285 | ||
| 286 | lemma eventually_top [simp]: "eventually P top \<longleftrightarrow> (\<forall>x. P x)" | |
| 287 | unfolding top_filter_def | |
| 288 | by (rule eventually_Abs_filter, rule is_filter.intro, auto) | |
| 289 | ||
| 290 | lemma eventually_bot [simp]: "eventually P bot" | |
| 291 | unfolding bot_filter_def | |
| 292 | by (subst eventually_Abs_filter, rule is_filter.intro, auto) | |
| 293 | ||
| 294 | lemma eventually_sup: | |
| 295 | "eventually P (sup F F') \<longleftrightarrow> eventually P F \<and> eventually P F'" | |
| 296 | unfolding sup_filter_def | |
| 297 | by (rule eventually_Abs_filter, rule is_filter.intro) | |
| 298 | (auto elim!: eventually_rev_mp) | |
| 299 | ||
| 300 | lemma eventually_inf: | |
| 301 | "eventually P (inf F F') \<longleftrightarrow> | |
| 302 | (\<exists>Q R. eventually Q F \<and> eventually R F' \<and> (\<forall>x. Q x \<and> R x \<longrightarrow> P x))" | |
| 303 | unfolding inf_filter_def | |
| 304 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 305 | apply (fast intro: eventually_True) | |
| 306 | apply clarify | |
| 307 | apply (intro exI conjI) | |
| 308 | apply (erule (1) eventually_conj) | |
| 309 | apply (erule (1) eventually_conj) | |
| 310 | apply simp | |
| 311 | apply auto | |
| 312 | done | |
| 313 | ||
| 314 | lemma eventually_Sup: | |
| 315 | "eventually P (Sup S) \<longleftrightarrow> (\<forall>F\<in>S. eventually P F)" | |
| 316 | unfolding Sup_filter_def | |
| 317 | apply (rule eventually_Abs_filter, rule is_filter.intro) | |
| 318 | apply (auto intro: eventually_conj elim!: eventually_rev_mp) | |
| 319 | done | |
| 320 | ||
| 321 | instance proof | |
| 322 | fix F F' F'' :: "'a filter" and S :: "'a filter set" | |
| 323 |   { show "F < F' \<longleftrightarrow> F \<le> F' \<and> \<not> F' \<le> F"
 | |
| 324 | by (rule less_filter_def) } | |
| 325 |   { show "F \<le> F"
 | |
| 326 | unfolding le_filter_def by simp } | |
| 327 |   { assume "F \<le> F'" and "F' \<le> F''" thus "F \<le> F''"
 | |
| 328 | unfolding le_filter_def by simp } | |
| 329 |   { assume "F \<le> F'" and "F' \<le> F" thus "F = F'"
 | |
| 330 | unfolding le_filter_def filter_eq_iff by fast } | |
| 331 |   { show "inf F F' \<le> F" and "inf F F' \<le> F'"
 | |
| 332 | unfolding le_filter_def eventually_inf by (auto intro: eventually_True) } | |
| 333 |   { assume "F \<le> F'" and "F \<le> F''" thus "F \<le> inf F' F''"
 | |
| 334 | unfolding le_filter_def eventually_inf | |
| 61810 | 335 | by (auto intro: eventually_mono [OF eventually_conj]) } | 
| 60036 | 336 |   { show "F \<le> sup F F'" and "F' \<le> sup F F'"
 | 
| 337 | unfolding le_filter_def eventually_sup by simp_all } | |
| 338 |   { assume "F \<le> F''" and "F' \<le> F''" thus "sup F F' \<le> F''"
 | |
| 339 | unfolding le_filter_def eventually_sup by simp } | |
| 340 |   { assume "F'' \<in> S" thus "Inf S \<le> F''"
 | |
| 341 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | |
| 342 |   { assume "\<And>F'. F' \<in> S \<Longrightarrow> F \<le> F'" thus "F \<le> Inf S"
 | |
| 343 | unfolding le_filter_def Inf_filter_def eventually_Sup Ball_def by simp } | |
| 344 |   { assume "F \<in> S" thus "F \<le> Sup S"
 | |
| 345 | unfolding le_filter_def eventually_Sup by simp } | |
| 346 |   { assume "\<And>F. F \<in> S \<Longrightarrow> F \<le> F'" thus "Sup S \<le> F'"
 | |
| 347 | unfolding le_filter_def eventually_Sup by simp } | |
| 348 |   { show "Inf {} = (top::'a filter)"
 | |
| 349 | by (auto simp: top_filter_def Inf_filter_def Sup_filter_def) | |
| 350 | (metis (full_types) top_filter_def always_eventually eventually_top) } | |
| 351 |   { show "Sup {} = (bot::'a filter)"
 | |
| 352 | by (auto simp: bot_filter_def Sup_filter_def) } | |
| 353 | qed | |
| 354 | ||
| 355 | end | |
| 356 | ||
| 357 | lemma filter_leD: | |
| 358 | "F \<le> F' \<Longrightarrow> eventually P F' \<Longrightarrow> eventually P F" | |
| 359 | unfolding le_filter_def by simp | |
| 360 | ||
| 361 | lemma filter_leI: | |
| 362 | "(\<And>P. eventually P F' \<Longrightarrow> eventually P F) \<Longrightarrow> F \<le> F'" | |
| 363 | unfolding le_filter_def by simp | |
| 364 | ||
| 365 | lemma eventually_False: | |
| 366 | "eventually (\<lambda>x. False) F \<longleftrightarrow> F = bot" | |
| 367 | unfolding filter_eq_iff by (auto elim: eventually_rev_mp) | |
| 368 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 369 | lemma eventually_frequently: "F \<noteq> bot \<Longrightarrow> eventually P F \<Longrightarrow> frequently P F" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 370 | using eventually_conj[of P F "\<lambda>x. \<not> P x"] | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 371 | by (auto simp add: frequently_def eventually_False) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 372 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 373 | lemma eventually_const_iff: "eventually (\<lambda>x. P) F \<longleftrightarrow> P \<or> F = bot" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 374 | by (cases P) (auto simp: eventually_False) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 375 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 376 | lemma eventually_const[simp]: "F \<noteq> bot \<Longrightarrow> eventually (\<lambda>x. P) F \<longleftrightarrow> P" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 377 | by (simp add: eventually_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 378 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 379 | lemma frequently_const_iff: "frequently (\<lambda>x. P) F \<longleftrightarrow> P \<and> F \<noteq> bot" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 380 | by (simp add: frequently_def eventually_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 381 | |
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 382 | lemma frequently_const[simp]: "F \<noteq> bot \<Longrightarrow> frequently (\<lambda>x. P) F \<longleftrightarrow> P" | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 383 | by (simp add: frequently_const_iff) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 384 | |
| 61245 | 385 | lemma eventually_happens: "eventually P net \<Longrightarrow> net = bot \<or> (\<exists>x. P x)" | 
| 386 | by (metis frequentlyE eventually_frequently) | |
| 387 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 388 | lemma eventually_happens': | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 389 | assumes "F \<noteq> bot" "eventually P F" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 390 | shows "\<exists>x. P x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 391 | using assms eventually_frequently frequentlyE by blast | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 392 | |
| 60036 | 393 | abbreviation (input) trivial_limit :: "'a filter \<Rightarrow> bool" | 
| 394 | where "trivial_limit F \<equiv> F = bot" | |
| 395 | ||
| 396 | lemma trivial_limit_def: "trivial_limit F \<longleftrightarrow> eventually (\<lambda>x. False) F" | |
| 397 | by (rule eventually_False [symmetric]) | |
| 398 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 399 | lemma False_imp_not_eventually: "(\<forall>x. \<not> P x ) \<Longrightarrow> \<not> trivial_limit net \<Longrightarrow> \<not> eventually (\<lambda>x. P x) net" | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 400 | by (simp add: eventually_False) | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 401 | |
| 60036 | 402 | lemma eventually_Inf: "eventually P (Inf B) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X))" | 
| 403 | proof - | |
| 404 | let ?F = "\<lambda>P. \<exists>X\<subseteq>B. finite X \<and> eventually P (Inf X)" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 405 | |
| 60036 | 406 |   { fix P have "eventually P (Abs_filter ?F) \<longleftrightarrow> ?F P"
 | 
| 407 | proof (rule eventually_Abs_filter is_filter.intro)+ | |
| 408 | show "?F (\<lambda>x. True)" | |
| 409 |         by (rule exI[of _ "{}"]) (simp add: le_fun_def)
 | |
| 410 | next | |
| 411 | fix P Q | |
| 412 | assume "?F P" then guess X .. | |
| 413 | moreover | |
| 414 | assume "?F Q" then guess Y .. | |
| 415 | ultimately show "?F (\<lambda>x. P x \<and> Q x)" | |
| 416 | by (intro exI[of _ "X \<union> Y"]) | |
| 417 | (auto simp: Inf_union_distrib eventually_inf) | |
| 418 | next | |
| 419 | fix P Q | |
| 420 | assume "?F P" then guess X .. | |
| 421 | moreover assume "\<forall>x. P x \<longrightarrow> Q x" | |
| 422 | ultimately show "?F Q" | |
| 61810 | 423 | by (intro exI[of _ X]) (auto elim: eventually_mono) | 
| 60036 | 424 | qed } | 
| 425 | note eventually_F = this | |
| 426 | ||
| 427 | have "Inf B = Abs_filter ?F" | |
| 428 | proof (intro antisym Inf_greatest) | |
| 429 | show "Inf B \<le> Abs_filter ?F" | |
| 430 | by (auto simp: le_filter_def eventually_F dest: Inf_superset_mono) | |
| 431 | next | |
| 432 | fix F assume "F \<in> B" then show "Abs_filter ?F \<le> F" | |
| 433 |       by (auto simp add: le_filter_def eventually_F intro!: exI[of _ "{F}"])
 | |
| 434 | qed | |
| 435 | then show ?thesis | |
| 436 | by (simp add: eventually_F) | |
| 437 | qed | |
| 438 | ||
| 439 | lemma eventually_INF: "eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>X\<subseteq>B. finite X \<and> eventually P (INF b:X. F b))" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 440 | unfolding eventually_Inf [of P "F`B"] | 
