| author | paulson <lp15@cam.ac.uk> | 
| Thu, 15 Jun 2017 17:22:23 +0100 | |
| changeset 66089 | def95e0bc529 | 
| parent 65552 | f533820e7248 | 
| child 66453 | cc19f7ca2ed6 | 
| permissions | -rw-r--r-- | 
| 42151 | 1 | (* Title: HOL/HOLCF/Universal.thy | 
| 27411 | 2 | Author: Brian Huffman | 
| 3 | *) | |
| 4 | ||
| 62175 | 5 | section \<open>A universal bifinite domain\<close> | 
| 35794 | 6 | |
| 27411 | 7 | theory Universal | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41394diff
changeset | 8 | imports Bifinite Completion "~~/src/HOL/Library/Nat_Bijection" | 
| 27411 | 9 | begin | 
| 10 | ||
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64267diff
changeset | 11 | no_notation binomial (infixl "choose" 65) | 
| 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64267diff
changeset | 12 | |
| 62175 | 13 | subsection \<open>Basis for universal domain\<close> | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 14 | |
| 62175 | 15 | subsubsection \<open>Basis datatype\<close> | 
| 27411 | 16 | |
| 41295 | 17 | type_synonym ubasis = nat | 
| 27411 | 18 | |
| 19 | definition | |
| 20 | node :: "nat \<Rightarrow> ubasis \<Rightarrow> ubasis set \<Rightarrow> ubasis" | |
| 21 | where | |
| 35701 | 22 | "node i a S = Suc (prod_encode (i, prod_encode (a, set_encode S)))" | 
| 27411 | 23 | |
| 30505 | 24 | lemma node_not_0 [simp]: "node i a S \<noteq> 0" | 
| 27411 | 25 | unfolding node_def by simp | 
| 26 | ||
| 30505 | 27 | lemma node_gt_0 [simp]: "0 < node i a S" | 
| 27411 | 28 | unfolding node_def by simp | 
| 29 | ||
| 30 | lemma node_inject [simp]: | |
| 30505 | 31 | "\<lbrakk>finite S; finite T\<rbrakk> | 
| 32 | \<Longrightarrow> node i a S = node j b T \<longleftrightarrow> i = j \<and> a = b \<and> S = T" | |
| 35701 | 33 | unfolding node_def by (simp add: prod_encode_eq set_encode_eq) | 
| 27411 | 34 | |
| 30505 | 35 | lemma node_gt0: "i < node i a S" | 
| 27411 | 36 | unfolding node_def less_Suc_eq_le | 
| 35701 | 37 | by (rule le_prod_encode_1) | 
| 27411 | 38 | |
| 30505 | 39 | lemma node_gt1: "a < node i a S" | 
| 27411 | 40 | unfolding node_def less_Suc_eq_le | 
| 35701 | 41 | by (rule order_trans [OF le_prod_encode_1 le_prod_encode_2]) | 
| 27411 | 42 | |
| 43 | lemma nat_less_power2: "n < 2^n" | |
| 44 | by (induct n) simp_all | |
| 45 | ||
| 30505 | 46 | lemma node_gt2: "\<lbrakk>finite S; b \<in> S\<rbrakk> \<Longrightarrow> b < node i a S" | 
| 35701 | 47 | unfolding node_def less_Suc_eq_le set_encode_def | 
| 48 | apply (rule order_trans [OF _ le_prod_encode_2]) | |
| 49 | apply (rule order_trans [OF _ le_prod_encode_2]) | |
| 64267 | 50 | apply (rule order_trans [where y="sum (op ^ 2) {b}"])
 | 
| 27411 | 51 | apply (simp add: nat_less_power2 [THEN order_less_imp_le]) | 
| 64267 | 52 | apply (erule sum_mono2, simp, simp) | 
| 27411 | 53 | done | 
| 54 | ||
| 35701 | 55 | lemma eq_prod_encode_pairI: | 
| 56 | "\<lbrakk>fst (prod_decode x) = a; snd (prod_decode x) = b\<rbrakk> \<Longrightarrow> x = prod_encode (a, b)" | |
| 27411 | 57 | by (erule subst, erule subst, simp) | 
| 58 | ||
| 59 | lemma node_cases: | |
| 60 | assumes 1: "x = 0 \<Longrightarrow> P" | |
| 30505 | 61 | assumes 2: "\<And>i a S. \<lbrakk>finite S; x = node i a S\<rbrakk> \<Longrightarrow> P" | 
| 27411 | 62 | shows "P" | 
| 63 | apply (cases x) | |
| 64 | apply (erule 1) | |
| 65 | apply (rule 2) | |
| 35701 | 66 | apply (rule finite_set_decode) | 
| 27411 | 67 | apply (simp add: node_def) | 
| 35701 | 68 | apply (rule eq_prod_encode_pairI [OF refl]) | 
| 69 | apply (rule eq_prod_encode_pairI [OF refl refl]) | |
| 27411 | 70 | done | 
| 71 | ||
| 72 | lemma node_induct: | |
| 73 | assumes 1: "P 0" | |
| 30505 | 74 | assumes 2: "\<And>i a S. \<lbrakk>P a; finite S; \<forall>b\<in>S. P b\<rbrakk> \<Longrightarrow> P (node i a S)" | 
| 27411 | 75 | shows "P x" | 
| 76 | apply (induct x rule: nat_less_induct) | |
| 77 | apply (case_tac n rule: node_cases) | |
| 78 | apply (simp add: 1) | |
| 79 | apply (simp add: 2 node_gt1 node_gt2) | |
| 80 | done | |
| 81 | ||
| 62175 | 82 | subsubsection \<open>Basis ordering\<close> | 
| 27411 | 83 | |
| 84 | inductive | |
| 85 | ubasis_le :: "nat \<Rightarrow> nat \<Rightarrow> bool" | |
| 86 | where | |
| 30505 | 87 | ubasis_le_refl: "ubasis_le a a" | 
| 27411 | 88 | | ubasis_le_trans: | 
| 30505 | 89 | "\<lbrakk>ubasis_le a b; ubasis_le b c\<rbrakk> \<Longrightarrow> ubasis_le a c" | 
| 27411 | 90 | | ubasis_le_lower: | 
| 30505 | 91 | "finite S \<Longrightarrow> ubasis_le a (node i a S)" | 
| 27411 | 92 | | ubasis_le_upper: | 
| 30505 | 93 | "\<lbrakk>finite S; b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> ubasis_le (node i a S) b" | 
| 27411 | 94 | |
| 95 | lemma ubasis_le_minimal: "ubasis_le 0 x" | |
| 96 | apply (induct x rule: node_induct) | |
| 97 | apply (rule ubasis_le_refl) | |
| 98 | apply (erule ubasis_le_trans) | |
| 99 | apply (erule ubasis_le_lower) | |
| 100 | done | |
| 101 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 102 | interpretation udom: preorder ubasis_le | 
| 61169 | 103 | apply standard | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 104 | apply (rule ubasis_le_refl) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 105 | apply (erule (1) ubasis_le_trans) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 106 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 107 | |
| 62175 | 108 | subsubsection \<open>Generic take function\<close> | 
| 27411 | 109 | |
| 110 | function | |
| 111 | ubasis_until :: "(ubasis \<Rightarrow> bool) \<Rightarrow> ubasis \<Rightarrow> ubasis" | |
| 112 | where | |
| 113 | "ubasis_until P 0 = 0" | |
| 30505 | 114 | | "finite S \<Longrightarrow> ubasis_until P (node i a S) = | 
| 115 | (if P (node i a S) then node i a S else ubasis_until P a)" | |
| 56073 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
54863diff
changeset | 116 | apply clarify | 
| 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
54863diff
changeset | 117 | apply (rule_tac x=b in node_cases) | 
| 27411 | 118 | apply simp | 
| 119 | apply simp | |
| 56073 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
54863diff
changeset | 120 | apply fast | 
| 27411 | 121 | apply simp | 
| 122 | apply simp | |
| 123 | done | |
| 124 | ||
| 125 | termination ubasis_until | |
| 126 | apply (relation "measure snd") | |
| 127 | apply (rule wf_measure) | |
| 128 | apply (simp add: node_gt1) | |
| 129 | done | |
| 130 | ||
| 131 | lemma ubasis_until: "P 0 \<Longrightarrow> P (ubasis_until P x)" | |
| 132 | by (induct x rule: node_induct) simp_all | |
| 133 | ||
| 134 | lemma ubasis_until': "0 < ubasis_until P x \<Longrightarrow> P (ubasis_until P x)" | |
| 135 | by (induct x rule: node_induct) auto | |
| 136 | ||
| 137 | lemma ubasis_until_same: "P x \<Longrightarrow> ubasis_until P x = x" | |
| 138 | by (induct x rule: node_induct) simp_all | |
| 139 | ||
| 140 | lemma ubasis_until_idem: | |
| 141 | "P 0 \<Longrightarrow> ubasis_until P (ubasis_until P x) = ubasis_until P x" | |
| 142 | by (rule ubasis_until_same [OF ubasis_until]) | |
| 143 | ||
| 144 | lemma ubasis_until_0: | |
| 145 | "\<forall>x. x \<noteq> 0 \<longrightarrow> \<not> P x \<Longrightarrow> ubasis_until P x = 0" | |
| 146 | by (induct x rule: node_induct) simp_all | |
| 147 | ||
