| author | huffman | 
| Thu, 11 Jun 2009 09:03:24 -0700 | |
| changeset 31563 | ded2364d14d4 | 
| parent 23767 | 7272a839ccd9 | 
| child 32693 | 6c6b1ba5e71e | 
| permissions | -rw-r--r-- | 
| 4776 | 1 | (* Title: HOL/UNITY/WFair | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1998 University of Cambridge | |
| 5 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 6 | Conditional Fairness versions of transient, ensures, leadsTo. | 
| 4776 | 7 | |
| 8 | From Misra, "A Logic for Concurrent Programming", 1994 | |
| 9 | *) | |
| 10 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 11 | header{*Progress*}
 | 
| 13798 | 12 | |
| 16417 | 13 | theory WFair imports UNITY begin | 
| 4776 | 14 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 15 | text{*The original version of this theory was based on weak fairness.  (Thus,
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 16 | the entire UNITY development embodied this assumption, until February 2003.) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 17 | Weak fairness states that if a command is enabled continuously, then it is | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 18 | eventually executed. Ernie Cohen suggested that I instead adopt unconditional | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 19 | fairness: every command is executed infinitely often. | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 20 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 21 | In fact, Misra's paper on "Progress" seems to be ambiguous about the correct | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 22 | interpretation, and says that the two forms of fairness are equivalent. They | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 23 | differ only on their treatment of partial transitions, which under | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 24 | unconditional fairness behave magically. That is because if there are partial | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 25 | transitions then there may be no fair executions, making all leads-to | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 26 | properties hold vacuously. | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 27 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 28 | Unconditional fairness has some great advantages. By distinguishing partial | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 29 | transitions from total ones that are the identity on part of their domain, it | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 30 | is more expressive. Also, by simplifying the definition of the transient | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 31 | property, it simplifies many proofs. A drawback is that some laws only hold | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 32 | under the assumption that all transitions are total. The best-known of these | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 33 | is the impossibility law for leads-to. | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 34 | *} | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 35 | |
| 4776 | 36 | constdefs | 
| 37 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 38 |   --{*This definition specifies conditional fairness.  The rest of the theory
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 39 | is generic to all forms of fairness. To get weak fairness, conjoin | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 40 |       the inclusion below with @{term "A \<subseteq> Domain act"}, which specifies 
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 41 |       that the action is enabled over all of @{term A}.*}
 | 
| 5648 | 42 | transient :: "'a set => 'a program set" | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 43 |     "transient A == {F. \<exists>act\<in>Acts F. act``A \<subseteq> -A}"
 | 
| 4776 | 44 | |
| 13797 | 45 | ensures :: "['a set, 'a set] => 'a program set" (infixl "ensures" 60) | 
| 13805 | 46 | "A ensures B == (A-B co A \<union> B) \<inter> transient (A-B)" | 
| 8006 | 47 | |
| 6536 | 48 | |
| 23767 | 49 | inductive_set | 
| 6801 
9e0037839d63
renamed the underlying relation of leadsTo from "leadsto"
 paulson parents: 
6536diff
changeset | 50 |   leads :: "'a program => ('a set * 'a set) set"
 | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 51 |     --{*LEADS-TO constant for the inductive definition*}
 | 