| 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 441 | by (metis finite_imageI image_mono finite_subset_image) | 
| 60036 | 442 | |
| 443 | lemma Inf_filter_not_bot: | |
| 444 | fixes B :: "'a filter set" | |
| 445 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> Inf X \<noteq> bot) \<Longrightarrow> Inf B \<noteq> bot" | |
| 446 | unfolding trivial_limit_def eventually_Inf[of _ B] | |
| 447 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | |
| 448 | ||
| 449 | lemma INF_filter_not_bot: | |
| 450 | fixes F :: "'i \<Rightarrow> 'a filter" | |
| 451 | shows "(\<And>X. X \<subseteq> B \<Longrightarrow> finite X \<Longrightarrow> (INF b:X. F b) \<noteq> bot) \<Longrightarrow> (INF b:B. F b) \<noteq> bot" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 452 | unfolding trivial_limit_def eventually_INF [of _ _ B] | 
| 60036 | 453 | bot_bool_def [symmetric] bot_fun_def [symmetric] bot_unique by simp | 
| 454 | ||
| 455 | lemma eventually_Inf_base: | |
| 456 |   assumes "B \<noteq> {}" and base: "\<And>F G. F \<in> B \<Longrightarrow> G \<in> B \<Longrightarrow> \<exists>x\<in>B. x \<le> inf F G"
 | |
| 457 | shows "eventually P (Inf B) \<longleftrightarrow> (\<exists>b\<in>B. eventually P b)" | |
| 458 | proof (subst eventually_Inf, safe) | |
| 459 | fix X assume "finite X" "X \<subseteq> B" | |
| 460 | then have "\<exists>b\<in>B. \<forall>x\<in>X. b \<le> x" | |
| 461 | proof induct | |
| 462 | case empty then show ?case | |
| 60758 | 463 |       using \<open>B \<noteq> {}\<close> by auto
 | 
| 60036 | 464 | next | 
| 465 | case (insert x X) | |
| 466 | then obtain b where "b \<in> B" "\<And>x. x \<in> X \<Longrightarrow> b \<le> x" | |
| 467 | by auto | |
| 60758 | 468 | with \<open>insert x X \<subseteq> B\<close> base[of b x] show ?case | 
| 60036 | 469 | by (auto intro: order_trans) | 
| 470 | qed | |
| 471 | then obtain b where "b \<in> B" "b \<le> Inf X" | |
| 472 | by (auto simp: le_Inf_iff) | |
| 473 | then show "eventually P (Inf X) \<Longrightarrow> Bex B (eventually P)" | |
| 474 | by (intro bexI[of _ b]) (auto simp: le_filter_def) | |
| 475 | qed (auto intro!: exI[of _ "{x}" for x])
 | |
| 476 | ||
| 477 | lemma eventually_INF_base: | |
| 478 |   "B \<noteq> {} \<Longrightarrow> (\<And>a b. a \<in> B \<Longrightarrow> b \<in> B \<Longrightarrow> \<exists>x\<in>B. F x \<le> inf (F a) (F b)) \<Longrightarrow>
 | |
| 479 | eventually P (INF b:B. F b) \<longleftrightarrow> (\<exists>b\<in>B. eventually P (F b))" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 480 | by (subst eventually_Inf_base) auto | 
| 60036 | 481 | |
| 62369 | 482 | lemma eventually_INF1: "i \<in> I \<Longrightarrow> eventually P (F i) \<Longrightarrow> eventually P (INF i:I. F i)" | 
| 483 | using filter_leD[OF INF_lower] . | |
| 484 | ||
| 62367 | 485 | lemma eventually_INF_mono: | 
| 486 | assumes *: "\<forall>\<^sub>F x in \<Sqinter>i\<in>I. F i. P x" | |
| 487 | assumes T1: "\<And>Q R P. (\<And>x. Q x \<and> R x \<longrightarrow> P x) \<Longrightarrow> (\<And>x. T Q x \<Longrightarrow> T R x \<Longrightarrow> T P x)" | |
| 488 | assumes T2: "\<And>P. (\<And>x. P x) \<Longrightarrow> (\<And>x. T P x)" | |
| 489 | assumes **: "\<And>i P. i \<in> I \<Longrightarrow> \<forall>\<^sub>F x in F i. P x \<Longrightarrow> \<forall>\<^sub>F x in F' i. T P x" | |
| 490 | shows "\<forall>\<^sub>F x in \<Sqinter>i\<in>I. F' i. T P x" | |
| 491 | proof - | |
| 63540 | 492 | from * obtain X where X: "finite X" "X \<subseteq> I" "\<forall>\<^sub>F x in \<Sqinter>i\<in>X. F i. P x" | 
| 62378 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 hoelzl parents: 
62369diff
changeset | 493 | unfolding eventually_INF[of _ _ I] by auto | 
| 63540 | 494 | then have "eventually (T P) (INFIMUM X F')" | 
| 62367 | 495 | apply (induction X arbitrary: P) | 
| 496 | apply (auto simp: eventually_inf T2) | |
| 497 | subgoal for x S P Q R | |
| 498 | apply (intro exI[of _ "T Q"]) | |
| 499 | apply (auto intro!: **) [] | |
| 500 | apply (intro exI[of _ "T R"]) | |
| 501 | apply (auto intro: T1) [] | |
| 502 | done | |
| 503 | done | |
| 63540 | 504 | with X show "\<forall>\<^sub>F x in \<Sqinter>i\<in>I. F' i. T P x" | 
| 62367 | 505 | by (subst eventually_INF) auto | 
| 506 | qed | |
| 507 | ||
| 60036 | 508 | |
| 60758 | 509 | subsubsection \<open>Map function for filters\<close> | 
| 60036 | 510 | |
| 511 | definition filtermap :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> 'b filter"
 | |
| 512 | where "filtermap f F = Abs_filter (\<lambda>P. eventually (\<lambda>x. P (f x)) F)" | |
| 513 | ||
| 514 | lemma eventually_filtermap: | |
| 515 | "eventually P (filtermap f F) = eventually (\<lambda>x. P (f x)) F" | |
| 516 | unfolding filtermap_def | |
| 517 | apply (rule eventually_Abs_filter) | |
| 518 | apply (rule is_filter.intro) | |
| 519 | apply (auto elim!: eventually_rev_mp) | |
| 520 | done | |
| 521 | ||
| 522 | lemma filtermap_ident: "filtermap (\<lambda>x. x) F = F" | |
| 523 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 524 | ||
| 525 | lemma filtermap_filtermap: | |
| 526 | "filtermap f (filtermap g F) = filtermap (\<lambda>x. f (g x)) F" | |
| 527 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 528 | ||
| 529 | lemma filtermap_mono: "F \<le> F' \<Longrightarrow> filtermap f F \<le> filtermap f F'" | |
| 530 | unfolding le_filter_def eventually_filtermap by simp | |
| 531 | ||
| 532 | lemma filtermap_bot [simp]: "filtermap f bot = bot" | |
| 533 | by (simp add: filter_eq_iff eventually_filtermap) | |
| 534 | ||
| 535 | lemma filtermap_sup: "filtermap f (sup F1 F2) = sup (filtermap f F1) (filtermap f F2)" | |
| 536 | by (auto simp: filter_eq_iff eventually_filtermap eventually_sup) | |
| 537 | ||
| 538 | lemma filtermap_inf: "filtermap f (inf F1 F2) \<le> inf (filtermap f F1) (filtermap f F2)" | |
| 539 | by (auto simp: le_filter_def eventually_filtermap eventually_inf) | |
| 540 | ||
| 541 | lemma filtermap_INF: "filtermap f (INF b:B. F b) \<le> (INF b:B. filtermap f (F b))" | |
| 542 | proof - | |
| 543 |   { fix X :: "'c set" assume "finite X"
 | |
| 544 | then have "filtermap f (INFIMUM X F) \<le> (INF b:X. filtermap f (F b))" | |
| 545 | proof induct | |
| 546 | case (insert x X) | |
| 547 | have "filtermap f (INF a:insert x X. F a) \<le> inf (filtermap f (F x)) (filtermap f (INF a:X. F a))" | |
| 548 | by (rule order_trans[OF _ filtermap_inf]) simp | |
| 549 | also have "\<dots> \<le> inf (filtermap f (F x)) (INF a:X. filtermap f (F a))" | |
| 550 | by (intro inf_mono insert order_refl) | |
| 551 | finally show ?case | |
| 552 | by simp | |
| 553 | qed simp } | |
| 554 | then show ?thesis | |
| 555 | unfolding le_filter_def eventually_filtermap | |
| 556 | by (subst (1 2) eventually_INF) auto | |
| 557 | qed | |
| 62101 | 558 | |
| 60758 | 559 | subsubsection \<open>Standard filters\<close> | 
| 60036 | 560 | |
| 561 | definition principal :: "'a set \<Rightarrow> 'a filter" where | |
| 562 | "principal S = Abs_filter (\<lambda>P. \<forall>x\<in>S. P x)" | |
| 563 | ||
| 564 | lemma eventually_principal: "eventually P (principal S) \<longleftrightarrow> (\<forall>x\<in>S. P x)" | |
| 565 | unfolding principal_def | |
| 566 | by (rule eventually_Abs_filter, rule is_filter.intro) auto | |
| 567 | ||
| 568 | lemma eventually_inf_principal: "eventually P (inf F (principal s)) \<longleftrightarrow> eventually (\<lambda>x. x \<in> s \<longrightarrow> P x) F" | |
| 61810 | 569 | unfolding eventually_inf eventually_principal by (auto elim: eventually_mono) | 
| 60036 | 570 | |
| 571 | lemma principal_UNIV[simp]: "principal UNIV = top" | |
| 572 | by (auto simp: filter_eq_iff eventually_principal) | |
| 573 | ||
| 574 | lemma principal_empty[simp]: "principal {} = bot"
 | |
| 575 | by (auto simp: filter_eq_iff eventually_principal) | |
| 576 | ||
| 577 | lemma principal_eq_bot_iff: "principal X = bot \<longleftrightarrow> X = {}"
 | |
| 578 | by (auto simp add: filter_eq_iff eventually_principal) | |
| 579 | ||
| 580 | lemma principal_le_iff[iff]: "principal A \<le> principal B \<longleftrightarrow> A \<subseteq> B" | |
| 581 | by (auto simp: le_filter_def eventually_principal) | |
| 582 | ||
| 583 | lemma le_principal: "F \<le> principal A \<longleftrightarrow> eventually (\<lambda>x. x \<in> A) F" | |
| 584 | unfolding le_filter_def eventually_principal | |
| 585 | apply safe | |
| 586 | apply (erule_tac x="\<lambda>x. x \<in> A" in allE) | |
| 61810 | 587 | apply (auto elim: eventually_mono) | 
| 60036 | 588 | done | 
| 589 | ||
| 590 | lemma principal_inject[iff]: "principal A = principal B \<longleftrightarrow> A = B" | |
| 591 | unfolding eq_iff by simp | |
| 592 | ||
| 593 | lemma sup_principal[simp]: "sup (principal A) (principal B) = principal (A \<union> B)" | |
| 594 | unfolding filter_eq_iff eventually_sup eventually_principal by auto | |
| 595 | ||
| 596 | lemma inf_principal[simp]: "inf (principal A) (principal B) = principal (A \<inter> B)" | |
| 597 | unfolding filter_eq_iff eventually_inf eventually_principal | |
| 598 | by (auto intro: exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | |
| 599 | ||
| 600 | lemma SUP_principal[simp]: "(SUP i : I. principal (A i)) = principal (\<Union>i\<in>I. A i)" | |
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62123diff