| 148 | lemma ubasis_until_less: "ubasis_le (ubasis_until P x) x" | |
| 149 | apply (induct x rule: node_induct) | |
| 150 | apply (simp add: ubasis_le_refl) | |
| 151 | apply (simp add: ubasis_le_refl) | |
| 152 | apply (rule impI) | |
| 153 | apply (erule ubasis_le_trans) | |
| 154 | apply (erule ubasis_le_lower) | |
| 155 | done | |
| 156 | ||
| 157 | lemma ubasis_until_chain: | |
| 158 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | |
| 159 | shows "ubasis_le (ubasis_until P x) (ubasis_until Q x)" | |
| 160 | apply (induct x rule: node_induct) | |
| 161 | apply (simp add: ubasis_le_refl) | |
| 162 | apply (simp add: ubasis_le_refl) | |
| 163 | apply (simp add: PQ) | |
| 164 | apply clarify | |
| 165 | apply (rule ubasis_le_trans) | |
| 166 | apply (rule ubasis_until_less) | |
| 167 | apply (erule ubasis_le_lower) | |
| 168 | done | |
| 169 | ||
| 170 | lemma ubasis_until_mono: | |
| 30505 | 171 | assumes "\<And>i a S b. \<lbrakk>finite S; P (node i a S); b \<in> S; ubasis_le a b\<rbrakk> \<Longrightarrow> P b" | 
| 172 | shows "ubasis_le a b \<Longrightarrow> ubasis_le (ubasis_until P a) (ubasis_until P b)" | |
| 30561 | 173 | proof (induct set: ubasis_le) | 
| 174 | case (ubasis_le_refl a) show ?case by (rule ubasis_le.ubasis_le_refl) | |
| 175 | next | |
| 176 | case (ubasis_le_trans a b c) thus ?case by - (rule ubasis_le.ubasis_le_trans) | |
| 177 | next | |
| 178 | case (ubasis_le_lower S a i) thus ?case | |
| 179 | apply (clarsimp simp add: ubasis_le_refl) | |
| 180 | apply (rule ubasis_le_trans [OF ubasis_until_less]) | |
| 181 | apply (erule ubasis_le.ubasis_le_lower) | |
| 182 | done | |
| 183 | next | |
| 184 | case (ubasis_le_upper S b a i) thus ?case | |
| 185 | apply clarsimp | |
| 186 | apply (subst ubasis_until_same) | |
| 41529 | 187 | apply (erule (3) assms) | 
| 30561 | 188 | apply (erule (2) ubasis_le.ubasis_le_upper) | 
| 189 | done | |
| 190 | qed | |
| 27411 | 191 | |
| 192 | lemma finite_range_ubasis_until: | |
| 193 |   "finite {x. P x} \<Longrightarrow> finite (range (ubasis_until P))"
 | |
| 194 | apply (rule finite_subset [where B="insert 0 {x. P x}"])
 | |
| 195 | apply (clarsimp simp add: ubasis_until') | |
| 196 | apply simp | |
| 197 | done | |
| 198 | ||
| 199 | ||
| 62175 | 200 | subsection \<open>Defining the universal domain by ideal completion\<close> | 
| 27411 | 201 | |
| 49834 | 202 | typedef udom = "{S. udom.ideal S}"
 | 
| 40888 
28cd51cff70c
reformulate lemma preorder.ex_ideal, and use it for typedefs
 huffman parents: 
40774diff
changeset | 203 | by (rule udom.ex_ideal) | 
| 27411 | 204 | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 205 | instantiation udom :: below | 
| 27411 | 206 | begin | 
| 207 | ||
| 208 | definition | |
| 209 | "x \<sqsubseteq> y \<longleftrightarrow> Rep_udom x \<subseteq> Rep_udom y" | |
| 210 | ||
| 211 | instance .. | |
| 212 | end | |
| 213 | ||
| 214 | instance udom :: po | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 215 | using type_definition_udom below_udom_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 216 | by (rule udom.typedef_ideal_po) | 
| 27411 | 217 | |
| 218 | instance udom :: cpo | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 219 | using type_definition_udom below_udom_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 220 | by (rule udom.typedef_ideal_cpo) | 
| 27411 | 221 | |
| 222 | definition | |
| 223 | udom_principal :: "nat \<Rightarrow> udom" where | |
| 224 |   "udom_principal t = Abs_udom {u. ubasis_le u t}"
 | |
| 225 | ||
| 39984 | 226 | lemma ubasis_countable: "\<exists>f::ubasis \<Rightarrow> nat. inj f" | 
| 227 | by (rule exI, rule inj_on_id) | |
| 27411 | 228 | |
| 30729 
461ee3e49ad3
interpretation/interpret: prefixes are mandatory by default;
 wenzelm parents: 
30561diff
changeset | 229 | interpretation udom: | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 230 | ideal_completion ubasis_le udom_principal Rep_udom | 
| 39984 | 231 | using type_definition_udom below_udom_def | 
| 232 | using udom_principal_def ubasis_countable | |
| 233 | by (rule udom.typedef_ideal_completion) | |
| 27411 | 234 | |
| 62175 | 235 | text \<open>Universal domain is pointed\<close> | 
| 27411 | 236 | |
| 237 | lemma udom_minimal: "udom_principal 0 \<sqsubseteq> x" | |
| 238 | apply (induct x rule: udom.principal_induct) | |
| 239 | apply (simp, simp add: ubasis_le_minimal) | |
| 240 | done | |
| 241 | ||
| 242 | instance udom :: pcpo | |
| 243 | by intro_classes (fast intro: udom_minimal) | |
| 244 | ||
| 245 | lemma inst_udom_pcpo: "\<bottom> = udom_principal 0" | |
| 41430 
1aa23e9f2c87
change some lemma names containing 'UU' to 'bottom'
 huffman parents: 
41413diff
changeset | 246 | by (rule udom_minimal [THEN bottomI, symmetric]) | 
| 27411 | 247 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 248 | |
| 62175 | 249 | subsection \<open>Compact bases of domains\<close> | 
| 27411 | 250 | |
| 49834 | 251 | typedef 'a compact_basis = "{x::'a::pcpo. compact x}"
 | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 252 | by auto | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 253 | |
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 254 | lemma Rep_compact_basis' [simp]: "compact (Rep_compact_basis a)" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 255 | by (rule Rep_compact_basis [unfolded mem_Collect_eq]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 256 | |
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 257 | lemma Abs_compact_basis_inverse' [simp]: | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 258 | "compact x \<Longrightarrow> Rep_compact_basis (Abs_compact_basis x) = x" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 259 | by (rule Abs_compact_basis_inverse [unfolded mem_Collect_eq]) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 260 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 261 | instantiation compact_basis :: (pcpo) below | 
| 27411 | 262 | begin | 
| 263 | ||
| 264 | definition | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 265 | compact_le_def: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 266 | "(op \<sqsubseteq>) \<equiv> (\<lambda>x y. Rep_compact_basis x \<sqsubseteq> Rep_compact_basis y)" | 
| 27411 | 267 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 268 | instance .. | 
| 27411 | 269 | end | 
| 270 | ||
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 271 | instance compact_basis :: (pcpo) po | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 272 | using type_definition_compact_basis compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 273 | by (rule typedef_po) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 274 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 275 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 276 | approximants :: "'a \<Rightarrow> 'a compact_basis set" where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 277 |   "approximants = (\<lambda>x. {a. Rep_compact_basis a \<sqsubseteq> x})"
 | 