| 23767 | 52 | for F :: "'a program" | 
| 53 | where | |
| 4776 | 54 | |
| 13805 | 55 | Basis: "F \<in> A ensures B ==> (A,B) \<in> leads F" | 
| 4776 | 56 | |
| 23767 | 57 | | Trans: "[| (A,B) \<in> leads F; (B,C) \<in> leads F |] ==> (A,C) \<in> leads F" | 
| 4776 | 58 | |
| 23767 | 59 | | Union: "\<forall>A \<in> S. (A,B) \<in> leads F ==> (Union S, B) \<in> leads F" | 
| 4776 | 60 | |
| 5155 | 61 | |
| 8006 | 62 | constdefs | 
| 6536 | 63 | |
| 13797 | 64 | leadsTo :: "['a set, 'a set] => 'a program set" (infixl "leadsTo" 60) | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 65 |      --{*visible version of the LEADS-TO relation*}
 | 
| 13805 | 66 |     "A leadsTo B == {F. (A,B) \<in> leads F}"
 | 
| 5648 | 67 | |
| 68 | wlt :: "['a program, 'a set] => 'a set" | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 69 |      --{*predicate transformer: the largest set that leads to @{term B}*}
 | 
| 13805 | 70 |     "wlt F B == Union {A. F \<in> A leadsTo B}"
 | 
| 4776 | 71 | |
| 9685 | 72 | syntax (xsymbols) | 
| 13797 | 73 | "op leadsTo" :: "['a set, 'a set] => 'a program set" (infixl "\<longmapsto>" 60) | 
| 74 | ||
| 75 | ||
| 13798 | 76 | subsection{*transient*}
 | 
| 13797 | 77 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 78 | lemma stable_transient: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 79 | "[| F \<in> stable A; F \<in> transient A |] ==> \<exists>act\<in>Acts F. A \<subseteq> - (Domain act)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 80 | apply (simp add: stable_def constrains_def transient_def, clarify) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 81 | apply (rule rev_bexI, auto) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 82 | done | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 83 | |
| 13797 | 84 | lemma stable_transient_empty: | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 85 |     "[| F \<in> stable A; F \<in> transient A; all_total F |] ==> A = {}"
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 86 | apply (drule stable_transient, assumption) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 87 | apply (simp add: all_total_def) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 88 | done | 
| 13797 | 89 | |
| 90 | lemma transient_strengthen: | |
| 13805 | 91 | "[| F \<in> transient A; B \<subseteq> A |] ==> F \<in> transient B" | 
| 13797 | 92 | apply (unfold transient_def, clarify) | 
| 93 | apply (blast intro!: rev_bexI) | |
| 94 | done | |
| 95 | ||
| 96 | lemma transientI: | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 97 | "[| act: Acts F; act``A \<subseteq> -A |] ==> F \<in> transient A" | 
| 13797 | 98 | by (unfold transient_def, blast) | 
| 99 | ||
| 100 | lemma transientE: | |
| 13805 | 101 | "[| F \<in> transient A; | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 102 | !!act. [| act: Acts F; act``A \<subseteq> -A |] ==> P |] | 
| 13797 | 103 | ==> P" | 
| 104 | by (unfold transient_def, blast) | |
| 105 | ||
| 106 | lemma transient_empty [simp]: "transient {} = UNIV"
 | |
| 107 | by (unfold transient_def, auto) | |
| 108 | ||
| 109 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 110 | text{*This equation recovers the notion of weak fairness.  A totalized
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 111 | program satisfies a transient assertion just if the original program | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 112 | contains a suitable action that is also enabled.*} | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 113 | lemma totalize_transient_iff: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 114 | "(totalize F \<in> transient A) = (\<exists>act\<in>Acts F. A \<subseteq> Domain act & act``A \<subseteq> -A)" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 115 | apply (simp add: totalize_def totalize_act_def transient_def | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 116 | Un_Image Un_subset_iff, safe) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 117 | apply (blast intro!: rev_bexI)+ | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 118 | done | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 119 | |
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 120 | lemma totalize_transientI: | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 121 | "[| act: Acts F; A \<subseteq> Domain act; act``A \<subseteq> -A |] | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 122 | ==> totalize F \<in> transient A" | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 123 | by (simp add: totalize_transient_iff, blast) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 124 | |