changeset | 601 | unfolding filter_eq_iff eventually_Sup by (auto simp: eventually_principal) | 
| 60036 | 602 | |
| 603 | lemma INF_principal_finite: "finite X \<Longrightarrow> (INF x:X. principal (f x)) = principal (\<Inter>x\<in>X. f x)" | |
| 604 | by (induct X rule: finite_induct) auto | |
| 605 | ||
| 606 | lemma filtermap_principal[simp]: "filtermap f (principal A) = principal (f ` A)" | |
| 607 | unfolding filter_eq_iff eventually_filtermap eventually_principal by simp | |
| 608 | ||
| 60758 | 609 | subsubsection \<open>Order filters\<close> | 
| 60036 | 610 | |
| 611 | definition at_top :: "('a::order) filter"
 | |
| 612 |   where "at_top = (INF k. principal {k ..})"
 | |
| 613 | ||
| 614 | lemma at_top_sub: "at_top = (INF k:{c::'a::linorder..}. principal {k ..})"
 | |
| 615 | by (auto intro!: INF_eq max.cobounded1 max.cobounded2 simp: at_top_def) | |
| 616 | ||
| 617 | lemma eventually_at_top_linorder: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::linorder. \<forall>n\<ge>N. P n)" | |
| 618 | unfolding at_top_def | |
| 619 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | |
| 620 | ||
| 63556 | 621 | lemma eventually_at_top_linorderI: | 
| 622 | fixes c::"'a::linorder" | |
| 623 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | |
| 624 | shows "eventually P at_top" | |
| 625 | using assms by (auto simp: eventually_at_top_linorder) | |
| 626 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 627 | lemma eventually_ge_at_top [simp]: | 
| 60036 | 628 | "eventually (\<lambda>x. (c::_::linorder) \<le> x) at_top" | 
| 629 | unfolding eventually_at_top_linorder by auto | |
| 630 | ||
| 631 | lemma eventually_at_top_dense: "eventually P at_top \<longleftrightarrow> (\<exists>N::'a::{no_top, linorder}. \<forall>n>N. P n)"
 | |
| 632 | proof - | |
| 633 |   have "eventually P (INF k. principal {k <..}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n>N. P n)"
 | |
| 634 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: max.cobounded1 max.cobounded2) | |
| 635 |   also have "(INF k. principal {k::'a <..}) = at_top"
 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 636 | unfolding at_top_def | 
| 60036 | 637 | by (intro INF_eq) (auto intro: less_imp_le simp: Ici_subset_Ioi_iff gt_ex) | 
| 638 | finally show ?thesis . | |
| 639 | qed | |
| 640 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 641 | lemma eventually_at_top_not_equal [simp]: "eventually (\<lambda>x::'a::{no_top, linorder}. x \<noteq> c) at_top"
 | 
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 642 | unfolding eventually_at_top_dense by auto | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 643 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 644 | lemma eventually_gt_at_top [simp]: "eventually (\<lambda>x. (c::_::{no_top, linorder}) < x) at_top"
 | 
| 60036 | 645 | unfolding eventually_at_top_dense by auto | 
| 646 | ||
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 647 | lemma eventually_all_ge_at_top: | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 648 |   assumes "eventually P (at_top :: ('a :: linorder) filter)"
 | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 649 | shows "eventually (\<lambda>x. \<forall>y\<ge>x. P y) at_top" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 650 | proof - | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 651 | from assms obtain x where "\<And>y. y \<ge> x \<Longrightarrow> P y" by (auto simp: eventually_at_top_linorder) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 652 | hence "\<forall>z\<ge>y. P z" if "y \<ge> x" for y using that by simp | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 653 | thus ?thesis by (auto simp: eventually_at_top_linorder) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 654 | qed | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 655 | |
| 60036 | 656 | definition at_bot :: "('a::order) filter"
 | 
| 657 |   where "at_bot = (INF k. principal {.. k})"
 | |
| 658 | ||
| 659 | lemma at_bot_sub: "at_bot = (INF k:{.. c::'a::linorder}. principal {.. k})"
 | |
| 660 | by (auto intro!: INF_eq min.cobounded1 min.cobounded2 simp: at_bot_def) | |
| 661 | ||
| 662 | lemma eventually_at_bot_linorder: | |
| 663 | fixes P :: "'a::linorder \<Rightarrow> bool" shows "eventually P at_bot \<longleftrightarrow> (\<exists>N. \<forall>n\<le>N. P n)" | |
| 664 | unfolding at_bot_def | |
| 665 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | |
| 666 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 667 | lemma eventually_le_at_bot [simp]: | 
| 60036 | 668 | "eventually (\<lambda>x. x \<le> (c::_::linorder)) at_bot" | 
| 669 | unfolding eventually_at_bot_linorder by auto | |
| 670 | ||
| 671 | lemma eventually_at_bot_dense: "eventually P at_bot \<longleftrightarrow> (\<exists>N::'a::{no_bot, linorder}. \<forall>n<N. P n)"
 | |
| 672 | proof - | |
| 673 |   have "eventually P (INF k. principal {..< k}) \<longleftrightarrow> (\<exists>N::'a. \<forall>n<N. P n)"
 | |
| 674 | by (subst eventually_INF_base) (auto simp: eventually_principal intro: min.cobounded1 min.cobounded2) | |
| 675 |   also have "(INF k. principal {..< k::'a}) = at_bot"
 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 676 | unfolding at_bot_def | 
| 60036 | 677 | by (intro INF_eq) (auto intro: less_imp_le simp: Iic_subset_Iio_iff lt_ex) | 
| 678 | finally show ?thesis . | |
| 679 | qed | |
| 680 | ||
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 681 | lemma eventually_at_bot_not_equal [simp]: "eventually (\<lambda>x::'a::{no_bot, linorder}. x \<noteq> c) at_bot"
 | 
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 682 | unfolding eventually_at_bot_dense by auto | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 683 | |
| 65578 
e4997c181cce
New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
 paulson <lp15@cam.ac.uk> parents: 
63967diff
changeset | 684 | lemma eventually_gt_at_bot [simp]: | 
| 60036 | 685 | "eventually (\<lambda>x. x < (c::_::unbounded_dense_linorder)) at_bot" | 
| 686 | unfolding eventually_at_bot_dense by auto | |
| 687 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 688 | lemma trivial_limit_at_bot_linorder [simp]: "\<not> trivial_limit (at_bot ::('a::linorder) filter)"
 | 
| 60036 | 689 | unfolding trivial_limit_def | 
| 690 | by (metis eventually_at_bot_linorder order_refl) | |
| 691 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 692 | lemma trivial_limit_at_top_linorder [simp]: "\<not> trivial_limit (at_top ::('a::linorder) filter)"
 | 
| 60036 | 693 | unfolding trivial_limit_def | 
| 694 | by (metis eventually_at_top_linorder order_refl) | |
| 695 | ||
| 60758 | 696 | subsection \<open>Sequentially\<close> | 
| 60036 | 697 | |
| 698 | abbreviation sequentially :: "nat filter" | |
| 699 | where "sequentially \<equiv> at_top" | |
| 700 | ||
| 701 | lemma eventually_sequentially: | |
| 702 | "eventually P sequentially \<longleftrightarrow> (\<exists>N. \<forall>n\<ge>N. P n)" | |
| 703 | by (rule eventually_at_top_linorder) | |
| 704 | ||
| 705 | lemma sequentially_bot [simp, intro]: "sequentially \<noteq> bot" | |
| 706 | unfolding filter_eq_iff eventually_sequentially by auto | |
| 707 | ||
| 708 | lemmas trivial_limit_sequentially = sequentially_bot | |
| 709 | ||
| 710 | lemma eventually_False_sequentially [simp]: | |
| 711 | "\<not> eventually (\<lambda>n. False) sequentially" | |
| 712 | by (simp add: eventually_False) | |
| 713 | ||
| 714 | lemma le_sequentially: | |
| 715 | "F \<le> sequentially \<longleftrightarrow> (\<forall>N. eventually (\<lambda>n. N \<le> n) F)" | |
| 716 | by (simp add: at_top_def le_INF_iff le_principal) | |
| 717 | ||
| 60974 
6a6f15d8fbc4
New material and fixes related to the forthcoming Stone-Weierstrass development
 paulson <lp15@cam.ac.uk> parents: 
60758diff
changeset | 718 | lemma eventually_sequentiallyI [intro?]: | 
| 60036 | 719 | assumes "\<And>x. c \<le> x \<Longrightarrow> P x" | 
| 720 | shows "eventually P sequentially" | |
| 721 | using assms by (auto simp: eventually_sequentially) | |
| 722 | ||
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 723 | lemma eventually_sequentially_Suc [simp]: "eventually (\<lambda>i. P (Suc i)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 724 | unfolding eventually_sequentially by (metis Suc_le_D Suc_le_mono le_Suc_eq) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 725 | |
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 726 | lemma eventually_sequentially_seg [simp]: "eventually (\<lambda>n. P (n + k)) sequentially \<longleftrightarrow> eventually P sequentially" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 727 | using eventually_sequentially_Suc[of "\<lambda>n. P (n + k)" for k] by (induction k) auto | 
| 60036 | 728 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 729 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 730 | subsection \<open>The cofinite filter\<close> | 
| 60039 | 731 | |
| 732 | definition "cofinite = Abs_filter (\<lambda>P. finite {x. \<not> P x})"
 | |
| 733 | ||
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 734 | abbreviation Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<exists>\<^sub>\<infinity>" 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 735 | where "Inf_many P \<equiv> frequently P cofinite" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 736 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 737 | abbreviation Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool"  (binder "\<forall>\<^sub>\<infinity>" 10)
 | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 738 | where "Alm_all P \<equiv> eventually P cofinite" | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 739 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 740 | notation (ASCII) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 741 | Inf_many (binder "INFM " 10) and | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61953diff
changeset | 742 | Alm_all (binder "MOST " 10) | 
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 743 | |
| 60039 | 744 | lemma eventually_cofinite: "eventually P cofinite \<longleftrightarrow> finite {x. \<not> P x}"
 | 
| 745 | unfolding cofinite_def | |
| 746 | proof (rule eventually_Abs_filter, rule is_filter.intro) | |
| 747 |   fix P Q :: "'a \<Rightarrow> bool" assume "finite {x. \<not> P x}" "finite {x. \<not> Q x}"
 | |
| 748 |   from finite_UnI[OF this] show "finite {x. \<not> (P x \<and> Q x)}"
 | |
| 749 | by (rule rev_finite_subset) auto | |
| 750 | next | |
| 751 |   fix P Q :: "'a \<Rightarrow> bool" assume P: "finite {x. \<not> P x}" and *: "\<forall>x. P x \<longrightarrow> Q x"
 | |
| 752 |   from * show "finite {x. \<not> Q x}"
 | |
| 753 | by (intro finite_subset[OF _ P]) auto | |
| 754 | qed simp | |
| 755 | ||
| 60040 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 756 | lemma frequently_cofinite: "frequently P cofinite \<longleftrightarrow> \<not> finite {x. P x}"
 | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 757 | by (simp add: frequently_def eventually_cofinite) | 
| 
1fa1023b13b9
move MOST and INFM in Infinite_Set to Filter; change them to abbreviations over the cofinite filter
 hoelzl parents: 
60039diff
changeset | 758 | |
| 60039 | 759 | lemma cofinite_bot[simp]: "cofinite = (bot::'a filter) \<longleftrightarrow> finite (UNIV :: 'a set)" | 
| 760 | unfolding trivial_limit_def eventually_cofinite by simp | |
| 761 | ||
| 762 | lemma cofinite_eq_sequentially: "cofinite = sequentially" | |
| 763 | unfolding filter_eq_iff eventually_sequentially eventually_cofinite | |
| 764 | proof safe | |
| 765 |   fix P :: "nat \<Rightarrow> bool" assume [simp]: "finite {x. \<not> P x}"
 | |
| 766 | show "\<exists>N. \<forall>n\<ge>N. P n" | |
| 767 | proof cases | |
| 768 |     assume "{x. \<not> P x} \<noteq> {}" then show ?thesis
 | |
| 769 |       by (intro exI[of _ "Suc (Max {x. \<not> P x})"]) (auto simp: Suc_le_eq)
 | |
| 770 | qed auto | |
| 771 | next | |
| 772 | fix P :: "nat \<Rightarrow> bool" and N :: nat assume "\<forall>n\<ge>N. P n" | |
| 773 |   then have "{x. \<not> P x} \<subseteq> {..< N}"
 | |
| 774 | by (auto simp: not_le) | |
| 775 |   then show "finite {x. \<not> P x}"
 | |
| 776 | by (blast intro: finite_subset) | |
| 777 | qed | |
| 60036 | 778 | |
| 62101 | 779 | subsubsection \<open>Product of filters\<close> | 
| 780 | ||
| 781 | lemma filtermap_sequentually_ne_bot: "filtermap f sequentially \<noteq> bot" | |
| 782 | by (auto simp add: filter_eq_iff eventually_filtermap eventually_sequentially) | |
| 783 | ||
| 784 | definition prod_filter :: "'a filter \<Rightarrow> 'b filter \<Rightarrow> ('a \<times> 'b) filter" (infixr "\<times>\<^sub>F" 80) where
 | |
| 785 | "prod_filter F G = | |
| 786 |     (INF (P, Q):{(P, Q). eventually P F \<and> eventually Q G}. principal {(x, y). P x \<and> Q y})"
 | |
| 787 | ||
| 788 | lemma eventually_prod_filter: "eventually P (F \<times>\<^sub>F G) \<longleftrightarrow> | |
| 789 | (\<exists>Pf Pg. eventually Pf F \<and> eventually Pg G \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P (x, y)))" | |
| 790 | unfolding prod_filter_def | |
| 791 | proof (subst eventually_INF_base, goal_cases) | |
| 792 | case 2 | |
| 793 | moreover have "eventually Pf F \<Longrightarrow> eventually Qf F \<Longrightarrow> eventually Pg G \<Longrightarrow> eventually Qg G \<Longrightarrow> | |
| 794 | \<exists>P Q. eventually P F \<and> eventually Q G \<and> | |
| 795 | Collect P \<times> Collect Q \<subseteq> Collect Pf \<times> Collect Pg \<inter> Collect Qf \<times> Collect Qg" for Pf Pg Qf Qg | |
| 796 | by (intro conjI exI[of _ "inf Pf Qf"] exI[of _ "inf Pg Qg"]) | |
| 797 | (auto simp: inf_fun_def eventually_conj) | |
| 798 | ultimately show ?case | |
| 799 | by auto | |
| 800 | qed (auto simp: eventually_principal intro: eventually_True) | |
| 801 | ||
| 62367 | 802 | lemma eventually_prod1: | 
| 803 | assumes "B \<noteq> bot" | |
| 804 | shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P x) \<longleftrightarrow> (\<forall>\<^sub>F x in A. P x)" | |
| 805 | unfolding eventually_prod_filter | |
| 806 | proof safe | |
| 63540 | 807 | fix R Q | 
| 808 | assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P x" | |
| 809 | with \<open>B \<noteq> bot\<close> obtain y where "Q y" by (auto dest: eventually_happens) | |
| 810 | with * show "eventually P A" | |
| 62367 | 811 | by (force elim: eventually_mono) | 
| 812 | next | |
| 813 | assume "eventually P A" | |
| 814 | then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P x)" | |
| 815 | by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto | |
| 816 | qed | |
| 817 | ||
| 818 | lemma eventually_prod2: | |
| 819 | assumes "A \<noteq> bot" | |
| 820 | shows "(\<forall>\<^sub>F (x, y) in A \<times>\<^sub>F B. P y) \<longleftrightarrow> (\<forall>\<^sub>F y in B. P y)" | |
| 821 | unfolding eventually_prod_filter | |
| 822 | proof safe | |
| 63540 | 823 | fix R Q | 
| 824 | assume *: "\<forall>\<^sub>F x in A. R x" "\<forall>\<^sub>F x in B. Q x" "\<forall>x y. R x \<longrightarrow> Q y \<longrightarrow> P y" | |
| 825 | with \<open>A \<noteq> bot\<close> obtain x where "R x" by (auto dest: eventually_happens) | |
| 826 | with * show "eventually P B" | |
| 62367 | 827 | by (force elim: eventually_mono) | 
| 828 | next | |
| 829 | assume "eventually P B" | |
| 830 | then show "\<exists>Pf Pg. eventually Pf A \<and> eventually Pg B \<and> (\<forall>x y. Pf x \<longrightarrow> Pg y \<longrightarrow> P y)" | |
| 831 | by (intro exI[of _ P] exI[of _ "\<lambda>x. True"]) auto | |
| 832 | qed | |
| 833 | ||
| 834 | lemma INF_filter_bot_base: | |
| 835 | fixes F :: "'a \<Rightarrow> 'b filter" | |
| 836 | assumes *: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> \<exists>k\<in>I. F k \<le> F i \<sqinter> F j" | |
| 837 | shows "(INF i:I. F i) = bot \<longleftrightarrow> (\<exists>i\<in>I. F i = bot)" | |
| 63540 | 838 | proof (cases "\<exists>i\<in>I. F i = bot") | 
| 839 | case True | |
| 840 | then have "(INF i:I. F i) \<le> bot" | |
| 62367 | 841 | by (auto intro: INF_lower2) | 
| 63540 | 842 | with True show ?thesis | 
| 62367 | 843 | by (auto simp: bot_unique) | 
| 844 | next | |
| 63540 | 845 | case False | 
| 62367 | 846 | moreover have "(INF i:I. F i) \<noteq> bot" | 
| 63540 | 847 |   proof (cases "I = {}")
 | 
| 848 | case True | |
| 849 | then show ?thesis | |
| 850 | by (auto simp add: filter_eq_iff) | |
| 851 | next | |
| 852 | case False': False | |
| 62367 | 853 | show ?thesis | 
| 854 | proof (rule INF_filter_not_bot) | |
| 63540 | 855 | fix J | 
| 856 | assume "finite J" "J \<subseteq> I" | |
| 62367 | 857 | then have "\<exists>k\<in>I. F k \<le> (\<Sqinter>i\<in>J. F i)" | 
| 63540 | 858 | proof (induct J) | 
| 859 | case empty | |
| 860 | then show ?case | |
| 62367 | 861 |           using \<open>I \<noteq> {}\<close> by auto
 | 
| 862 | next | |
| 863 | case (insert i J) | |
| 63540 | 864 | then obtain k where "k \<in> I" "F k \<le> (\<Sqinter>i\<in>J. F i)" by auto | 
| 865 | with insert *[of i k] show ?case | |
| 62367 | 866 | by auto | 
| 867 | qed | |
| 63540 | 868 | with False show "(\<Sqinter>i\<in>J. F i) \<noteq> \<bottom>" | 
| 62367 | 869 | by (auto simp: bot_unique) | 
| 870 | qed | |
| 63540 | 871 | qed | 
| 62367 | 872 | ultimately show ?thesis | 
| 873 | by auto | |
| 874 | qed | |
| 875 | ||
| 876 | lemma Collect_empty_eq_bot: "Collect P = {} \<longleftrightarrow> P = \<bottom>"
 | |
| 877 | by auto | |
| 878 | ||
| 879 | lemma prod_filter_eq_bot: "A \<times>\<^sub>F B = bot \<longleftrightarrow> A = bot \<or> B = bot" | |
| 880 | unfolding prod_filter_def | |
| 881 | proof (subst INF_filter_bot_base; clarsimp simp: principal_eq_bot_iff Collect_empty_eq_bot bot_fun_def simp del: Collect_empty_eq) | |
| 882 | fix A1 A2 B1 B2 assume "\<forall>\<^sub>F x in A. A1 x" "\<forall>\<^sub>F x in A. A2 x" "\<forall>\<^sub>F x in B. B1 x" "\<forall>\<^sub>F x in B. B2 x" | |
| 883 | then show "\<exists>x. eventually x A \<and> (\<exists>y. eventually y B \<and> Collect x \<times> Collect y \<subseteq> Collect A1 \<times> Collect B1 \<and> Collect x \<times> Collect y \<subseteq> Collect A2 \<times> Collect B2)" | |
| 884 | by (intro exI[of _ "\<lambda>x. A1 x \<and> A2 x"] exI[of _ "\<lambda>x. B1 x \<and> B2 x"] conjI) | |
| 885 | (auto simp: eventually_conj_iff) | |
| 886 | next | |
| 887 | show "(\<exists>x. eventually x A \<and> (\<exists>y. eventually y B \<and> (x = (\<lambda>x. False) \<or> y = (\<lambda>x. False)))) = (A = \<bottom> \<or> B = \<bottom>)" | |
| 888 | by (auto simp: trivial_limit_def intro: eventually_True) | |
| 889 | qed | |
| 890 | ||