| 27411 | 278 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 279 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 280 | compact_bot :: "'a::pcpo compact_basis" where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 281 | "compact_bot = Abs_compact_basis \<bottom>" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 282 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 283 | lemma Rep_compact_bot [simp]: "Rep_compact_basis compact_bot = \<bottom>" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 284 | unfolding compact_bot_def by simp | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 285 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 286 | lemma compact_bot_minimal [simp]: "compact_bot \<sqsubseteq> a" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 287 | unfolding compact_le_def Rep_compact_bot by simp | 
| 27411 | 288 | |
| 289 | ||
| 62175 | 290 | subsection \<open>Universality of \emph{udom}\<close>
 | 
| 27411 | 291 | |
| 62175 | 292 | text \<open>We use a locale to parameterize the construction over a chain | 
| 293 | of approx functions on the type to be embedded.\<close> | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 294 | |
| 46868 | 295 | locale bifinite_approx_chain = | 
| 296 | approx_chain approx for approx :: "nat \<Rightarrow> 'a::bifinite \<rightarrow> 'a" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 297 | begin | 
| 27411 | 298 | |
| 62175 | 299 | subsubsection \<open>Choosing a maximal element from a finite set\<close> | 
| 27411 | 300 | |
| 301 | lemma finite_has_maximal: | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 302 | fixes A :: "'a compact_basis set" | 
| 27411 | 303 |   shows "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> \<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y"
 | 
| 304 | proof (induct rule: finite_ne_induct) | |
| 305 | case (singleton x) | |
| 306 | show ?case by simp | |
| 307 | next | |
| 308 | case (insert a A) | |
| 62175 | 309 | from \<open>\<exists>x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y\<close> | 
| 27411 | 310 | obtain x where x: "x \<in> A" | 
| 311 | and x_eq: "\<And>y. \<lbrakk>y \<in> A; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> x = y" by fast | |
| 312 | show ?case | |
| 313 | proof (intro bexI ballI impI) | |
| 314 | fix y | |
| 315 | assume "y \<in> insert a A" and "(if x \<sqsubseteq> a then a else x) \<sqsubseteq> y" | |
| 316 | thus "(if x \<sqsubseteq> a then a else x) = y" | |
| 317 | apply auto | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 318 | apply (frule (1) below_trans) | 
| 27411 | 319 | apply (frule (1) x_eq) | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 320 | apply (rule below_antisym, assumption) | 
| 27411 | 321 | apply simp | 
| 322 | apply (erule (1) x_eq) | |
| 323 | done | |
| 324 | next | |
| 325 | show "(if x \<sqsubseteq> a then a else x) \<in> insert a A" | |
| 326 | by (simp add: x) | |
| 327 | qed | |
| 328 | qed | |
| 329 | ||
| 330 | definition | |
| 331 | choose :: "'a compact_basis set \<Rightarrow> 'a compact_basis" | |
| 332 | where | |
| 333 |   "choose A = (SOME x. x \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y})"
 | |
| 334 | ||
| 335 | lemma choose_lemma: | |
| 336 |   "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> {x\<in>A. \<forall>y\<in>A. x \<sqsubseteq> y \<longrightarrow> x = y}"
 | |
| 337 | unfolding choose_def | |
| 338 | apply (rule someI_ex) | |
| 339 | apply (frule (1) finite_has_maximal, fast) | |
| 340 | done | |
| 341 | ||
| 342 | lemma maximal_choose: | |
| 343 | "\<lbrakk>finite A; y \<in> A; choose A \<sqsubseteq> y\<rbrakk> \<Longrightarrow> choose A = y" | |
| 344 | apply (cases "A = {}", simp)
 | |
| 345 | apply (frule (1) choose_lemma, simp) | |
| 346 | done | |
| 347 | ||
| 348 | lemma choose_in: "\<lbrakk>finite A; A \<noteq> {}\<rbrakk> \<Longrightarrow> choose A \<in> A"
 | |
| 349 | by (frule (1) choose_lemma, simp) | |
| 350 | ||
| 351 | function | |
| 352 | choose_pos :: "'a compact_basis set \<Rightarrow> 'a compact_basis \<Rightarrow> nat" | |
| 353 | where | |
| 354 | "choose_pos A x = | |
| 355 | (if finite A \<and> x \<in> A \<and> x \<noteq> choose A | |
| 356 |       then Suc (choose_pos (A - {choose A}) x) else 0)"
 | |
| 357 | by auto | |
| 358 | ||
| 359 | termination choose_pos | |
| 360 | apply (relation "measure (card \<circ> fst)", simp) | |
| 361 | apply clarsimp | |
| 362 | apply (rule card_Diff1_less) | |
| 363 | apply assumption | |
| 364 | apply (erule choose_in) | |
| 365 | apply clarsimp | |
| 366 | done | |
| 367 | ||
| 368 | declare choose_pos.simps [simp del] | |
| 369 | ||
| 370 | lemma choose_pos_choose: "finite A \<Longrightarrow> choose_pos A (choose A) = 0" | |
| 371 | by (simp add: choose_pos.simps) | |
| 372 | ||
| 373 | lemma inj_on_choose_pos [OF refl]: | |
| 374 | "\<lbrakk>card A = n; finite A\<rbrakk> \<Longrightarrow> inj_on (choose_pos A) A" | |
| 375 | apply (induct n arbitrary: A) | |
| 376 | apply simp | |
| 377 |  apply (case_tac "A = {}", simp)
 | |
| 378 | apply (frule (1) choose_in) | |
| 379 | apply (rule inj_onI) | |
| 380 |  apply (drule_tac x="A - {choose A}" in meta_spec, simp)
 | |
| 381 | apply (simp add: choose_pos.simps) | |
| 62390 | 382 | apply (simp split: if_split_asm) | 
| 27411 | 383 | apply (erule (1) inj_onD, simp, simp) | 
| 384 | done | |
| 385 | ||
| 386 | lemma choose_pos_bounded [OF refl]: | |
| 387 | "\<lbrakk>card A = n; finite A; x \<in> A\<rbrakk> \<Longrightarrow> choose_pos A x < n" | |
| 388 | apply (induct n arbitrary: A) | |
| 389 | apply simp | |
| 390 |  apply (case_tac "A = {}", simp)
 | |
| 391 | apply (frule (1) choose_in) | |
| 392 | apply (subst choose_pos.simps) | |
| 393 | apply simp | |
| 394 | done | |
| 395 | ||
| 396 | lemma choose_pos_lessD: | |
| 41182 | 397 | "\<lbrakk>choose_pos A x < choose_pos A y; finite A; x \<in> A; y \<in> A\<rbrakk> \<Longrightarrow> x \<notsqsubseteq> y" | 
| 27411 | 398 | apply (induct A x arbitrary: y rule: choose_pos.induct) | 
| 399 | apply simp | |
| 400 | apply (case_tac "x = choose A") | |
| 401 | apply simp | |
| 402 | apply (rule notI) | |
| 403 | apply (frule (2) maximal_choose) | |
| 404 | apply simp | |
| 405 | apply (case_tac "y = choose A") | |
| 406 | apply (simp add: choose_pos_choose) | |
| 407 | apply (drule_tac x=y in meta_spec) | |
| 408 | apply simp | |
| 409 | apply (erule meta_mp) | |
| 410 | apply (simp add: choose_pos.simps) | |
| 411 | done | |
| 412 | ||
| 62175 | 413 | subsubsection \<open>Compact basis take function\<close> | 
| 27411 | 414 | |
| 415 | primrec | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 416 | cb_take :: "nat \<Rightarrow> 'a compact_basis \<Rightarrow> 'a compact_basis" where | 
| 27411 | 417 | "cb_take 0 = (\<lambda>x. compact_bot)" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 418 | | "cb_take (Suc n) = (\<lambda>a. Abs_compact_basis (approx n\<cdot>(Rep_compact_basis a)))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 419 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 420 | declare cb_take.simps [simp del] | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 421 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 422 | lemma cb_take_zero [simp]: "cb_take 0 a = compact_bot" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 423 | by (simp only: cb_take.simps) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 424 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 425 | lemma Rep_cb_take: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 426 | "Rep_compact_basis (cb_take (Suc n) a) = approx n\<cdot>(Rep_compact_basis a)" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 427 | by (simp add: cb_take.simps(2)) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 428 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 429 | lemmas approx_Rep_compact_basis = Rep_cb_take [symmetric] | 