| 13798 | 125 | subsection{*ensures*}
 | 
| 13797 | 126 | |
| 127 | lemma ensuresI: | |
| 13805 | 128 | "[| F \<in> (A-B) co (A \<union> B); F \<in> transient (A-B) |] ==> F \<in> A ensures B" | 
| 13797 | 129 | by (unfold ensures_def, blast) | 
| 130 | ||
| 131 | lemma ensuresD: | |
| 13805 | 132 | "F \<in> A ensures B ==> F \<in> (A-B) co (A \<union> B) & F \<in> transient (A-B)" | 
| 13797 | 133 | by (unfold ensures_def, blast) | 
| 134 | ||
| 135 | lemma ensures_weaken_R: | |
| 13805 | 136 | "[| F \<in> A ensures A'; A'<=B' |] ==> F \<in> A ensures B'" | 
| 13797 | 137 | apply (unfold ensures_def) | 
| 138 | apply (blast intro: constrains_weaken transient_strengthen) | |
| 139 | done | |
| 140 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 141 | text{*The L-version (precondition strengthening) fails, but we have this*}
 | 
| 13797 | 142 | lemma stable_ensures_Int: | 
| 13805 | 143 | "[| F \<in> stable C; F \<in> A ensures B |] | 
| 144 | ==> F \<in> (C \<inter> A) ensures (C \<inter> B)" | |
| 13797 | 145 | apply (unfold ensures_def) | 
| 146 | apply (auto simp add: ensures_def Int_Un_distrib [symmetric] Diff_Int_distrib [symmetric]) | |
| 147 | prefer 2 apply (blast intro: transient_strengthen) | |
| 148 | apply (blast intro: stable_constrains_Int constrains_weaken) | |
| 149 | done | |
| 150 | ||
| 151 | lemma stable_transient_ensures: | |
| 13805 | 152 | "[| F \<in> stable A; F \<in> transient C; A \<subseteq> B \<union> C |] ==> F \<in> A ensures B" | 
| 13797 | 153 | apply (simp add: ensures_def stable_def) | 
| 154 | apply (blast intro: constrains_weaken transient_strengthen) | |
| 155 | done | |
| 156 | ||
| 13805 | 157 | lemma ensures_eq: "(A ensures B) = (A unless B) \<inter> transient (A-B)" | 
| 13797 | 158 | by (simp (no_asm) add: ensures_def unless_def) | 
| 159 | ||
| 160 | ||
| 13798 | 161 | subsection{*leadsTo*}
 | 
| 13797 | 162 | |
| 13805 | 163 | lemma leadsTo_Basis [intro]: "F \<in> A ensures B ==> F \<in> A leadsTo B" | 
| 13797 | 164 | apply (unfold leadsTo_def) | 
| 165 | apply (blast intro: leads.Basis) | |
| 166 | done | |
| 167 | ||
| 168 | lemma leadsTo_Trans: | |
| 13805 | 169 | "[| F \<in> A leadsTo B; F \<in> B leadsTo C |] ==> F \<in> A leadsTo C" | 
| 13797 | 170 | apply (unfold leadsTo_def) | 
| 171 | apply (blast intro: leads.Trans) | |
| 172 | done | |
| 173 | ||
| 14112 | 174 | lemma leadsTo_Basis': | 
| 175 | "[| F \<in> A co A \<union> B; F \<in> transient A |] ==> F \<in> A leadsTo B" | |
| 176 | apply (drule_tac B = "A-B" in constrains_weaken_L) | |
| 177 | apply (drule_tac [2] B = "A-B" in transient_strengthen) | |
| 178 | apply (rule_tac [3] ensuresI [THEN leadsTo_Basis]) | |
| 179 | apply (blast+) | |
| 180 | done | |
| 181 | ||
| 13805 | 182 | lemma transient_imp_leadsTo: "F \<in> transient A ==> F \<in> A leadsTo (-A)" | 
| 13797 | 183 | by (simp (no_asm_simp) add: leadsTo_Basis ensuresI Compl_partition) | 
| 184 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 185 | text{*Useful with cancellation, disjunction*}
 | 
| 13805 | 186 | lemma leadsTo_Un_duplicate: "F \<in> A leadsTo (A' \<union> A') ==> F \<in> A leadsTo A'" | 
| 13797 | 187 | by (simp add: Un_ac) | 
| 188 | ||
| 189 | lemma leadsTo_Un_duplicate2: | |
| 13805 | 190 | "F \<in> A leadsTo (A' \<union> C \<union> C) ==> F \<in> A leadsTo (A' \<union> C)" | 
| 13797 | 191 | by (simp add: Un_ac) | 
| 192 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 193 | text{*The Union introduction rule as we should have liked to state it*}
 | 
| 13797 | 194 | lemma leadsTo_Union: | 
| 13805 | 195 | "(!!A. A \<in> S ==> F \<in> A leadsTo B) ==> F \<in> (Union S) leadsTo B" | 
| 13797 | 196 | apply (unfold leadsTo_def) | 
| 197 | apply (blast intro: leads.Union) | |
| 198 | done | |
| 199 | ||
| 200 | lemma leadsTo_Union_Int: | |
| 13805 | 201 | "(!!A. A \<in> S ==> F \<in> (A \<inter> C) leadsTo B) ==> F \<in> (Union S \<inter> C) leadsTo B" | 
| 13797 | 202 | apply (unfold leadsTo_def) | 
| 203 | apply (simp only: Int_Union_Union) | |
| 204 | apply (blast intro: leads.Union) | |
| 205 | done | |
| 206 | ||
| 207 | lemma leadsTo_UN: | |
| 13805 | 208 | "(!!i. i \<in> I ==> F \<in> (A i) leadsTo B) ==> F \<in> (\<Union>i \<in> I. A i) leadsTo B" | 