| 62101 | 891 | lemma prod_filter_mono: "F \<le> F' \<Longrightarrow> G \<le> G' \<Longrightarrow> F \<times>\<^sub>F G \<le> F' \<times>\<^sub>F G'" | 
| 892 | by (auto simp: le_filter_def eventually_prod_filter) | |
| 893 | ||
| 62367 | 894 | lemma prod_filter_mono_iff: | 
| 895 | assumes nAB: "A \<noteq> bot" "B \<noteq> bot" | |
| 896 | shows "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D \<longleftrightarrow> A \<le> C \<and> B \<le> D" | |
| 897 | proof safe | |
| 898 | assume *: "A \<times>\<^sub>F B \<le> C \<times>\<^sub>F D" | |
| 63540 | 899 | with assms have "A \<times>\<^sub>F B \<noteq> bot" | 
| 62367 | 900 | by (auto simp: bot_unique prod_filter_eq_bot) | 
| 63540 | 901 | with * have "C \<times>\<^sub>F D \<noteq> bot" | 
| 62367 | 902 | by (auto simp: bot_unique) | 
| 903 | then have nCD: "C \<noteq> bot" "D \<noteq> bot" | |
| 904 | by (auto simp: prod_filter_eq_bot) | |
| 905 | ||
| 906 | show "A \<le> C" | |
| 907 | proof (rule filter_leI) | |
| 908 | fix P assume "eventually P C" with *[THEN filter_leD, of "\<lambda>(x, y). P x"] show "eventually P A" | |
| 909 | using nAB nCD by (simp add: eventually_prod1 eventually_prod2) | |
| 910 | qed | |
| 911 | ||
| 912 | show "B \<le> D" | |
| 913 | proof (rule filter_leI) | |
| 914 | fix P assume "eventually P D" with *[THEN filter_leD, of "\<lambda>(x, y). P y"] show "eventually P B" | |
| 915 | using nAB nCD by (simp add: eventually_prod1 eventually_prod2) | |
| 916 | qed | |
| 917 | qed (intro prod_filter_mono) | |
| 918 | ||
| 62101 | 919 | lemma eventually_prod_same: "eventually P (F \<times>\<^sub>F F) \<longleftrightarrow> | 
| 920 | (\<exists>Q. eventually Q F \<and> (\<forall>x y. Q x \<longrightarrow> Q y \<longrightarrow> P (x, y)))" | |
| 921 | unfolding eventually_prod_filter | |
| 922 | apply safe | |
| 923 | apply (rule_tac x="inf Pf Pg" in exI) | |
| 924 | apply (auto simp: inf_fun_def intro!: eventually_conj) | |
| 925 | done | |
| 926 | ||
| 927 | lemma eventually_prod_sequentially: | |
| 928 | "eventually P (sequentially \<times>\<^sub>F sequentially) \<longleftrightarrow> (\<exists>N. \<forall>m \<ge> N. \<forall>n \<ge> N. P (n, m))" | |
| 929 | unfolding eventually_prod_same eventually_sequentially by auto | |
| 930 | ||
| 931 | lemma principal_prod_principal: "principal A \<times>\<^sub>F principal B = principal (A \<times> B)" | |
| 932 | apply (simp add: filter_eq_iff eventually_prod_filter eventually_principal) | |
| 933 | apply safe | |
| 934 | apply blast | |
| 935 | apply (intro conjI exI[of _ "\<lambda>x. x \<in> A"] exI[of _ "\<lambda>x. x \<in> B"]) | |
| 936 | apply auto | |
| 937 | done | |
| 938 | ||
| 62367 | 939 | lemma prod_filter_INF: | 
| 940 |   assumes "I \<noteq> {}" "J \<noteq> {}"
 | |
| 941 | shows "(INF i:I. A i) \<times>\<^sub>F (INF j:J. B j) = (INF i:I. INF j:J. A i \<times>\<^sub>F B j)" | |
| 942 | proof (safe intro!: antisym INF_greatest) | |
| 943 |   from \<open>I \<noteq> {}\<close> obtain i where "i \<in> I" by auto
 | |
| 944 |   from \<open>J \<noteq> {}\<close> obtain j where "j \<in> J" by auto
 | |
| 945 | ||
| 946 | show "(\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. A i \<times>\<^sub>F B j) \<le> (\<Sqinter>i\<in>I. A i) \<times>\<^sub>F (\<Sqinter>j\<in>J. B j)" | |
| 947 | unfolding prod_filter_def | |
| 948 | proof (safe intro!: INF_greatest) | |
| 949 | fix P Q assume P: "\<forall>\<^sub>F x in \<Sqinter>i\<in>I. A i. P x" and Q: "\<forall>\<^sub>F x in \<Sqinter>j\<in>J. B j. Q x" | |
| 950 |     let ?X = "(\<Sqinter>i\<in>I. \<Sqinter>j\<in>J. \<Sqinter>(P, Q)\<in>{(P, Q). (\<forall>\<^sub>F x in A i. P x) \<and> (\<forall>\<^sub>F x in B j. Q x)}. principal {(x, y). P x \<and> Q y})"
 | |
| 951 |     have "?X \<le> principal {x. P (fst x)} \<sqinter> principal {x. Q (snd x)}"
 | |
| 952 | proof (intro inf_greatest) | |
| 953 |       have "?X \<le> (\<Sqinter>i\<in>I. \<Sqinter>P\<in>{P. eventually P (A i)}. principal {x. P (fst x)})"
 | |
| 954 | by (auto intro!: INF_greatest INF_lower2[of j] INF_lower2 \<open>j\<in>J\<close> INF_lower2[of "(_, \<lambda>x. True)"]) | |
| 955 |       also have "\<dots> \<le> principal {x. P (fst x)}"
 | |
| 956 | unfolding le_principal | |
| 957 | proof (rule eventually_INF_mono[OF P]) | |
| 958 | fix i P assume "i \<in> I" "eventually P (A i)" | |
| 959 |         then show "\<forall>\<^sub>F x in \<Sqinter>P\<in>{P. eventually P (A i)}. principal {x. P (fst x)}. x \<in> {x. P (fst x)}"
 | |
| 960 | unfolding le_principal[symmetric] by (auto intro!: INF_lower) | |
| 961 | qed auto | |
| 962 |       finally show "?X \<le> principal {x. P (fst x)}" .
 | |
| 963 | ||
| 964 |       have "?X \<le> (\<Sqinter>i\<in>J. \<Sqinter>P\<in>{P. eventually P (B i)}. principal {x. P (snd x)})"
 | |
| 965 | by (auto intro!: INF_greatest INF_lower2[of i] INF_lower2 \<open>i\<in>I\<close> INF_lower2[of "(\<lambda>x. True, _)"]) | |
| 966 |       also have "\<dots> \<le> principal {x. Q (snd x)}"
 | |
| 967 | unfolding le_principal | |
| 968 | proof (rule eventually_INF_mono[OF Q]) | |
| 969 | fix j Q assume "j \<in> J" "eventually Q (B j)" | |
| 970 |         then show "\<forall>\<^sub>F x in \<Sqinter>P\<in>{P. eventually P (B j)}. principal {x. P (snd x)}. x \<in> {x. Q (snd x)}"
 | |
| 971 | unfolding le_principal[symmetric] by (auto intro!: INF_lower) | |
| 972 | qed auto | |
| 973 |       finally show "?X \<le> principal {x. Q (snd x)}" .
 | |
| 974 | qed | |
| 975 |     also have "\<dots> = principal {(x, y). P x \<and> Q y}"
 | |
| 976 | by auto | |
| 977 |     finally show "?X \<le> principal {(x, y). P x \<and> Q y}" .
 | |
| 978 | qed | |
| 979 | qed (intro prod_filter_mono INF_lower) | |
| 980 | ||
| 981 | lemma filtermap_Pair: "filtermap (\<lambda>x. (f x, g x)) F \<le> filtermap f F \<times>\<^sub>F filtermap g F" | |
| 982 | by (simp add: le_filter_def eventually_filtermap eventually_prod_filter) | |
| 983 | (auto elim: eventually_elim2) | |
| 984 | ||
| 62369 | 985 | lemma eventually_prodI: "eventually P F \<Longrightarrow> eventually Q G \<Longrightarrow> eventually (\<lambda>x. P (fst x) \<and> Q (snd x)) (F \<times>\<^sub>F G)" | 
| 986 | unfolding prod_filter_def | |
| 987 | by (intro eventually_INF1[of "(P, Q)"]) (auto simp: eventually_principal) | |
| 988 | ||
| 989 | lemma prod_filter_INF1: "I \<noteq> {} \<Longrightarrow> (INF i:I. A i) \<times>\<^sub>F B = (INF i:I. A i \<times>\<^sub>F B)"
 | |
| 990 |   using prod_filter_INF[of I "{B}" A "\<lambda>x. x"] by simp
 | |
| 991 | ||
| 992 | lemma prod_filter_INF2: "J \<noteq> {} \<Longrightarrow> A \<times>\<^sub>F (INF i:J. B i) = (INF i:J. A \<times>\<^sub>F B i)"
 | |
| 993 |   using prod_filter_INF[of "{A}" J "\<lambda>x. x" B] by simp
 | |
| 994 | ||
| 60758 | 995 | subsection \<open>Limits\<close> | 
| 60036 | 996 | |
| 997 | definition filterlim :: "('a \<Rightarrow> 'b) \<Rightarrow> 'b filter \<Rightarrow> 'a filter \<Rightarrow> bool" where
 | |
| 998 | "filterlim f F2 F1 \<longleftrightarrow> filtermap f F1 \<le> F2" | |
| 999 | ||
| 1000 | syntax | |
| 1001 |   "_LIM" :: "pttrns \<Rightarrow> 'a \<Rightarrow> 'b \<Rightarrow> 'a \<Rightarrow> bool" ("(3LIM (_)/ (_)./ (_) :> (_))" [1000, 10, 0, 10] 10)
 | |
| 1002 | ||
| 1003 | translations | |
| 62367 | 1004 | "LIM x F1. f :> F2" == "CONST filterlim (\<lambda>x. f) F2 F1" | 
| 60036 | 1005 | |
| 62379 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1006 | lemma filterlim_top [simp]: "filterlim f top F" | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1007 | by (simp add: filterlim_def) | 
| 
340738057c8c
An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
 paulson <lp15@cam.ac.uk> parents: 
62378diff
changeset | 1008 | |
| 60036 | 1009 | lemma filterlim_iff: | 
| 1010 | "(LIM x F1. f x :> F2) \<longleftrightarrow> (\<forall>P. eventually P F2 \<longrightarrow> eventually (\<lambda>x. P (f x)) F1)" | |
| 1011 | unfolding filterlim_def le_filter_def eventually_filtermap .. | |
| 1012 | ||
| 1013 | lemma filterlim_compose: | |
| 1014 | "filterlim g F3 F2 \<Longrightarrow> filterlim f F2 F1 \<Longrightarrow> filterlim (\<lambda>x. g (f x)) F3 F1" | |
| 1015 | unfolding filterlim_def filtermap_filtermap[symmetric] by (metis filtermap_mono order_trans) | |
| 1016 | ||
| 1017 | lemma filterlim_mono: | |
| 1018 | "filterlim f F2 F1 \<Longrightarrow> F2 \<le> F2' \<Longrightarrow> F1' \<le> F1 \<Longrightarrow> filterlim f F2' F1'" | |
| 1019 | unfolding filterlim_def by (metis filtermap_mono order_trans) | |
| 1020 | ||
| 1021 | lemma filterlim_ident: "LIM x F. x :> F" | |
| 1022 | by (simp add: filterlim_def filtermap_ident) | |
| 1023 | ||
| 1024 | lemma filterlim_cong: | |
| 1025 | "F1 = F1' \<Longrightarrow> F2 = F2' \<Longrightarrow> eventually (\<lambda>x. f x = g x) F2 \<Longrightarrow> filterlim f F1 F2 = filterlim g F1' F2'" | |
| 1026 | by (auto simp: filterlim_def le_filter_def eventually_filtermap elim: eventually_elim2) | |
| 1027 | ||
| 1028 | lemma filterlim_mono_eventually: | |
| 1029 | assumes "filterlim f F G" and ord: "F \<le> F'" "G' \<le> G" | |
| 1030 | assumes eq: "eventually (\<lambda>x. f x = f' x) G'" | |
| 1031 | shows "filterlim f' F' G'" | |
| 1032 | apply (rule filterlim_cong[OF refl refl eq, THEN iffD1]) | |
| 1033 | apply (rule filterlim_mono[OF _ ord]) | |
| 1034 | apply fact | |
| 1035 | done | |
| 1036 | ||