| 27411 | 430 | |
| 431 | lemma cb_take_covers: "\<exists>n. cb_take n x = x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 432 | apply (subgoal_tac "\<exists>n. cb_take (Suc n) x = x", fast) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 433 | apply (simp add: Rep_compact_basis_inject [symmetric]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 434 | apply (simp add: Rep_cb_take) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 435 | apply (rule compact_eq_approx) | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 436 | apply (rule Rep_compact_basis') | 
| 27411 | 437 | done | 
| 438 | ||
| 439 | lemma cb_take_less: "cb_take n x \<sqsubseteq> x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 440 | unfolding compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 441 | by (cases n, simp, simp add: Rep_cb_take approx_below) | 
| 27411 | 442 | |
| 443 | lemma cb_take_idem: "cb_take n (cb_take n x) = cb_take n x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 444 | unfolding Rep_compact_basis_inject [symmetric] | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 445 | by (cases n, simp, simp add: Rep_cb_take approx_idem) | 
| 27411 | 446 | |
| 447 | lemma cb_take_mono: "x \<sqsubseteq> y \<Longrightarrow> cb_take n x \<sqsubseteq> cb_take n y" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 448 | unfolding compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 449 | by (cases n, simp, simp add: Rep_cb_take monofun_cfun_arg) | 
| 27411 | 450 | |
| 451 | lemma cb_take_chain_le: "m \<le> n \<Longrightarrow> cb_take m x \<sqsubseteq> cb_take n x" | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 452 | unfolding compact_le_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 453 | apply (cases m, simp, cases n, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 454 | apply (simp add: Rep_cb_take, rule chain_mono, simp, simp) | 
| 27411 | 455 | done | 
| 456 | ||
| 457 | lemma finite_range_cb_take: "finite (range (cb_take n))" | |
| 458 | apply (cases n) | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 459 | apply (subgoal_tac "range (cb_take 0) = {compact_bot}", simp, force)
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 460 | apply (rule finite_imageD [where f="Rep_compact_basis"]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 461 | apply (rule finite_subset [where B="range (\<lambda>x. approx (n - 1)\<cdot>x)"]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 462 | apply (clarsimp simp add: Rep_cb_take) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 463 | apply (rule finite_range_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 464 | apply (rule inj_onI, simp add: Rep_compact_basis_inject) | 
| 27411 | 465 | done | 
| 466 | ||
| 62175 | 467 | subsubsection \<open>Rank of basis elements\<close> | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 468 | |
| 27411 | 469 | definition | 
| 470 | rank :: "'a compact_basis \<Rightarrow> nat" | |
| 471 | where | |
| 472 | "rank x = (LEAST n. cb_take n x = x)" | |
| 473 | ||
| 474 | lemma compact_approx_rank: "cb_take (rank x) x = x" | |
| 475 | unfolding rank_def | |
| 476 | apply (rule LeastI_ex) | |
| 477 | apply (rule cb_take_covers) | |
| 478 | done | |
| 479 | ||
| 480 | lemma rank_leD: "rank x \<le> n \<Longrightarrow> cb_take n x = x" | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 481 | apply (rule below_antisym [OF cb_take_less]) | 
| 27411 | 482 | apply (subst compact_approx_rank [symmetric]) | 
| 483 | apply (erule cb_take_chain_le) | |
| 484 | done | |
| 485 | ||
| 486 | lemma rank_leI: "cb_take n x = x \<Longrightarrow> rank x \<le> n" | |
| 487 | unfolding rank_def by (rule Least_le) | |
| 488 | ||
| 489 | lemma rank_le_iff: "rank x \<le> n \<longleftrightarrow> cb_take n x = x" | |
| 490 | by (rule iffI [OF rank_leD rank_leI]) | |
| 491 | ||
| 30505 | 492 | lemma rank_compact_bot [simp]: "rank compact_bot = 0" | 
| 493 | using rank_leI [of 0 compact_bot] by simp | |
| 494 | ||
| 495 | lemma rank_eq_0_iff [simp]: "rank x = 0 \<longleftrightarrow> x = compact_bot" | |
| 496 | using rank_le_iff [of x 0] by auto | |
| 497 | ||
| 27411 | 498 | definition | 
| 499 | rank_le :: "'a compact_basis \<Rightarrow> 'a compact_basis set" | |
| 500 | where | |
| 501 |   "rank_le x = {y. rank y \<le> rank x}"
 | |
| 502 | ||
| 503 | definition | |
| 504 | rank_lt :: "'a compact_basis \<Rightarrow> 'a compact_basis set" | |
| 505 | where | |
| 506 |   "rank_lt x = {y. rank y < rank x}"
 | |
| 507 | ||
| 508 | definition | |
| 509 | rank_eq :: "'a compact_basis \<Rightarrow> 'a compact_basis set" | |
| 510 | where | |
| 511 |   "rank_eq x = {y. rank y = rank x}"
 | |
| 512 | ||
| 513 | lemma rank_eq_cong: "rank x = rank y \<Longrightarrow> rank_eq x = rank_eq y" | |
| 514 | unfolding rank_eq_def by simp | |
| 515 | ||
| 516 | lemma rank_lt_cong: "rank x = rank y \<Longrightarrow> rank_lt x = rank_lt y" | |
| 517 | unfolding rank_lt_def by simp | |
| 518 | ||
| 519 | lemma rank_eq_subset: "rank_eq x \<subseteq> rank_le x" | |
| 520 | unfolding rank_eq_def rank_le_def by auto | |
| 521 | ||
| 522 | lemma rank_lt_subset: "rank_lt x \<subseteq> rank_le x" | |
| 523 | unfolding rank_lt_def rank_le_def by auto | |
| 524 | ||
| 525 | lemma finite_rank_le: "finite (rank_le x)" | |
| 526 | unfolding rank_le_def | |
| 527 | apply (rule finite_subset [where B="range (cb_take (rank x))"]) | |
| 528 | apply clarify | |
| 529 | apply (rule range_eqI) | |
| 530 | apply (erule rank_leD [symmetric]) | |
| 531 | apply (rule finite_range_cb_take) | |
| 532 | done | |
| 533 | ||
| 534 | lemma finite_rank_eq: "finite (rank_eq x)" | |
| 535 | by (rule finite_subset [OF rank_eq_subset finite_rank_le]) | |
| 536 | ||
| 537 | lemma finite_rank_lt: "finite (rank_lt x)" | |
| 538 | by (rule finite_subset [OF rank_lt_subset finite_rank_le]) | |
| 539 | ||
| 540 | lemma rank_lt_Int_rank_eq: "rank_lt x \<inter> rank_eq x = {}"
 | |
| 541 | unfolding rank_lt_def rank_eq_def rank_le_def by auto | |
| 542 | ||
| 543 | lemma rank_lt_Un_rank_eq: "rank_lt x \<union> rank_eq x = rank_le x" | |
| 544 | unfolding rank_lt_def rank_eq_def rank_le_def by auto | |
| 545 | ||
| 62175 | 546 | subsubsection \<open>Sequencing basis elements\<close> | 
| 27411 | 547 | |
| 548 | definition | |
| 30505 | 549 | place :: "'a compact_basis \<Rightarrow> nat" | 
| 27411 | 550 | where | 
| 30505 | 551 | "place x = card (rank_lt x) + choose_pos (rank_eq x) x" | 
| 27411 | 552 | |
| 30505 | 553 | lemma place_bounded: "place x < card (rank_le x)" | 
| 554 | unfolding place_def | |
| 27411 | 555 | apply (rule ord_less_eq_trans) | 
| 556 | apply (rule add_strict_left_mono) | |
| 557 | apply (rule choose_pos_bounded) | |
| 558 | apply (rule finite_rank_eq) | |
| 559 | apply (simp add: rank_eq_def) | |
| 560 | apply (subst card_Un_disjoint [symmetric]) | |
| 561 | apply (rule finite_rank_lt) | |
| 562 | apply (rule finite_rank_eq) | |
| 563 | apply (rule rank_lt_Int_rank_eq) | |