| 13797 | 209 | apply (subst Union_image_eq [symmetric]) | 
| 210 | apply (blast intro: leadsTo_Union) | |
| 211 | done | |
| 212 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 213 | text{*Binary union introduction rule*}
 | 
| 13797 | 214 | lemma leadsTo_Un: | 
| 13805 | 215 | "[| F \<in> A leadsTo C; F \<in> B leadsTo C |] ==> F \<in> (A \<union> B) leadsTo C" | 
| 13797 | 216 | apply (subst Un_eq_Union) | 
| 217 | apply (blast intro: leadsTo_Union) | |
| 218 | done | |
| 219 | ||
| 220 | lemma single_leadsTo_I: | |
| 13805 | 221 |      "(!!x. x \<in> A ==> F \<in> {x} leadsTo B) ==> F \<in> A leadsTo B"
 | 
| 13797 | 222 | by (subst UN_singleton [symmetric], rule leadsTo_UN, blast) | 
| 223 | ||
| 224 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 225 | text{*The INDUCTION rule as we should have liked to state it*}
 | 
| 13797 | 226 | lemma leadsTo_induct: | 
| 13805 | 227 | "[| F \<in> za leadsTo zb; | 
| 228 | !!A B. F \<in> A ensures B ==> P A B; | |
| 229 | !!A B C. [| F \<in> A leadsTo B; P A B; F \<in> B leadsTo C; P B C |] | |
| 13797 | 230 | ==> P A C; | 
| 13805 | 231 | !!B S. \<forall>A \<in> S. F \<in> A leadsTo B & P A B ==> P (Union S) B | 
| 13797 | 232 | |] ==> P za zb" | 
| 233 | apply (unfold leadsTo_def) | |
| 234 | apply (drule CollectD, erule leads.induct) | |
| 235 | apply (blast+) | |
| 236 | done | |
| 237 | ||
| 238 | ||
| 13805 | 239 | lemma subset_imp_ensures: "A \<subseteq> B ==> F \<in> A ensures B" | 
| 13797 | 240 | by (unfold ensures_def constrains_def transient_def, blast) | 
| 241 | ||
| 242 | lemmas subset_imp_leadsTo = subset_imp_ensures [THEN leadsTo_Basis, standard] | |
| 243 | ||
| 244 | lemmas leadsTo_refl = subset_refl [THEN subset_imp_leadsTo, standard] | |
| 245 | ||
| 246 | lemmas empty_leadsTo = empty_subsetI [THEN subset_imp_leadsTo, standard, simp] | |
| 247 | ||
| 248 | lemmas leadsTo_UNIV = subset_UNIV [THEN subset_imp_leadsTo, standard, simp] | |
| 249 | ||
| 250 | ||
| 251 | ||
| 252 | (** Variant induction rule: on the preconditions for B **) | |
| 253 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 254 | text{*Lemma is the weak version: can't see how to do it in one step*}
 | 
| 13797 | 255 | lemma leadsTo_induct_pre_lemma: | 
| 13805 | 256 | "[| F \<in> za leadsTo zb; | 
| 13797 | 257 | P zb; | 
| 13805 | 258 | !!A B. [| F \<in> A ensures B; P B |] ==> P A; | 
| 259 | !!S. \<forall>A \<in> S. P A ==> P (Union S) | |
| 13797 | 260 | |] ==> P za" | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 261 | txt{*by induction on this formula*}
 | 
| 13797 | 262 | apply (subgoal_tac "P zb --> P za") | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 263 | txt{*now solve first subgoal: this formula is sufficient*}
 | 
| 13797 | 264 | apply (blast intro: leadsTo_refl) | 
| 265 | apply (erule leadsTo_induct) | |
| 266 | apply (blast+) | |
| 267 | done | |
| 268 | ||
| 269 | lemma leadsTo_induct_pre: | |
| 13805 | 270 | "[| F \<in> za leadsTo zb; | 
| 13797 | 271 | P zb; | 
| 13805 | 272 | !!A B. [| F \<in> A ensures B; F \<in> B leadsTo zb; P B |] ==> P A; | 
| 273 | !!S. \<forall>A \<in> S. F \<in> A leadsTo zb & P A ==> P (Union S) | |
| 13797 | 274 | |] ==> P za" | 
| 13805 | 275 | apply (subgoal_tac "F \<in> za leadsTo zb & P za") | 
| 13797 | 276 | apply (erule conjunct2) | 
| 277 | apply (erule leadsTo_induct_pre_lemma) | |
| 278 | prefer 3 apply (blast intro: leadsTo_Union) | |
| 279 | prefer 2 apply (blast intro: leadsTo_Trans) | |
| 280 | apply (blast intro: leadsTo_refl) | |
| 281 | done | |
| 282 | ||
| 283 | ||
| 13805 | 284 | lemma leadsTo_weaken_R: "[| F \<in> A leadsTo A'; A'<=B' |] ==> F \<in> A leadsTo B'" | 
| 13797 | 285 | by (blast intro: subset_imp_leadsTo leadsTo_Trans) | 
| 286 | ||
| 13798 | 287 | lemma leadsTo_weaken_L [rule_format]: | 
| 13805 | 288 | "[| F \<in> A leadsTo A'; B \<subseteq> A |] ==> F \<in> B leadsTo A'" | 
| 13797 | 289 | by (blast intro: leadsTo_Trans subset_imp_leadsTo) | 
| 290 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 291 | text{*Distributes over binary unions*}
 | 
| 13797 | 292 | lemma leadsTo_Un_distrib: | 
| 13805 | 293 | "F \<in> (A \<union> B) leadsTo C = (F \<in> A leadsTo C & F \<in> B leadsTo C)" | 
| 13797 | 294 | by (blast intro: leadsTo_Un leadsTo_weaken_L) | 
| 295 | ||
| 296 | lemma leadsTo_UN_distrib: | |
| 13805 | 297 | "F \<in> (\<Union>i \<in> I. A i) leadsTo B = (\<forall>i \<in> I. F \<in> (A i) leadsTo B)" | 