| 1037 | lemma filtermap_mono_strong: "inj f \<Longrightarrow> filtermap f F \<le> filtermap f G \<longleftrightarrow> F \<le> G" | |
| 1038 | apply (auto intro!: filtermap_mono) [] | |
| 1039 | apply (auto simp: le_filter_def eventually_filtermap) | |
| 1040 | apply (erule_tac x="\<lambda>x. P (inv f x)" in allE) | |
| 1041 | apply auto | |
| 1042 | done | |
| 1043 | ||
| 1044 | lemma filtermap_eq_strong: "inj f \<Longrightarrow> filtermap f F = filtermap f G \<longleftrightarrow> F = G" | |
| 1045 | by (simp add: filtermap_mono_strong eq_iff) | |
| 1046 | ||
| 60721 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1047 | lemma filtermap_fun_inverse: | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1048 | assumes g: "filterlim g F G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1049 | assumes f: "filterlim f G F" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1050 | assumes ev: "eventually (\<lambda>x. f (g x) = x) G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1051 | shows "filtermap f F = G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1052 | proof (rule antisym) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1053 | show "filtermap f F \<le> G" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1054 | using f unfolding filterlim_def . | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1055 | have "G = filtermap f (filtermap g G)" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1056 | using ev by (auto elim: eventually_elim2 simp: filter_eq_iff eventually_filtermap) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1057 | also have "\<dots> \<le> filtermap f F" | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1058 | using g by (intro filtermap_mono) (simp add: filterlim_def) | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1059 | finally show "G \<le> filtermap f F" . | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1060 | qed | 
| 
c1b7793c23a3
generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
 hoelzl parents: 
60589diff
changeset | 1061 | |
| 60036 | 1062 | lemma filterlim_principal: | 
| 1063 | "(LIM x F. f x :> principal S) \<longleftrightarrow> (eventually (\<lambda>x. f x \<in> S) F)" | |
| 1064 | unfolding filterlim_def eventually_filtermap le_principal .. | |
| 1065 | ||
| 1066 | lemma filterlim_inf: | |
| 1067 | "(LIM x F1. f x :> inf F2 F3) \<longleftrightarrow> ((LIM x F1. f x :> F2) \<and> (LIM x F1. f x :> F3))" | |
| 1068 | unfolding filterlim_def by simp | |
| 1069 | ||
| 1070 | lemma filterlim_INF: | |
| 1071 | "(LIM x F. f x :> (INF b:B. G b)) \<longleftrightarrow> (\<forall>b\<in>B. LIM x F. f x :> G b)" | |
| 1072 | unfolding filterlim_def le_INF_iff .. | |
| 1073 | ||
| 1074 | lemma filterlim_INF_INF: | |
| 1075 | "(\<And>m. m \<in> J \<Longrightarrow> \<exists>i\<in>I. filtermap f (F i) \<le> G m) \<Longrightarrow> LIM x (INF i:I. F i). f x :> (INF j:J. G j)" | |
| 1076 | unfolding filterlim_def by (rule order_trans[OF filtermap_INF INF_mono]) | |
| 1077 | ||
| 1078 | lemma filterlim_base: | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1079 | "(\<And>m x. m \<in> J \<Longrightarrow> i m \<in> I) \<Longrightarrow> (\<And>m x. m \<in> J \<Longrightarrow> x \<in> F (i m) \<Longrightarrow> f x \<in> G m) \<Longrightarrow> | 
| 60036 | 1080 | LIM x (INF i:I. principal (F i)). f x :> (INF j:J. principal (G j))" | 
| 1081 | by (force intro!: filterlim_INF_INF simp: image_subset_iff) | |
| 1082 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1083 | lemma filterlim_base_iff: | 
| 60036 | 1084 |   assumes "I \<noteq> {}" and chain: "\<And>i j. i \<in> I \<Longrightarrow> j \<in> I \<Longrightarrow> F i \<subseteq> F j \<or> F j \<subseteq> F i"
 | 
| 1085 | shows "(LIM x (INF i:I. principal (F i)). f x :> INF j:J. principal (G j)) \<longleftrightarrow> | |
| 1086 | (\<forall>j\<in>J. \<exists>i\<in>I. \<forall>x\<in>F i. f x \<in> G j)" | |
| 1087 | unfolding filterlim_INF filterlim_principal | |
| 1088 | proof (subst eventually_INF_base) | |
| 1089 | fix i j assume "i \<in> I" "j \<in> I" | |
| 1090 | with chain[OF this] show "\<exists>x\<in>I. principal (F x) \<le> inf (principal (F i)) (principal (F j))" | |
| 1091 | by auto | |
| 60758 | 1092 | qed (auto simp: eventually_principal \<open>I \<noteq> {}\<close>)
 | 
| 60036 | 1093 | |
| 1094 | lemma filterlim_filtermap: "filterlim f F1 (filtermap g F2) = filterlim (\<lambda>x. f (g x)) F1 F2" | |
| 1095 | unfolding filterlim_def filtermap_filtermap .. | |
| 1096 | ||
| 1097 | lemma filterlim_sup: | |
| 1098 | "filterlim f F F1 \<Longrightarrow> filterlim f F F2 \<Longrightarrow> filterlim f F (sup F1 F2)" | |
| 1099 | unfolding filterlim_def filtermap_sup by auto | |
| 1100 | ||
| 1101 | lemma filterlim_sequentially_Suc: | |
| 1102 | "(LIM x sequentially. f (Suc x) :> F) \<longleftrightarrow> (LIM x sequentially. f x :> F)" | |
| 1103 | unfolding filterlim_iff by (subst eventually_sequentially_Suc) simp | |
| 1104 | ||
| 1105 | lemma filterlim_Suc: "filterlim Suc sequentially sequentially" | |
| 63967 
2aa42596edc3
new material on paths, etc. Also rationalisation
 paulson <lp15@cam.ac.uk> parents: 
63556diff
changeset | 1106 | by (simp add: filterlim_iff eventually_sequentially) | 
| 60036 | 1107 | |
| 60182 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1108 | lemma filterlim_If: | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1109 |   "LIM x inf F (principal {x. P x}). f x :> G \<Longrightarrow>
 | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1110 |     LIM x inf F (principal {x. \<not> P x}). g x :> G \<Longrightarrow>
 | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1111 | LIM x F. if P x then f x else g x :> G" | 
| 
e1ea5a6379c9
generalized tends over powr; added DERIV rule for powr
 hoelzl parents: 
60040diff
changeset | 1112 | unfolding filterlim_iff eventually_inf_principal by (auto simp: eventually_conj_iff) | 
| 60036 | 1113 | |
| 62367 | 1114 | lemma filterlim_Pair: | 
| 1115 | "LIM x F. f x :> G \<Longrightarrow> LIM x F. g x :> H \<Longrightarrow> LIM x F. (f x, g x) :> G \<times>\<^sub>F H" | |
| 1116 | unfolding filterlim_def | |
| 1117 | by (rule order_trans[OF filtermap_Pair prod_filter_mono]) | |
| 1118 | ||
| 60758 | 1119 | subsection \<open>Limits to @{const at_top} and @{const at_bot}\<close>
 | 
| 60036 | 1120 | |
| 1121 | lemma filterlim_at_top: | |
| 1122 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | |
| 1123 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 61810 | 1124 | by (auto simp: filterlim_iff eventually_at_top_linorder elim!: eventually_mono) | 
| 60036 | 1125 | |
| 1126 | lemma filterlim_at_top_mono: | |
| 1127 | "LIM x F. f x :> at_top \<Longrightarrow> eventually (\<lambda>x. f x \<le> (g x::'a::linorder)) F \<Longrightarrow> | |
| 1128 | LIM x F. g x :> at_top" | |
| 1129 | by (auto simp: filterlim_at_top elim: eventually_elim2 intro: order_trans) | |
| 1130 | ||
| 1131 | lemma filterlim_at_top_dense: | |
| 1132 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)"
 | |
| 1133 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. Z < f x) F)" | |
| 61810 | 1134 | by (metis eventually_mono[of _ F] eventually_gt_at_top order_less_imp_le | 
| 60036 | 1135 | filterlim_at_top[of f F] filterlim_iff[of f at_top F]) | 
| 1136 | ||
| 1137 | lemma filterlim_at_top_ge: | |
| 1138 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1139 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z\<ge>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1140 | unfolding at_top_sub[of c] filterlim_INF by (auto simp add: filterlim_principal) | |
| 1141 | ||
| 1142 | lemma filterlim_at_top_at_top: | |
| 1143 | fixes f :: "'a::linorder \<Rightarrow> 'b::linorder" | |
| 1144 | assumes mono: "\<And>x y. Q x \<Longrightarrow> Q y \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | |
| 1145 | assumes bij: "\<And>x. P x \<Longrightarrow> f (g x) = x" "\<And>x. P x \<Longrightarrow> Q (g x)" | |
| 1146 | assumes Q: "eventually Q at_top" | |
| 1147 | assumes P: "eventually P at_top" | |
| 1148 | shows "filterlim f at_top at_top" | |
| 1149 | proof - | |
| 1150 | from P obtain x where x: "\<And>y. x \<le> y \<Longrightarrow> P y" | |
| 1151 | unfolding eventually_at_top_linorder by auto | |
| 1152 | show ?thesis | |
| 1153 | proof (intro filterlim_at_top_ge[THEN iffD2] allI impI) | |
| 1154 | fix z assume "x \<le> z" | |
| 1155 | with x have "P z" by auto | |
| 1156 | have "eventually (\<lambda>x. g z \<le> x) at_top" | |
| 1157 | by (rule eventually_ge_at_top) | |
| 1158 | with Q show "eventually (\<lambda>x. z \<le> f x) at_top" | |
| 60758 | 1159 | by eventually_elim (metis mono bij \<open>P z\<close>) | 
| 60036 | 1160 | qed | 
| 1161 | qed | |
| 1162 | ||
| 1163 | lemma filterlim_at_top_gt: | |
| 1164 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | |
| 1165 | shows "(LIM x F. f x :> at_top) \<longleftrightarrow> (\<forall>Z>c. eventually (\<lambda>x. Z \<le> f x) F)" | |
| 1166 | by (metis filterlim_at_top order_less_le_trans gt_ex filterlim_at_top_ge) | |
| 1167 | ||
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1168 | lemma filterlim_at_bot: | 
| 60036 | 1169 |   fixes f :: "'a \<Rightarrow> ('b::linorder)"
 | 
| 1170 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F)" | |