| 564 | apply (simp add: rank_lt_Un_rank_eq) | |
| 565 | done | |
| 566 | ||
| 30505 | 567 | lemma place_ge: "card (rank_lt x) \<le> place x" | 
| 568 | unfolding place_def by simp | |
| 27411 | 569 | |
| 30505 | 570 | lemma place_rank_mono: | 
| 27411 | 571 | fixes x y :: "'a compact_basis" | 
| 30505 | 572 | shows "rank x < rank y \<Longrightarrow> place x < place y" | 
| 573 | apply (rule less_le_trans [OF place_bounded]) | |
| 574 | apply (rule order_trans [OF _ place_ge]) | |
| 27411 | 575 | apply (rule card_mono) | 
| 576 | apply (rule finite_rank_lt) | |
| 577 | apply (simp add: rank_le_def rank_lt_def subset_eq) | |
| 578 | done | |
| 579 | ||
| 30505 | 580 | lemma place_eqD: "place x = place y \<Longrightarrow> x = y" | 
| 27411 | 581 | apply (rule linorder_cases [where x="rank x" and y="rank y"]) | 
| 30505 | 582 | apply (drule place_rank_mono, simp) | 
| 583 | apply (simp add: place_def) | |
| 27411 | 584 | apply (rule inj_on_choose_pos [where A="rank_eq x", THEN inj_onD]) | 
| 585 | apply (rule finite_rank_eq) | |
| 586 | apply (simp cong: rank_lt_cong rank_eq_cong) | |
| 587 | apply (simp add: rank_eq_def) | |
| 588 | apply (simp add: rank_eq_def) | |
| 30505 | 589 | apply (drule place_rank_mono, simp) | 
| 27411 | 590 | done | 
| 591 | ||
| 30505 | 592 | lemma inj_place: "inj place" | 
| 593 | by (rule inj_onI, erule place_eqD) | |
| 27411 | 594 | |
| 62175 | 595 | subsubsection \<open>Embedding and projection on basis elements\<close> | 
| 27411 | 596 | |
| 30505 | 597 | definition | 
| 598 | sub :: "'a compact_basis \<Rightarrow> 'a compact_basis" | |
| 599 | where | |
| 600 | "sub x = (case rank x of 0 \<Rightarrow> compact_bot | Suc k \<Rightarrow> cb_take k x)" | |
| 601 | ||
| 602 | lemma rank_sub_less: "x \<noteq> compact_bot \<Longrightarrow> rank (sub x) < rank x" | |
| 603 | unfolding sub_def | |
| 604 | apply (cases "rank x", simp) | |
| 605 | apply (simp add: less_Suc_eq_le) | |
| 606 | apply (rule rank_leI) | |
| 607 | apply (rule cb_take_idem) | |
| 608 | done | |
| 609 | ||
| 610 | lemma place_sub_less: "x \<noteq> compact_bot \<Longrightarrow> place (sub x) < place x" | |
| 611 | apply (rule place_rank_mono) | |
| 612 | apply (erule rank_sub_less) | |
| 613 | done | |
| 614 | ||
| 615 | lemma sub_below: "sub x \<sqsubseteq> x" | |
| 616 | unfolding sub_def by (cases "rank x", simp_all add: cb_take_less) | |
| 617 | ||
| 618 | lemma rank_less_imp_below_sub: "\<lbrakk>x \<sqsubseteq> y; rank x < rank y\<rbrakk> \<Longrightarrow> x \<sqsubseteq> sub y" | |
| 619 | unfolding sub_def | |
| 620 | apply (cases "rank y", simp) | |
| 621 | apply (simp add: less_Suc_eq_le) | |
| 622 | apply (subgoal_tac "cb_take nat x \<sqsubseteq> cb_take nat y") | |
| 623 | apply (simp add: rank_leD) | |
| 624 | apply (erule cb_take_mono) | |
| 625 | done | |
| 626 | ||
| 27411 | 627 | function | 
| 628 | basis_emb :: "'a compact_basis \<Rightarrow> ubasis" | |
| 629 | where | |
| 630 | "basis_emb x = (if x = compact_bot then 0 else | |
| 30505 | 631 | node (place x) (basis_emb (sub x)) | 
| 632 |       (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}))"
 | |
| 27411 | 633 | by auto | 
| 634 | ||
| 635 | termination basis_emb | |
| 30505 | 636 | apply (relation "measure place", simp) | 
| 637 | apply (simp add: place_sub_less) | |
| 27411 | 638 | apply simp | 
| 639 | done | |
| 640 | ||
| 641 | declare basis_emb.simps [simp del] | |
| 642 | ||
| 643 | lemma basis_emb_compact_bot [simp]: "basis_emb compact_bot = 0" | |
| 644 | by (simp add: basis_emb.simps) | |
| 645 | ||
| 30505 | 646 | lemma fin1: "finite {y. place y < place x \<and> x \<sqsubseteq> y}"
 | 
| 27411 | 647 | apply (subst Collect_conj_eq) | 
| 648 | apply (rule finite_Int) | |
| 649 | apply (rule disjI1) | |
| 30505 | 650 | apply (subgoal_tac "finite (place -` {n. n < place x})", simp)
 | 
| 651 | apply (rule finite_vimageI [OF _ inj_place]) | |
| 27411 | 652 | apply (simp add: lessThan_def [symmetric]) | 
| 653 | done | |
| 654 | ||
| 30505 | 655 | lemma fin2: "finite (basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y})"
 | 
| 27411 | 656 | by (rule finite_imageI [OF fin1]) | 
| 657 | ||
| 30505 | 658 | lemma rank_place_mono: | 
| 659 | "\<lbrakk>place x < place y; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> rank x < rank y" | |
| 660 | apply (rule linorder_cases, assumption) | |
| 661 | apply (simp add: place_def cong: rank_lt_cong rank_eq_cong) | |
| 662 | apply (drule choose_pos_lessD) | |
| 663 | apply (rule finite_rank_eq) | |
| 664 | apply (simp add: rank_eq_def) | |
| 665 | apply (simp add: rank_eq_def) | |
| 666 | apply simp | |
| 667 | apply (drule place_rank_mono, simp) | |
| 668 | done | |
| 669 | ||
| 670 | lemma basis_emb_mono: | |
| 671 | "x \<sqsubseteq> y \<Longrightarrow> ubasis_le (basis_emb x) (basis_emb y)" | |
| 34915 | 672 | proof (induct "max (place x) (place y)" arbitrary: x y rule: less_induct) | 
| 673 | case less | |
| 30505 | 674 | show ?case proof (rule linorder_cases) | 
| 675 | assume "place x < place y" | |
| 676 | then have "rank x < rank y" | |
| 62175 | 677 | using \<open>x \<sqsubseteq> y\<close> by (rule rank_place_mono) | 
| 678 | with \<open>place x < place y\<close> show ?case | |
| 30505 | 679 | apply (case_tac "y = compact_bot", simp) | 
| 680 | apply (simp add: basis_emb.simps [of y]) | |
| 681 | apply (rule ubasis_le_trans [OF _ ubasis_le_lower [OF fin2]]) | |
| 34915 | 682 | apply (rule less) | 
| 30505 | 683 | apply (simp add: less_max_iff_disj) | 
| 684 | apply (erule place_sub_less) | |
| 62175 | 685 | apply (erule rank_less_imp_below_sub [OF \<open>x \<sqsubseteq> y\<close>]) | 
| 27411 | 686 | done | 
| 30505 | 687 | next | 
| 688 | assume "place x = place y" | |
| 689 | hence "x = y" by (rule place_eqD) | |
| 690 | thus ?case by (simp add: ubasis_le_refl) | |
| 691 | next | |
| 692 | assume "place x > place y" | |
| 62175 | 693 | with \<open>x \<sqsubseteq> y\<close> show ?case | 
| 30505 | 694 | apply (case_tac "x = compact_bot", simp add: ubasis_le_minimal) | 
| 695 | apply (simp add: basis_emb.simps [of x]) | |
| 696 | apply (rule ubasis_le_upper [OF fin2], simp) | |
| 34915 | 697 | apply (rule less) | 
| 30505 | 698 | apply (simp add: less_max_iff_disj) | 
| 699 | apply (erule place_sub_less) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 700 | apply (erule rev_below_trans) | 
| 30505 | 701 | apply (rule sub_below) | 
| 702 | done | |
| 27411 | 703 | qed | 
| 704 | qed | |
| 705 | ||
| 706 | lemma inj_basis_emb: "inj basis_emb" | |
| 707 | apply (rule inj_onI) | |
| 708 | apply (case_tac "x = compact_bot") | |
| 709 | apply (case_tac [!] "y = compact_bot") | |
| 710 | apply simp | |
| 711 | apply (simp add: basis_emb.simps) | |
| 712 | apply (simp add: basis_emb.simps) | |
| 713 | apply (simp add: basis_emb.simps) | |
| 30505 | 714 | apply (simp add: fin2 inj_eq [OF inj_place]) | 
| 27411 | 715 | done | 
| 716 | ||
| 717 | definition | |
| 30505 | 718 | basis_prj :: "ubasis \<Rightarrow> 'a compact_basis" | 
| 27411 | 719 | where | 
| 720 | "basis_prj x = inv basis_emb | |
| 30505 | 721 | (ubasis_until (\<lambda>x. x \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> ubasis)) x)" | 
| 27411 | 722 | |
| 723 | lemma basis_prj_basis_emb: "\<And>x. basis_prj (basis_emb x) = x" | |
| 724 | unfolding basis_prj_def | |