| 13797 | 298 | by (blast intro: leadsTo_UN leadsTo_weaken_L) | 
| 299 | ||
| 300 | lemma leadsTo_Union_distrib: | |
| 13805 | 301 | "F \<in> (Union S) leadsTo B = (\<forall>A \<in> S. F \<in> A leadsTo B)" | 
| 13797 | 302 | by (blast intro: leadsTo_Union leadsTo_weaken_L) | 
| 303 | ||
| 304 | ||
| 305 | lemma leadsTo_weaken: | |
| 13805 | 306 | "[| F \<in> A leadsTo A'; B \<subseteq> A; A'<=B' |] ==> F \<in> B leadsTo B'" | 
| 13797 | 307 | by (blast intro: leadsTo_weaken_R leadsTo_weaken_L leadsTo_Trans) | 
| 308 | ||
| 309 | ||
| 14150 | 310 | text{*Set difference: maybe combine with @{text leadsTo_weaken_L}??*}
 | 
| 13797 | 311 | lemma leadsTo_Diff: | 
| 13805 | 312 | "[| F \<in> (A-B) leadsTo C; F \<in> B leadsTo C |] ==> F \<in> A leadsTo C" | 
| 13797 | 313 | by (blast intro: leadsTo_Un leadsTo_weaken) | 
| 314 | ||
| 315 | lemma leadsTo_UN_UN: | |
| 13805 | 316 | "(!! i. i \<in> I ==> F \<in> (A i) leadsTo (A' i)) | 
| 317 | ==> F \<in> (\<Union>i \<in> I. A i) leadsTo (\<Union>i \<in> I. A' i)" | |
| 13797 | 318 | apply (simp only: Union_image_eq [symmetric]) | 
| 319 | apply (blast intro: leadsTo_Union leadsTo_weaken_R) | |
| 320 | done | |
| 321 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 322 | text{*Binary union version*}
 | 
| 13797 | 323 | lemma leadsTo_Un_Un: | 
| 13805 | 324 | "[| F \<in> A leadsTo A'; F \<in> B leadsTo B' |] | 
| 325 | ==> F \<in> (A \<union> B) leadsTo (A' \<union> B')" | |
| 13797 | 326 | by (blast intro: leadsTo_Un leadsTo_weaken_R) | 
| 327 | ||
| 328 | ||
| 329 | (** The cancellation law **) | |
| 330 | ||
| 331 | lemma leadsTo_cancel2: | |
| 13805 | 332 | "[| F \<in> A leadsTo (A' \<union> B); F \<in> B leadsTo B' |] | 
| 333 | ==> F \<in> A leadsTo (A' \<union> B')" | |
| 13797 | 334 | by (blast intro: leadsTo_Un_Un subset_imp_leadsTo leadsTo_Trans) | 
| 335 | ||
| 336 | lemma leadsTo_cancel_Diff2: | |
| 13805 | 337 | "[| F \<in> A leadsTo (A' \<union> B); F \<in> (B-A') leadsTo B' |] | 
| 338 | ==> F \<in> A leadsTo (A' \<union> B')" | |
| 13797 | 339 | apply (rule leadsTo_cancel2) | 
| 340 | prefer 2 apply assumption | |
| 341 | apply (simp_all (no_asm_simp)) | |
| 342 | done | |
| 343 | ||
| 344 | lemma leadsTo_cancel1: | |
| 13805 | 345 | "[| F \<in> A leadsTo (B \<union> A'); F \<in> B leadsTo B' |] | 
| 346 | ==> F \<in> A leadsTo (B' \<union> A')" | |
| 13797 | 347 | apply (simp add: Un_commute) | 
| 348 | apply (blast intro!: leadsTo_cancel2) | |
| 349 | done | |
| 350 | ||
| 351 | lemma leadsTo_cancel_Diff1: | |
| 13805 | 352 | "[| F \<in> A leadsTo (B \<union> A'); F \<in> (B-A') leadsTo B' |] | 
| 353 | ==> F \<in> A leadsTo (B' \<union> A')" | |
| 13797 | 354 | apply (rule leadsTo_cancel1) | 
| 355 | prefer 2 apply assumption | |
| 356 | apply (simp_all (no_asm_simp)) | |
| 357 | done | |
| 358 | ||
| 359 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 360 | text{*The impossibility law*}
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 361 | lemma leadsTo_empty: "[|F \<in> A leadsTo {}; all_total F|] ==> A={}"
 | 
| 13797 | 362 | apply (erule leadsTo_induct_pre) | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 363 | apply (simp_all add: ensures_def constrains_def transient_def all_total_def, clarify) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 364 | apply (drule bspec, assumption)+ | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 365 | apply blast | 
| 13797 | 366 | done | 
| 367 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 368 | subsection{*PSP: Progress-Safety-Progress*}
 | 
| 13797 | 369 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 370 | text{*Special case of PSP: Misra's "stable conjunction"*}
 | 
| 13797 | 371 | lemma psp_stable: | 
| 13805 | 372 | "[| F \<in> A leadsTo A'; F \<in> stable B |] | 
| 373 | ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B)" | |
| 13797 | 374 | apply (unfold stable_def) | 
| 375 | apply (erule leadsTo_induct) | |
| 376 | prefer 3 apply (blast intro: leadsTo_Union_Int) | |
| 377 | prefer 2 apply (blast intro: leadsTo_Trans) | |
| 378 | apply (rule leadsTo_Basis) | |
| 379 | apply (simp add: ensures_def Diff_Int_distrib2 [symmetric] Int_Un_distrib2 [symmetric]) | |
| 380 | apply (blast intro: transient_strengthen constrains_Int) | |
| 381 | done | |
| 382 | ||
| 383 | lemma psp_stable2: | |
| 13805 | 384 | "[| F \<in> A leadsTo A'; F \<in> stable B |] ==> F \<in> (B \<inter> A) leadsTo (B \<inter> A')" | 