| 61810 | 1171 | by (auto simp: filterlim_iff eventually_at_bot_linorder elim!: eventually_mono) | 
| 60036 | 1172 | |
| 1173 | lemma filterlim_at_bot_dense: | |
| 1174 |   fixes f :: "'a \<Rightarrow> ('b::{dense_linorder, no_bot})"
 | |
| 1175 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z. eventually (\<lambda>x. f x < Z) F)" | |
| 1176 | proof (auto simp add: filterlim_at_bot[of f F]) | |
| 1177 | fix Z :: 'b | |
| 1178 | from lt_ex [of Z] obtain Z' where 1: "Z' < Z" .. | |
| 1179 | assume "\<forall>Z. eventually (\<lambda>x. f x \<le> Z) F" | |
| 1180 | hence "eventually (\<lambda>x. f x \<le> Z') F" by auto | |
| 1181 | thus "eventually (\<lambda>x. f x < Z) F" | |
| 61810 | 1182 | apply (rule eventually_mono) | 
| 60036 | 1183 | using 1 by auto | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1184 | next | 
| 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1185 | fix Z :: 'b | 
| 60036 | 1186 | show "\<forall>Z. eventually (\<lambda>x. f x < Z) F \<Longrightarrow> eventually (\<lambda>x. f x \<le> Z) F" | 
| 61810 | 1187 | by (drule spec [of _ Z], erule eventually_mono, auto simp add: less_imp_le) | 
| 60036 | 1188 | qed | 
| 1189 | ||
| 1190 | lemma filterlim_at_bot_le: | |
| 1191 |   fixes f :: "'a \<Rightarrow> ('b::linorder)" and c :: "'b"
 | |
| 1192 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1193 | unfolding filterlim_at_bot | |
| 1194 | proof safe | |
| 1195 | fix Z assume *: "\<forall>Z\<le>c. eventually (\<lambda>x. Z \<ge> f x) F" | |
| 1196 | with *[THEN spec, of "min Z c"] show "eventually (\<lambda>x. Z \<ge> f x) F" | |
| 61810 | 1197 | by (auto elim!: eventually_mono) | 
| 60036 | 1198 | qed simp | 
| 1199 | ||
| 1200 | lemma filterlim_at_bot_lt: | |
| 1201 |   fixes f :: "'a \<Rightarrow> ('b::unbounded_dense_linorder)" and c :: "'b"
 | |
| 1202 | shows "(LIM x F. f x :> at_bot) \<longleftrightarrow> (\<forall>Z<c. eventually (\<lambda>x. Z \<ge> f x) F)" | |
| 1203 | by (metis filterlim_at_bot filterlim_at_bot_le lt_ex order_le_less_trans) | |
| 1204 | ||
| 1205 | ||
| 60758 | 1206 | subsection \<open>Setup @{typ "'a filter"} for lifting and transfer\<close>
 | 
| 60036 | 1207 | |
| 63343 | 1208 | context includes lifting_syntax | 
| 1209 | begin | |
| 60036 | 1210 | |
| 1211 | definition rel_filter :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a filter \<Rightarrow> 'b filter \<Rightarrow> bool"
 | |
| 1212 | where "rel_filter R F G = ((R ===> op =) ===> op =) (Rep_filter F) (Rep_filter G)" | |
| 1213 | ||
| 1214 | lemma rel_filter_eventually: | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1215 | "rel_filter R F G \<longleftrightarrow> | 
| 60036 | 1216 | ((R ===> op =) ===> op =) (\<lambda>P. eventually P F) (\<lambda>P. eventually P G)" | 
| 1217 | by(simp add: rel_filter_def eventually_def) | |
| 1218 | ||
| 1219 | lemma filtermap_id [simp, id_simps]: "filtermap id = id" | |
| 1220 | by(simp add: fun_eq_iff id_def filtermap_ident) | |
| 1221 | ||
| 1222 | lemma filtermap_id' [simp]: "filtermap (\<lambda>x. x) = (\<lambda>F. F)" | |
| 1223 | using filtermap_id unfolding id_def . | |
| 1224 | ||
| 1225 | lemma Quotient_filter [quot_map]: | |
| 1226 | assumes Q: "Quotient R Abs Rep T" | |
| 1227 | shows "Quotient (rel_filter R) (filtermap Abs) (filtermap Rep) (rel_filter T)" | |
| 1228 | unfolding Quotient_alt_def | |
| 1229 | proof(intro conjI strip) | |
| 1230 | from Q have *: "\<And>x y. T x y \<Longrightarrow> Abs x = y" | |
| 1231 | unfolding Quotient_alt_def by blast | |
| 1232 | ||
| 1233 | fix F G | |
| 1234 | assume "rel_filter T F G" | |
| 1235 | thus "filtermap Abs F = G" unfolding filter_eq_iff | |
| 1236 | by(auto simp add: eventually_filtermap rel_filter_eventually * rel_funI del: iffI elim!: rel_funD) | |
| 1237 | next | |
| 1238 | from Q have *: "\<And>x. T (Rep x) x" unfolding Quotient_alt_def by blast | |
| 1239 | ||
| 1240 | fix F | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1241 | show "rel_filter T (filtermap Rep F) F" | 
| 60036 | 1242 | by(auto elim: rel_funD intro: * intro!: ext arg_cong[where f="\<lambda>P. eventually P F"] rel_funI | 
| 1243 | del: iffI simp add: eventually_filtermap rel_filter_eventually) | |
| 1244 | qed(auto simp add: map_fun_def o_def eventually_filtermap filter_eq_iff fun_eq_iff rel_filter_eventually | |
| 1245 | fun_quotient[OF fun_quotient[OF Q identity_quotient] identity_quotient, unfolded Quotient_alt_def]) | |
| 1246 | ||
| 1247 | lemma eventually_parametric [transfer_rule]: | |
| 1248 | "((A ===> op =) ===> rel_filter A ===> op =) eventually eventually" | |
| 1249 | by(simp add: rel_fun_def rel_filter_eventually) | |
| 1250 | ||
| 60038 | 1251 | lemma frequently_parametric [transfer_rule]: | 
| 1252 | "((A ===> op =) ===> rel_filter A ===> op =) frequently frequently" | |
| 1253 | unfolding frequently_def[abs_def] by transfer_prover | |
| 1254 | ||
| 60036 | 1255 | lemma rel_filter_eq [relator_eq]: "rel_filter op = = op =" | 
| 1256 | by(auto simp add: rel_filter_eventually rel_fun_eq fun_eq_iff filter_eq_iff) | |
| 1257 | ||
| 1258 | lemma rel_filter_mono [relator_mono]: | |
| 1259 | "A \<le> B \<Longrightarrow> rel_filter A \<le> rel_filter B" | |
| 1260 | unfolding rel_filter_eventually[abs_def] | |
| 1261 | by(rule le_funI)+(intro fun_mono fun_mono[THEN le_funD, THEN le_funD] order.refl) | |
| 1262 | ||
| 1263 | lemma rel_filter_conversep [simp]: "rel_filter A\<inverse>\<inverse> = (rel_filter A)\<inverse>\<inverse>" | |
| 61233 
1da01148d4b1
Prepared two non-terminating proofs; no obvious link with my changes
 paulson <lp15@cam.ac.uk> parents: 
60974diff
changeset | 1264 | apply (simp add: rel_filter_eventually fun_eq_iff rel_fun_def) | 
| 
1da01148d4b1
Prepared two non-terminating proofs; no obvious link with my changes
 paulson <lp15@cam.ac.uk> parents: 
60974diff
changeset | 1265 | apply (safe; metis) | 
| 
1da01148d4b1
Prepared two non-terminating proofs; no obvious link with my changes
 paulson <lp15@cam.ac.uk> parents: 
60974diff
changeset | 1266 | done | 
| 60036 | 1267 | |
| 1268 | lemma is_filter_parametric_aux: | |
| 1269 | assumes "is_filter F" | |
| 1270 | assumes [transfer_rule]: "bi_total A" "bi_unique A" | |
| 1271 | and [transfer_rule]: "((A ===> op =) ===> op =) F G" | |
| 1272 | shows "is_filter G" | |
| 1273 | proof - | |
| 1274 | interpret is_filter F by fact | |
| 1275 | show ?thesis | |
| 1276 | proof | |
| 1277 | have "F (\<lambda>_. True) = G (\<lambda>x. True)" by transfer_prover | |
| 1278 | thus "G (\<lambda>x. True)" by(simp add: True) | |
| 1279 | next | |
| 1280 | fix P' Q' | |
| 1281 | assume "G P'" "G Q'" | |
| 1282 | moreover | |
| 60758 | 1283 | from bi_total_fun[OF \<open>bi_unique A\<close> bi_total_eq, unfolded bi_total_def] | 
| 60036 | 1284 | obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast | 
| 1285 | have "F P = G P'" "F Q = G Q'" by transfer_prover+ | |
| 1286 | ultimately have "F (\<lambda>x. P x \<and> Q x)" by(simp add: conj) | |
| 1287 | moreover have "F (\<lambda>x. P x \<and> Q x) = G (\<lambda>x. P' x \<and> Q' x)" by transfer_prover | |
| 1288 | ultimately show "G (\<lambda>x. P' x \<and> Q' x)" by simp | |
| 1289 | next | |
| 1290 | fix P' Q' | |
| 1291 | assume "\<forall>x. P' x \<longrightarrow> Q' x" "G P'" | |
| 1292 | moreover | |
| 60758 | 1293 | from bi_total_fun[OF \<open>bi_unique A\<close> bi_total_eq, unfolded bi_total_def] | 
| 60036 | 1294 | obtain P Q where [transfer_rule]: "(A ===> op =) P P'" "(A ===> op =) Q Q'" by blast | 
| 1295 | have "F P = G P'" by transfer_prover | |
| 1296 | moreover have "(\<forall>x. P x \<longrightarrow> Q x) \<longleftrightarrow> (\<forall>x. P' x \<longrightarrow> Q' x)" by transfer_prover | |
| 1297 | ultimately have "F Q" by(simp add: mono) | |
| 1298 | moreover have "F Q = G Q'" by transfer_prover | |
| 1299 | ultimately show "G Q'" by simp | |
| 1300 | qed | |
| 1301 | qed | |
| 1302 | ||
| 1303 | lemma is_filter_parametric [transfer_rule]: | |
| 1304 | "\<lbrakk> bi_total A; bi_unique A \<rbrakk> | |
| 1305 | \<Longrightarrow> (((A ===> op =) ===> op =) ===> op =) is_filter is_filter" | |
| 1306 | apply(rule rel_funI) | |
| 1307 | apply(rule iffI) | |
| 1308 | apply(erule (3) is_filter_parametric_aux) | |
| 1309 | apply(erule is_filter_parametric_aux[where A="conversep A"]) | |
| 61233 
1da01148d4b1
Prepared two non-terminating proofs; no obvious link with my changes
 paulson <lp15@cam.ac.uk> parents: 
60974diff
changeset | 1310 | apply (simp_all add: rel_fun_def) | 
| 
1da01148d4b1
Prepared two non-terminating proofs; no obvious link with my changes
 paulson <lp15@cam.ac.uk> parents: 
60974diff
changeset | 1311 | apply metis | 
| 60036 | 1312 | done | 
| 1313 | ||
| 1314 | lemma left_total_rel_filter [transfer_rule]: | |
| 1315 | assumes [transfer_rule]: "bi_total A" "bi_unique A" | |
| 1316 | shows "left_total (rel_filter A)" | |
| 1317 | proof(rule left_totalI) | |
| 1318 | fix F :: "'a filter" | |
| 60758 | 1319 | from bi_total_fun[OF bi_unique_fun[OF \<open>bi_total A\<close> bi_unique_eq] bi_total_eq] | 
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1320 | obtain G where [transfer_rule]: "((A ===> op =) ===> op =) (\<lambda>P. eventually P F) G" | 
| 60036 | 1321 | unfolding bi_total_def by blast | 
| 1322 | moreover have "is_filter (\<lambda>P. eventually P F) \<longleftrightarrow> is_filter G" by transfer_prover | |