| 725 | apply (subst ubasis_until_same) | |
| 726 | apply (rule rangeI) | |
| 727 | apply (rule inv_f_f) | |
| 728 | apply (rule inj_basis_emb) | |
| 729 | done | |
| 730 | ||
| 731 | lemma basis_prj_node: | |
| 30505 | 732 | "\<lbrakk>finite S; node i a S \<notin> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)\<rbrakk> | 
| 733 | \<Longrightarrow> basis_prj (node i a S) = (basis_prj a :: 'a compact_basis)" | |
| 27411 | 734 | unfolding basis_prj_def by simp | 
| 735 | ||
| 736 | lemma basis_prj_0: "basis_prj 0 = compact_bot" | |
| 737 | apply (subst basis_emb_compact_bot [symmetric]) | |
| 738 | apply (rule basis_prj_basis_emb) | |
| 739 | done | |
| 740 | ||
| 30505 | 741 | lemma node_eq_basis_emb_iff: | 
| 742 | "finite S \<Longrightarrow> node i a S = basis_emb x \<longleftrightarrow> | |
| 743 | x \<noteq> compact_bot \<and> i = place x \<and> a = basis_emb (sub x) \<and> | |
| 744 |         S = basis_emb ` {y. place y < place x \<and> x \<sqsubseteq> y}"
 | |
| 745 | apply (cases "x = compact_bot", simp) | |
| 746 | apply (simp add: basis_emb.simps [of x]) | |
| 747 | apply (simp add: fin2) | |
| 27411 | 748 | done | 
| 749 | ||
| 30505 | 750 | lemma basis_prj_mono: "ubasis_le a b \<Longrightarrow> basis_prj a \<sqsubseteq> basis_prj b" | 
| 751 | proof (induct a b rule: ubasis_le.induct) | |
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 752 | case (ubasis_le_refl a) show ?case by (rule below_refl) | 
| 30505 | 753 | next | 
| 31076 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 huffman parents: 
30729diff
changeset | 754 | case (ubasis_le_trans a b c) thus ?case by - (rule below_trans) | 
| 30505 | 755 | next | 
| 756 | case (ubasis_le_lower S a i) thus ?case | |
| 30561 | 757 | apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)") | 
| 30505 | 758 | apply (erule rangeE, rename_tac x) | 
| 759 | apply (simp add: basis_prj_basis_emb) | |
| 760 | apply (simp add: node_eq_basis_emb_iff) | |
| 761 | apply (simp add: basis_prj_basis_emb) | |
| 762 | apply (rule sub_below) | |
| 763 | apply (simp add: basis_prj_node) | |
| 764 | done | |
| 765 | next | |
| 766 | case (ubasis_le_upper S b a i) thus ?case | |
| 30561 | 767 | apply (cases "node i a S \<in> range (basis_emb :: 'a compact_basis \<Rightarrow> nat)") | 
| 30505 | 768 | apply (erule rangeE, rename_tac x) | 
| 769 | apply (simp add: basis_prj_basis_emb) | |
| 770 | apply (clarsimp simp add: node_eq_basis_emb_iff) | |
| 771 | apply (simp add: basis_prj_basis_emb) | |
| 772 | apply (simp add: basis_prj_node) | |
| 773 | done | |
| 774 | qed | |
| 775 | ||
| 27411 | 776 | lemma basis_emb_prj_less: "ubasis_le (basis_emb (basis_prj x)) x" | 
| 777 | unfolding basis_prj_def | |
| 33071 
362f59fe5092
renamed f_inv_onto_f to f_inv_into_f (cf. 764547b68538);
 wenzelm parents: 
32997diff
changeset | 778 | apply (subst f_inv_into_f [where f=basis_emb]) | 
| 27411 | 779 | apply (rule ubasis_until) | 
| 780 | apply (rule range_eqI [where x=compact_bot]) | |
| 781 | apply simp | |
| 782 | apply (rule ubasis_until_less) | |
| 783 | done | |
| 784 | ||
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 785 | lemma ideal_completion: | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 786 | "ideal_completion below Rep_compact_basis (approximants :: 'a \<Rightarrow> _)" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 787 | proof | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 788 | fix w :: "'a" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 789 | show "below.ideal (approximants w)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 790 | proof (rule below.idealI) | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 791 | have "Abs_compact_basis (approx 0\<cdot>w) \<in> approximants w" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 792 | by (simp add: approximants_def approx_below) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 793 | thus "\<exists>x. x \<in> approximants w" .. | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 794 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 795 | fix x y :: "'a compact_basis" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 796 | assume x: "x \<in> approximants w" and y: "y \<in> approximants w" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 797 | obtain i where i: "approx i\<cdot>(Rep_compact_basis x) = Rep_compact_basis x" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 798 | using compact_eq_approx Rep_compact_basis' by fast | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 799 | obtain j where j: "approx j\<cdot>(Rep_compact_basis y) = Rep_compact_basis y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 800 | using compact_eq_approx Rep_compact_basis' by fast | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 801 | let ?z = "Abs_compact_basis (approx (max i j)\<cdot>w)" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 802 | have "?z \<in> approximants w" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 803 | by (simp add: approximants_def approx_below) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 804 | moreover from x y have "x \<sqsubseteq> ?z \<and> y \<sqsubseteq> ?z" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 805 | by (simp add: approximants_def compact_le_def) | 
| 54863 
82acc20ded73
prefer more canonical names for lemmas on min/max
 haftmann parents: 
49834diff
changeset | 806 | (metis i j monofun_cfun chain_mono chain_approx max.cobounded1 max.cobounded2) | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 807 | ultimately show "\<exists>z \<in> approximants w. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" .. | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 808 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 809 | fix x y :: "'a compact_basis" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 810 | assume "x \<sqsubseteq> y" "y \<in> approximants w" thus "x \<in> approximants w" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 811 | unfolding approximants_def compact_le_def | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 812 | by (auto elim: below_trans) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 813 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 814 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 815 | fix Y :: "nat \<Rightarrow> 'a" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 816 | assume "chain Y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 817 | thus "approximants (\<Squnion>i. Y i) = (\<Union>i. approximants (Y i))" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 818 | unfolding approximants_def | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 819 | by (auto simp add: compact_below_lub_iff) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 820 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 821 | fix a :: "'a compact_basis" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 822 |   show "approximants (Rep_compact_basis a) = {b. b \<sqsubseteq> a}"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 823 | unfolding approximants_def compact_le_def .. | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 824 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 825 | fix x y :: "'a" | 