| 13797 | 385 | by (simp add: psp_stable Int_ac) | 
| 386 | ||
| 387 | lemma psp_ensures: | |
| 13805 | 388 | "[| F \<in> A ensures A'; F \<in> B co B' |] | 
| 389 | ==> F \<in> (A \<inter> B') ensures ((A' \<inter> B) \<union> (B' - B))" | |
| 13797 | 390 | apply (unfold ensures_def constrains_def, clarify) (*speeds up the proof*) | 
| 391 | apply (blast intro: transient_strengthen) | |
| 392 | done | |
| 393 | ||
| 394 | lemma psp: | |
| 13805 | 395 | "[| F \<in> A leadsTo A'; F \<in> B co B' |] | 
| 396 | ==> F \<in> (A \<inter> B') leadsTo ((A' \<inter> B) \<union> (B' - B))" | |
| 13797 | 397 | apply (erule leadsTo_induct) | 
| 398 | prefer 3 apply (blast intro: leadsTo_Union_Int) | |
| 399 |  txt{*Basis case*}
 | |
| 400 | apply (blast intro: psp_ensures) | |
| 401 | txt{*Transitivity case has a delicate argument involving "cancellation"*}
 | |
| 402 | apply (rule leadsTo_Un_duplicate2) | |
| 403 | apply (erule leadsTo_cancel_Diff1) | |
| 404 | apply (simp add: Int_Diff Diff_triv) | |
| 405 | apply (blast intro: leadsTo_weaken_L dest: constrains_imp_subset) | |
| 406 | done | |
| 407 | ||
| 408 | lemma psp2: | |
| 13805 | 409 | "[| F \<in> A leadsTo A'; F \<in> B co B' |] | 
| 410 | ==> F \<in> (B' \<inter> A) leadsTo ((B \<inter> A') \<union> (B' - B))" | |
| 13797 | 411 | by (simp (no_asm_simp) add: psp Int_ac) | 
| 412 | ||
| 413 | lemma psp_unless: | |
| 13805 | 414 | "[| F \<in> A leadsTo A'; F \<in> B unless B' |] | 
| 415 | ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B) \<union> B')" | |
| 13797 | 416 | |
| 417 | apply (unfold unless_def) | |
| 418 | apply (drule psp, assumption) | |
| 419 | apply (blast intro: leadsTo_weaken) | |
| 420 | done | |
| 421 | ||
| 422 | ||
| 13798 | 423 | subsection{*Proving the induction rules*}
 | 
| 13797 | 424 | |
| 425 | (** The most general rule: r is any wf relation; f is any variant function **) | |
| 426 | ||
| 427 | lemma leadsTo_wf_induct_lemma: | |
| 428 | "[| wf r; | |
| 13805 | 429 |          \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
 | 
| 430 |                     ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
 | |
| 431 |       ==> F \<in> (A \<inter> f-`{m}) leadsTo B"
 | |
| 13797 | 432 | apply (erule_tac a = m in wf_induct) | 
| 13805 | 433 | apply (subgoal_tac "F \<in> (A \<inter> (f -` (r^-1 `` {x}))) leadsTo B")
 | 
| 13797 | 434 | apply (blast intro: leadsTo_cancel1 leadsTo_Un_duplicate) | 
| 435 | apply (subst vimage_eq_UN) | |
| 436 | apply (simp only: UN_simps [symmetric]) | |
| 437 | apply (blast intro: leadsTo_UN) | |
| 438 | done | |
| 439 | ||
| 440 | ||
| 441 | (** Meta or object quantifier ? **) | |
| 442 | lemma leadsTo_wf_induct: | |
| 443 | "[| wf r; | |
| 13805 | 444 |          \<forall>m. F \<in> (A \<inter> f-`{m}) leadsTo                      
 | 
| 445 |                     ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
 | |
| 446 | ==> F \<in> A leadsTo B" | |
| 13797 | 447 | apply (rule_tac t = A in subst) | 
| 448 | defer 1 | |
| 449 | apply (rule leadsTo_UN) | |
| 450 | apply (erule leadsTo_wf_induct_lemma) | |
| 451 | apply assumption | |
| 452 | apply fast (*Blast_tac: Function unknown's argument not a parameter*) | |
| 453 | done | |
| 454 | ||
| 455 | ||
| 456 | lemma bounded_induct: | |
| 457 | "[| wf r; | |
| 13805 | 458 |          \<forall>m \<in> I. F \<in> (A \<inter> f-`{m}) leadsTo                    
 | 
| 459 |                       ((A \<inter> f-`(r^-1 `` {m})) \<union> B) |]  
 | |
| 460 | ==> F \<in> A leadsTo ((A - (f-`I)) \<union> B)" | |
| 13797 | 461 | apply (erule leadsTo_wf_induct, safe) | 
| 13805 | 462 | apply (case_tac "m \<in> I") | 
| 13797 | 463 | apply (blast intro: leadsTo_weaken) | 
| 464 | apply (blast intro: subset_imp_leadsTo) | |
| 465 | done | |
| 466 | ||
| 467 | ||
| 13805 | 468 | (*Alternative proof is via the lemma F \<in> (A \<inter> f-`(lessThan m)) leadsTo B*) | 
| 13797 | 469 | lemma lessThan_induct: | 
| 15045 | 470 |      "[| !!m::nat. F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`{..<m}) \<union> B) |]  
 | 
| 13805 | 471 | ==> F \<in> A leadsTo B" | 
| 13797 | 472 | apply (rule wf_less_than [THEN leadsTo_wf_induct]) | 
| 473 | apply (simp (no_asm_simp)) | |
| 474 | apply blast | |
| 475 | done | |
| 476 | ||
| 477 | lemma lessThan_bounded_induct: | |
| 13805 | 478 | "!!l::nat. [| \<forall>m \<in> greaterThan l. | 