| 1323 | hence "is_filter G" by(simp add: eventually_def is_filter_Rep_filter) | |
| 1324 | ultimately have "rel_filter A F (Abs_filter G)" | |
| 1325 | by(simp add: rel_filter_eventually eventually_Abs_filter) | |
| 1326 | thus "\<exists>G. rel_filter A F G" .. | |
| 1327 | qed | |
| 1328 | ||
| 1329 | lemma right_total_rel_filter [transfer_rule]: | |
| 1330 | "\<lbrakk> bi_total A; bi_unique A \<rbrakk> \<Longrightarrow> right_total (rel_filter A)" | |
| 1331 | using left_total_rel_filter[of "A\<inverse>\<inverse>"] by simp | |
| 1332 | ||
| 1333 | lemma bi_total_rel_filter [transfer_rule]: | |
| 1334 | assumes "bi_total A" "bi_unique A" | |
| 1335 | shows "bi_total (rel_filter A)" | |
| 1336 | unfolding bi_total_alt_def using assms | |
| 1337 | by(simp add: left_total_rel_filter right_total_rel_filter) | |
| 1338 | ||
| 1339 | lemma left_unique_rel_filter [transfer_rule]: | |
| 1340 | assumes "left_unique A" | |
| 1341 | shows "left_unique (rel_filter A)" | |
| 1342 | proof(rule left_uniqueI) | |
| 1343 | fix F F' G | |
| 1344 | assume [transfer_rule]: "rel_filter A F G" "rel_filter A F' G" | |
| 1345 | show "F = F'" | |
| 1346 | unfolding filter_eq_iff | |
| 1347 | proof | |
| 1348 | fix P :: "'a \<Rightarrow> bool" | |
| 1349 | obtain P' where [transfer_rule]: "(A ===> op =) P P'" | |
| 1350 | using left_total_fun[OF assms left_total_eq] unfolding left_total_def by blast | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1351 | have "eventually P F = eventually P' G" | 
| 60036 | 1352 | and "eventually P F' = eventually P' G" by transfer_prover+ | 
| 1353 | thus "eventually P F = eventually P F'" by simp | |
| 1354 | qed | |
| 1355 | qed | |
| 1356 | ||
| 1357 | lemma right_unique_rel_filter [transfer_rule]: | |
| 1358 | "right_unique A \<Longrightarrow> right_unique (rel_filter A)" | |
| 1359 | using left_unique_rel_filter[of "A\<inverse>\<inverse>"] by simp | |
| 1360 | ||
| 1361 | lemma bi_unique_rel_filter [transfer_rule]: | |
| 1362 | "bi_unique A \<Longrightarrow> bi_unique (rel_filter A)" | |
| 1363 | by(simp add: bi_unique_alt_def left_unique_rel_filter right_unique_rel_filter) | |
| 1364 | ||
| 1365 | lemma top_filter_parametric [transfer_rule]: | |
| 1366 | "bi_total A \<Longrightarrow> (rel_filter A) top top" | |
| 1367 | by(simp add: rel_filter_eventually All_transfer) | |
| 1368 | ||
| 1369 | lemma bot_filter_parametric [transfer_rule]: "(rel_filter A) bot bot" | |
| 1370 | by(simp add: rel_filter_eventually rel_fun_def) | |
| 1371 | ||
| 1372 | lemma sup_filter_parametric [transfer_rule]: | |
| 1373 | "(rel_filter A ===> rel_filter A ===> rel_filter A) sup sup" | |
| 1374 | by(fastforce simp add: rel_filter_eventually[abs_def] eventually_sup dest: rel_funD) | |
| 1375 | ||
| 1376 | lemma Sup_filter_parametric [transfer_rule]: | |
| 1377 | "(rel_set (rel_filter A) ===> rel_filter A) Sup Sup" | |
| 1378 | proof(rule rel_funI) | |
| 1379 | fix S T | |
| 1380 | assume [transfer_rule]: "rel_set (rel_filter A) S T" | |
| 1381 | show "rel_filter A (Sup S) (Sup T)" | |
| 1382 | by(simp add: rel_filter_eventually eventually_Sup) transfer_prover | |
| 1383 | qed | |
| 1384 | ||
| 1385 | lemma principal_parametric [transfer_rule]: | |
| 1386 | "(rel_set A ===> rel_filter A) principal principal" | |
| 1387 | proof(rule rel_funI) | |
| 1388 | fix S S' | |
| 1389 | assume [transfer_rule]: "rel_set A S S'" | |
| 1390 | show "rel_filter A (principal S) (principal S')" | |
| 1391 | by(simp add: rel_filter_eventually eventually_principal) transfer_prover | |
| 1392 | qed | |
| 1393 | ||
| 1394 | context | |
| 1395 | fixes A :: "'a \<Rightarrow> 'b \<Rightarrow> bool" | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1396 | assumes [transfer_rule]: "bi_unique A" | 
| 60036 | 1397 | begin | 
| 1398 | ||
| 1399 | lemma le_filter_parametric [transfer_rule]: | |
| 1400 | "(rel_filter A ===> rel_filter A ===> op =) op \<le> op \<le>" | |
| 1401 | unfolding le_filter_def[abs_def] by transfer_prover | |
| 1402 | ||
| 1403 | lemma less_filter_parametric [transfer_rule]: | |
| 1404 | "(rel_filter A ===> rel_filter A ===> op =) op < op <" | |
| 1405 | unfolding less_filter_def[abs_def] by transfer_prover | |
| 1406 | ||
| 1407 | context | |
| 1408 | assumes [transfer_rule]: "bi_total A" | |
| 1409 | begin | |
| 1410 | ||
| 1411 | lemma Inf_filter_parametric [transfer_rule]: | |
| 1412 | "(rel_set (rel_filter A) ===> rel_filter A) Inf Inf" | |
| 1413 | unfolding Inf_filter_def[abs_def] by transfer_prover | |
| 1414 | ||
| 1415 | lemma inf_filter_parametric [transfer_rule]: | |
| 1416 | "(rel_filter A ===> rel_filter A ===> rel_filter A) inf inf" | |
| 1417 | proof(intro rel_funI)+ | |
| 1418 | fix F F' G G' | |
| 1419 | assume [transfer_rule]: "rel_filter A F F'" "rel_filter A G G'" | |
| 1420 |   have "rel_filter A (Inf {F, G}) (Inf {F', G'})" by transfer_prover
 | |
| 1421 | thus "rel_filter A (inf F G) (inf F' G')" by simp | |
| 1422 | qed | |
| 1423 | ||
| 1424 | end | |
| 1425 | ||
| 1426 | end | |
| 1427 | ||
| 1428 | end | |
| 1429 | ||
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1430 | text \<open>Code generation for filters\<close> | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1431 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1432 | definition abstract_filter :: "(unit \<Rightarrow> 'a filter) \<Rightarrow> 'a filter" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1433 | where [simp]: "abstract_filter f = f ()" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1434 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1435 | code_datatype principal abstract_filter | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1436 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1437 | hide_const (open) abstract_filter | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1438 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1439 | declare [[code drop: filterlim prod_filter filtermap eventually | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1440 | "inf :: _ filter \<Rightarrow> _" "sup :: _ filter \<Rightarrow> _" "less_eq :: _ filter \<Rightarrow> _" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1441 | Abs_filter]] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1442 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1443 | declare filterlim_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1444 | declare principal_prod_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1445 | declare filtermap_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1446 | declare eventually_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1447 | declare inf_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1448 | declare sup_principal [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1449 | declare principal_le_iff [code] | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1450 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1451 | lemma Rep_filter_iff_eventually [simp, code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1452 | "Rep_filter F P \<longleftrightarrow> eventually P F" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1453 | by (simp add: eventually_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1454 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1455 | lemma bot_eq_principal_empty [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1456 |   "bot = principal {}"
 | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1457 | by simp | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1458 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1459 | lemma top_eq_principal_UNIV [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1460 | "top = principal UNIV" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1461 | by simp | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1462 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1463 | instantiation filter :: (equal) equal | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1464 | begin | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1465 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1466 | definition equal_filter :: "'a filter \<Rightarrow> 'a filter \<Rightarrow> bool" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1467 | where "equal_filter F F' \<longleftrightarrow> F = F'" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1468 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1469 | lemma equal_filter [code]: | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1470 | "HOL.equal (principal A) (principal B) \<longleftrightarrow> A = B" | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1471 | by (simp add: equal_filter_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1472 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1473 | instance | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1474 | by standard (simp add: equal_filter_def) | 
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1475 | |
| 61806 
d2e62ae01cd8
Cauchy's integral formula for circles.  Starting to fix eventually_mono.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1476 | end | 
| 62123 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1477 | |
| 
df65f5c27c15
setup code generation for filters as suggested by Florian
 hoelzl parents: 
62102diff
changeset | 1478 | end |