| 41370 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 826 | assume "approximants x \<subseteq> approximants y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 827 | hence "\<forall>z. compact z \<longrightarrow> z \<sqsubseteq> x \<longrightarrow> z \<sqsubseteq> y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 828 | by (simp add: approximants_def subset_eq) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 829 | (metis Abs_compact_basis_inverse') | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 830 | hence "(\<Squnion>i. approx i\<cdot>x) \<sqsubseteq> y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 831 | by (simp add: lub_below approx_below) | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 832 | thus "x \<sqsubseteq> y" | 
| 
17b09240893c
declare more simp rules, rewrite proofs in Isar-style
 huffman parents: 
41295diff
changeset | 833 | by (simp add: lub_distribs) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 834 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 835 | show "\<exists>f::'a compact_basis \<Rightarrow> nat. inj f" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 836 | by (rule exI, rule inj_place) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 837 | qed | 
| 27411 | 838 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 839 | end | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 840 | |
| 61605 | 841 | interpretation compact_basis: | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 842 | ideal_completion below Rep_compact_basis | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 843 | "approximants :: 'a::bifinite \<Rightarrow> 'a compact_basis set" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 844 | proof - | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 845 | obtain a :: "nat \<Rightarrow> 'a \<rightarrow> 'a" where "approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 846 | using bifinite .. | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 847 | hence "bifinite_approx_chain a" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 848 | unfolding bifinite_approx_chain_def . | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 849 | thus "ideal_completion below Rep_compact_basis (approximants :: 'a \<Rightarrow> _)" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 850 | by (rule bifinite_approx_chain.ideal_completion) | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 851 | qed | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 852 | |
| 62175 | 853 | subsubsection \<open>EP-pair from any bifinite domain into \emph{udom}\<close>
 | 
| 27411 | 854 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 855 | context bifinite_approx_chain begin | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 856 | |
| 27411 | 857 | definition | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 858 | udom_emb :: "'a \<rightarrow> udom" | 
| 27411 | 859 | where | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 860 | "udom_emb = compact_basis.extension (\<lambda>x. udom_principal (basis_emb x))" | 
| 27411 | 861 | |
| 862 | definition | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 863 | udom_prj :: "udom \<rightarrow> 'a" | 
| 27411 | 864 | where | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 865 | "udom_prj = udom.extension (\<lambda>x. Rep_compact_basis (basis_prj x))" | 
| 27411 | 866 | |
| 867 | lemma udom_emb_principal: | |
| 868 | "udom_emb\<cdot>(Rep_compact_basis x) = udom_principal (basis_emb x)" | |
| 869 | unfolding udom_emb_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 870 | apply (rule compact_basis.extension_principal) | 
| 27411 | 871 | apply (rule udom.principal_mono) | 
| 872 | apply (erule basis_emb_mono) | |
| 873 | done | |
| 874 | ||
| 875 | lemma udom_prj_principal: | |
| 876 | "udom_prj\<cdot>(udom_principal x) = Rep_compact_basis (basis_prj x)" | |
| 877 | unfolding udom_prj_def | |
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 878 | apply (rule udom.extension_principal) | 
| 27411 | 879 | apply (rule compact_basis.principal_mono) | 
| 880 | apply (erule basis_prj_mono) | |
| 881 | done | |
| 882 | ||
| 883 | lemma ep_pair_udom: "ep_pair udom_emb udom_prj" | |
| 61169 | 884 | apply standard | 
| 27411 | 885 | apply (rule compact_basis.principal_induct, simp) | 
| 886 | apply (simp add: udom_emb_principal udom_prj_principal) | |
| 887 | apply (simp add: basis_prj_basis_emb) | |
| 888 | apply (rule udom.principal_induct, simp) | |
| 889 | apply (simp add: udom_emb_principal udom_prj_principal) | |
| 890 | apply (rule basis_emb_prj_less) | |
| 891 | done | |
| 892 | ||
| 893 | end | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 894 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 895 | abbreviation "udom_emb \<equiv> bifinite_approx_chain.udom_emb" | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 896 | abbreviation "udom_prj \<equiv> bifinite_approx_chain.udom_prj" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 897 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 898 | lemmas ep_pair_udom = | 
| 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 899 | bifinite_approx_chain.ep_pair_udom [unfolded bifinite_approx_chain_def] | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 900 | |
| 62175 | 901 | subsection \<open>Chain of approx functions for type \emph{udom}\<close>
 | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 902 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 903 | definition | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 904 | udom_approx :: "nat \<Rightarrow> udom \<rightarrow> udom" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 905 | where | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 906 | "udom_approx i = | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 907 | udom.extension (\<lambda>x. udom_principal (ubasis_until (\<lambda>y. y \<le> i) x))" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 908 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 909 | lemma udom_approx_mono: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 910 | "ubasis_le a b \<Longrightarrow> | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 911 | udom_principal (ubasis_until (\<lambda>y. y \<le> i) a) \<sqsubseteq> | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 912 | udom_principal (ubasis_until (\<lambda>y. y \<le> i) b)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 913 | apply (rule udom.principal_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 914 | apply (rule ubasis_until_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 915 | apply (frule (2) order_less_le_trans [OF node_gt2]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 916 | apply (erule order_less_imp_le) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 917 | apply assumption | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 918 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 919 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 920 | lemma adm_mem_finite: "\<lbrakk>cont f; finite S\<rbrakk> \<Longrightarrow> adm (\<lambda>x. f x \<in> S)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 921 | by (erule adm_subst, induct set: finite, simp_all) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 922 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 