| 479 |             F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(lessThan m)) \<union> B) |]  
 | |
| 480 | ==> F \<in> A leadsTo ((A \<inter> (f-`(atMost l))) \<union> B)" | |
| 13797 | 481 | apply (simp only: Diff_eq [symmetric] vimage_Compl Compl_greaterThan [symmetric]) | 
| 482 | apply (rule wf_less_than [THEN bounded_induct]) | |
| 483 | apply (simp (no_asm_simp)) | |
| 484 | done | |
| 485 | ||
| 486 | lemma greaterThan_bounded_induct: | |
| 13805 | 487 | "(!!l::nat. \<forall>m \<in> lessThan l. | 
| 488 |                  F \<in> (A \<inter> f-`{m}) leadsTo ((A \<inter> f-`(greaterThan m)) \<union> B))
 | |
| 489 | ==> F \<in> A leadsTo ((A \<inter> (f-`(atLeast l))) \<union> B)" | |
| 13797 | 490 | apply (rule_tac f = f and f1 = "%k. l - k" | 
| 491 | in wf_less_than [THEN wf_inv_image, THEN leadsTo_wf_induct]) | |
| 19769 
c40ce2de2020
Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
 krauss parents: 
16417diff
changeset | 492 | apply (simp (no_asm) add:Image_singleton) | 
| 13797 | 493 | apply clarify | 
| 494 | apply (case_tac "m<l") | |
| 13805 | 495 | apply (blast intro: leadsTo_weaken_R diff_less_mono2) | 
| 496 | apply (blast intro: not_leE subset_imp_leadsTo) | |
| 13797 | 497 | done | 
| 498 | ||
| 499 | ||
| 13798 | 500 | subsection{*wlt*}
 | 
| 13797 | 501 | |
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 502 | text{*Misra's property W3*}
 | 
| 13805 | 503 | lemma wlt_leadsTo: "F \<in> (wlt F B) leadsTo B" | 
| 13797 | 504 | apply (unfold wlt_def) | 
| 505 | apply (blast intro!: leadsTo_Union) | |
| 506 | done | |
| 507 | ||
| 13805 | 508 | lemma leadsTo_subset: "F \<in> A leadsTo B ==> A \<subseteq> wlt F B" | 
| 13797 | 509 | apply (unfold wlt_def) | 
| 510 | apply (blast intro!: leadsTo_Union) | |
| 511 | done | |
| 512 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 513 | text{*Misra's property W2*}
 | 
| 13805 | 514 | lemma leadsTo_eq_subset_wlt: "F \<in> A leadsTo B = (A \<subseteq> wlt F B)" | 
| 13797 | 515 | by (blast intro!: leadsTo_subset wlt_leadsTo [THEN leadsTo_weaken_L]) | 
| 516 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 517 | text{*Misra's property W4*}
 | 
| 13805 | 518 | lemma wlt_increasing: "B \<subseteq> wlt F B" | 
| 13797 | 519 | apply (simp (no_asm_simp) add: leadsTo_eq_subset_wlt [symmetric] subset_imp_leadsTo) | 
| 520 | done | |
| 521 | ||
| 522 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 523 | text{*Used in the Trans case below*}
 | 
| 13797 | 524 | lemma lemma1: | 
| 13805 | 525 | "[| B \<subseteq> A2; | 
| 526 | F \<in> (A1 - B) co (A1 \<union> B); | |
| 527 | F \<in> (A2 - C) co (A2 \<union> C) |] | |
| 528 | ==> F \<in> (A1 \<union> A2 - C) co (A1 \<union> A2 \<union> C)" | |
| 13797 | 529 | by (unfold constrains_def, clarify, blast) | 
| 530 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 531 | text{*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*}
 | 
| 13797 | 532 | lemma leadsTo_123: | 
| 13805 | 533 | "F \<in> A leadsTo A' | 
| 534 | ==> \<exists>B. A \<subseteq> B & F \<in> B leadsTo A' & F \<in> (B-A') co (B \<union> A')" | |
| 13797 | 535 | apply (erule leadsTo_induct) | 
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 536 |   txt{*Basis*}
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 537 | apply (blast dest: ensuresD) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 538 |  txt{*Trans*}
 | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 539 | apply clarify | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 540 | apply (rule_tac x = "Ba \<union> Bb" in exI) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 541 | apply (blast intro: lemma1 leadsTo_Un_Un leadsTo_cancel1 leadsTo_Un_duplicate) | 
| 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 542 | txt{*Union*}
 | 
| 13797 | 543 | apply (clarify dest!: ball_conj_distrib [THEN iffD1] bchoice) | 
| 13805 | 544 | apply (rule_tac x = "\<Union>A \<in> S. f A" in exI) | 
| 13797 | 545 | apply (auto intro: leadsTo_UN) | 
| 546 | (*Blast_tac says PROOF FAILED*) | |
| 13805 | 547 | apply (rule_tac I1=S and A1="%i. f i - B" and A'1="%i. f i \<union> B" | 
| 13798 | 548 | in constrains_UN [THEN constrains_weaken], auto) | 
| 13797 | 549 | done | 
| 550 | ||
| 551 | ||
| 13812 
91713a1915ee
converting HOL/UNITY to use unconditional fairness
 paulson parents: 
13805diff
changeset | 552 | text{*Misra's property W5*}
 | 
| 13805 | 553 | lemma wlt_constrains_wlt: "F \<in> (wlt F B - B) co (wlt F B)" | 
| 13798 | 554 | proof - | 
| 555 | from wlt_leadsTo [of F B, THEN leadsTo_123] | |
| 556 | show ?thesis | |
| 557 | proof (elim exE conjE) | |
| 558 | (* assumes have to be in exactly the form as in the goal displayed at | |
| 559 | this point. Isar doesn't give you any automation. *) | |
| 560 | fix C | |
| 561 | assume wlt: "wlt F B \<subseteq> C" | |
| 562 | and lt: "F \<in> C leadsTo B" | |
| 563 | and co: "F \<in> C - B co C \<union> B" | |
| 564 | have eq: "C = wlt F B" | |
| 565 | proof - | |
| 566 | from lt and wlt show ?thesis | |
| 567 | by (blast dest: leadsTo_eq_subset_wlt [THEN iffD1]) | |
| 568 | qed | |
| 569 | from co show ?thesis by (simp add: eq wlt_increasing Un_absorb2) | |
| 570 | qed | |
| 571 | qed | |
| 13797 | 572 | |
| 573 | ||
| 13798 | 574 | subsection{*Completion: Binary and General Finite versions*}
 | 
| 13797 | 575 | |
| 576 | lemma completion_lemma : | |
| 13805 | 577 | "[| W = wlt F (B' \<union> C); | 
| 578 | F \<in> A leadsTo (A' \<union> C); F \<in> A' co (A' \<union> C); | |
| 579 | F \<in> B leadsTo (B' \<union> C); F \<in> B' co (B' \<union> C) |] | |
| 580 | ==> F \<in> (A \<inter> B) leadsTo ((A' \<inter> B') \<union> C)" | |
| 581 | apply (subgoal_tac "F \<in> (W-C) co (W \<union> B' \<union> C) ") | |
| 13797 | 582 | prefer 2 | 
| 583 | apply (blast intro: wlt_constrains_wlt [THEN [2] constrains_Un, | |
| 584 | THEN constrains_weaken]) | |
| 13805 | 585 | apply (subgoal_tac "F \<in> (W-C) co W") | 
| 13797 | 586 | prefer 2 | 
| 587 | apply (simp add: wlt_increasing Un_assoc Un_absorb2) | |
| 13805 | 588 | apply (subgoal_tac "F \<in> (A \<inter> W - C) leadsTo (A' \<inter> W \<union> C) ") | 
| 13797 | 589 | prefer 2 apply (blast intro: wlt_leadsTo psp [THEN leadsTo_weaken]) | 
| 590 | (** LEVEL 6 **) | |
| 13805 | 591 | apply (subgoal_tac "F \<in> (A' \<inter> W \<union> C) leadsTo (A' \<inter> B' \<union> C) ") | 
| 13797 | 592 | prefer 2 | 
| 593 | apply (rule leadsTo_Un_duplicate2) | |
| 594 | apply (blast intro: leadsTo_Un_Un wlt_leadsTo | |
| 595 | [THEN psp2, THEN leadsTo_weaken] leadsTo_refl) | |
| 596 | apply (drule leadsTo_Diff) | |
| 597 | apply (blast intro: subset_imp_leadsTo) | |
| 13805 | 598 | apply (subgoal_tac "A \<inter> B \<subseteq> A \<inter> W") | 
| 13797 | 599 | prefer 2 | 
| 600 | apply (blast dest!: leadsTo_subset intro!: subset_refl [THEN Int_mono]) | |
| 601 | apply (blast intro: leadsTo_Trans subset_imp_leadsTo) | |
| 602 | done | |
| 603 | ||
| 604 | lemmas completion = completion_lemma [OF refl] | |
| 605 | ||
| 606 | lemma finite_completion_lemma: | |
| 13805 | 607 | "finite I ==> (\<forall>i \<in> I. F \<in> (A i) leadsTo (A' i \<union> C)) --> | 
| 608 | (\<forall>i \<in> I. F \<in> (A' i) co (A' i \<union> C)) --> | |
| 609 | F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)" | |
| 13797 | 610 | apply (erule finite_induct, auto) | 
| 611 | apply (rule completion) | |
| 612 | prefer 4 | |
| 613 | apply (simp only: INT_simps [symmetric]) | |
| 614 | apply (rule constrains_INT, auto) | |
| 615 | done | |
| 616 | ||
| 617 | lemma finite_completion: | |
| 618 | "[| finite I; | |
| 13805 | 619 | !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i \<union> C); | 
| 620 | !!i. i \<in> I ==> F \<in> (A' i) co (A' i \<union> C) |] | |
| 621 | ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo ((\<Inter>i \<in> I. A' i) \<union> C)" | |
| 13797 | 622 | by (blast intro: finite_completion_lemma [THEN mp, THEN mp]) | 
| 623 | ||
| 624 | lemma stable_completion: | |
| 13805 | 625 | "[| F \<in> A leadsTo A'; F \<in> stable A'; | 
| 626 | F \<in> B leadsTo B'; F \<in> stable B' |] | |
| 627 | ==> F \<in> (A \<inter> B) leadsTo (A' \<inter> B')" | |
| 13797 | 628 | apply (unfold stable_def) | 
| 629 | apply (rule_tac C1 = "{}" in completion [THEN leadsTo_weaken_R])
 | |
| 630 | apply (force+) | |
| 631 | done | |
| 632 | ||
| 633 | lemma finite_stable_completion: | |
| 634 | "[| finite I; | |
| 13805 | 635 | !!i. i \<in> I ==> F \<in> (A i) leadsTo (A' i); | 
| 636 | !!i. i \<in> I ==> F \<in> stable (A' i) |] | |
| 637 | ==> F \<in> (\<Inter>i \<in> I. A i) leadsTo (\<Inter>i \<in> I. A' i)" | |
| 13797 | 638 | apply (unfold stable_def) | 
| 639 | apply (rule_tac C1 = "{}" in finite_completion [THEN leadsTo_weaken_R])
 | |
| 640 | apply (simp_all (no_asm_simp)) | |
| 641 | apply blast+ | |
| 642 | done | |
| 9685 | 643 | |
| 4776 | 644 | end |