923 | lemma udom_approx_principal: | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 924 | "udom_approx i\<cdot>(udom_principal x) = | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 925 | udom_principal (ubasis_until (\<lambda>y. y \<le> i) x)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 926 | unfolding udom_approx_def | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 927 | apply (rule udom.extension_principal) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 928 | apply (erule udom_approx_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 929 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 930 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 931 | lemma finite_deflation_udom_approx: "finite_deflation (udom_approx i)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 932 | proof | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 933 | fix x show "udom_approx i\<cdot>(udom_approx i\<cdot>x) = udom_approx i\<cdot>x" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 934 | by (induct x rule: udom.principal_induct, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 935 | (simp add: udom_approx_principal ubasis_until_idem) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 936 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 937 | fix x show "udom_approx i\<cdot>x \<sqsubseteq> x" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 938 | by (induct x rule: udom.principal_induct, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 939 | (simp add: udom_approx_principal ubasis_until_less) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 940 | next | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 941 | have *: "finite (range (\<lambda>x. udom_principal (ubasis_until (\<lambda>y. y \<le> i) x)))" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 942 | apply (subst range_composition [where f=udom_principal]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 943 | apply (simp add: finite_range_ubasis_until) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 944 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 945 |   show "finite {x. udom_approx i\<cdot>x = x}"
 | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 946 | apply (rule finite_range_imp_finite_fixes) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 947 | apply (rule rev_finite_subset [OF *]) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 948 | apply (clarsimp, rename_tac x) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 949 | apply (induct_tac x rule: udom.principal_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 950 | apply (simp add: adm_mem_finite *) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 951 | apply (simp add: udom_approx_principal) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 952 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 953 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 954 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 955 | interpretation udom_approx: finite_deflation "udom_approx i" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 956 | by (rule finite_deflation_udom_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 957 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 958 | lemma chain_udom_approx [simp]: "chain (\<lambda>i. udom_approx i)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 959 | unfolding udom_approx_def | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 960 | apply (rule chainI) | 
| 41394 
51c866d1b53b
rename function ideal_completion.basis_fun to ideal_completion.extension
 huffman parents: 
41370diff
changeset | 961 | apply (rule udom.extension_mono) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 962 | apply (erule udom_approx_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 963 | apply (erule udom_approx_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 964 | apply (rule udom.principal_mono) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 965 | apply (rule ubasis_until_chain, simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 966 | done | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 967 | |
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 968 | lemma lub_udom_approx [simp]: "(\<Squnion>i. udom_approx i) = ID" | 
| 40002 
c5b5f7a3a3b1
new theorem names: fun_below_iff, fun_belowI, cfun_eq_iff, cfun_eqI, cfun_below_iff, cfun_belowI
 huffman parents: 
39984diff
changeset | 969 | apply (rule cfun_eqI, simp add: contlub_cfun_fun) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 970 | apply (rule below_antisym) | 
| 40500 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 huffman parents: 
40002diff
changeset | 971 | apply (rule lub_below) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 972 | apply (simp) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 973 | apply (rule udom_approx.below) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 974 | apply (rule_tac x=x in udom.principal_induct) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 975 | apply (simp add: lub_distribs) | 
| 40500 
ee9c8d36318e
add lemmas lub_below, below_lub; simplify some proofs; remove some unused lemmas
 huffman parents: 
40002diff
changeset | 976 | apply (rule_tac i=a in below_lub) | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 977 | apply simp | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 978 | apply (simp add: udom_approx_principal) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 979 | apply (simp add: ubasis_until_same ubasis_le_refl) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 980 | done | 
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64267diff
changeset | 981 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 982 | lemma udom_approx [simp]: "approx_chain udom_approx" | 
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 983 | proof | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 984 | show "chain (\<lambda>i. udom_approx i)" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 985 | by (rule chain_udom_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 986 | show "(\<Squnion>i. udom_approx i) = ID" | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 987 | by (rule lub_udom_approx) | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 988 | qed | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 989 | |
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 990 | instance udom :: bifinite | 
| 61169 | 991 | by standard (fast intro: udom_approx) | 
| 41286 
3d7685a4a5ff
reintroduce 'bifinite' class, now with existentially-quantified approx function (cf. b525988432e9)
 huffman parents: 
41182diff
changeset | 992 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 993 | hide_const (open) node | 
| 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 994 | |
| 65552 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64267diff
changeset | 995 | notation binomial (infixl "choose" 65) | 
| 
f533820e7248
theories "GCD" and "Binomial" are already included in "Main": this avoids improper imports in applications;
 wenzelm parents: 
64267diff
changeset | 996 | |
| 39974 
b525988432e9
major reorganization/simplification of HOLCF type classes:
 huffman parents: 
36452diff
changeset | 997 | end |