src/HOL/Complex_Analysis/Cauchy_Integral_Formula.thy
author haftmann
Thu, 19 Jun 2025 17:15:40 +0200
changeset 82734 89347c0cc6a3
parent 82539 fadbfb9e65f3
permissions -rw-r--r--
treat map_filter similar to list_all, list_ex, list_ex1
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     1
section \<open>Cauchy's Integral Formula\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     2
theory Cauchy_Integral_Formula
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     3
  imports Winding_Numbers
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     4
begin
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     5
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     6
subsection\<open>Proof\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     7
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
     8
lemma Cauchy_integral_formula_weak:
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
     9
    assumes S: "convex S" and "finite k" and conf: "continuous_on S f"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    10
        and fcd: "(\<And>x. x \<in> interior S - k \<Longrightarrow> f field_differentiable at x)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    11
        and z: "z \<in> interior S - k" and vpg: "valid_path \<gamma>"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    12
        and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    13
      shows "((\<lambda>w. f w / (w-z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    14
proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    15
  let ?fz = "\<lambda>w. (f w - f z)/(w-z)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    16
  obtain f' where f': "(f has_field_derivative f') (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    17
    using fcd [OF z] by (auto simp: field_differentiable_def)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    18
  have pas: "path_image \<gamma> \<subseteq> S" and znotin: "z \<notin> path_image \<gamma>" using pasz by blast+
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    19
  have c: "continuous (at x within S) (\<lambda>w. if w = z then f' else (f w - f z) / (w-z))" if "x \<in> S" for x
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    20
  proof (cases "x = z")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    21
    case True then show ?thesis
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    22
      using LIM_equal [of "z" ?fz "\<lambda>w. if w = z then f' else ?fz w"] has_field_derivativeD [OF f'] 
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    23
      by (force simp add: continuous_within Lim_at_imp_Lim_at_within)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    24
  next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    25
    case False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    26
    then have dxz: "dist x z > 0" by auto
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    27
    have cf: "continuous (at x within S) f"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    28
      using conf continuous_on_eq_continuous_within that by blast
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    29
    have "continuous (at x within S) (\<lambda>w. (f w - f z) / (w-z))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    30
      by (rule cf continuous_intros | simp add: False)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    31
    then show ?thesis
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
    32
      using continuous_transform_within [OF _ dxz that] by (force simp: dist_commute)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    33
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    34
  have fink': "finite (insert z k)" using \<open>finite k\<close> by blast
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    35
  have *: "((\<lambda>w. if w = z then f' else ?fz w) has_contour_integral 0) \<gamma>"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    36
  proof (rule Cauchy_theorem_convex [OF _ S fink' _ vpg pas loop])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    37
    show "(\<lambda>w. if w = z then f' else ?fz w) field_differentiable at w" 
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    38
      if "w \<in> interior S - insert z k" for w
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    39
    proof (rule field_differentiable_transform_within)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    40
      show "(\<lambda>w. ?fz w) field_differentiable at w"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    41
        using that by (intro derivative_intros fcd; simp)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    42
    qed (use that in \<open>auto simp add: dist_pos_lt dist_commute\<close>)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    43
  qed (use c in \<open>force simp: continuous_on_eq_continuous_within\<close>)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    44
  note ** = has_contour_integral_add [OF has_contour_integral_lmul [OF has_contour_integral_winding_number [OF vpg znotin], of "f z"] *]
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    45
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    46
    apply (rule has_contour_integral_eq)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    47
    using znotin ** apply (auto simp: ac_simps divide_simps)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    48
    done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    49
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    50
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    51
theorem Cauchy_integral_formula_convex_simple:
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    52
  assumes "convex S" and holf: "f holomorphic_on S" and "z \<in> interior S" "valid_path \<gamma>" "path_image \<gamma> \<subseteq> S - {z}"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    53
      "pathfinish \<gamma> = pathstart \<gamma>"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    54
    shows "((\<lambda>w. f w / (w-z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    55
proof -
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    56
  have "\<And>x. x \<in> interior S \<Longrightarrow> f field_differentiable at x"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    57
    using holf at_within_interior holomorphic_onD interior_subset by fastforce
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    58
  then show ?thesis
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    59
    using assms
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    60
    by (intro Cauchy_integral_formula_weak [where k = "{}"]) (auto simp: holomorphic_on_imp_continuous_on)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    61
qed
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    62
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    63
text\<open> Hence the Cauchy formula for points inside a circle.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    64
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    65
theorem Cauchy_integral_circlepath:
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    66
  assumes contf: "continuous_on (cball z r) f" and holf: "f holomorphic_on (ball z r)" and wz: "norm(w-z) < r"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    67
  shows "((\<lambda>u. f u/(u-w)) has_contour_integral (2 * of_real pi * \<i> * f w))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    68
         (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    69
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    70
  have "r > 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    71
    using assms le_less_trans norm_ge_zero by blast
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    72
  have "((\<lambda>u. f u / (u-w)) has_contour_integral (2 * pi) * \<i> * winding_number (circlepath z r) w * f w)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    73
        (circlepath z r)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
    74
  proof (rule Cauchy_integral_formula_weak [where S = "cball z r" and k = "{}"])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    75
    show "\<And>x. x \<in> interior (cball z r) - {} \<Longrightarrow>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    76
         f field_differentiable at x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    77
      using holf holomorphic_on_imp_differentiable_at by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    78
    have "w \<notin> sphere z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    79
      by simp (metis dist_commute dist_norm not_le order_refl wz)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    80
    then show "path_image (circlepath z r) \<subseteq> cball z r - {w}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    81
      using \<open>r > 0\<close> by (auto simp add: cball_def sphere_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    82
  qed (use wz in \<open>simp_all add: dist_norm norm_minus_commute contf\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    83
  then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    84
    by (simp add: winding_number_circlepath assms)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    85
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    86
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    87
corollary\<^marker>\<open>tag unimportant\<close> Cauchy_integral_circlepath_simple:
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    88
  assumes "f holomorphic_on cball z r" "norm(w-z) < r"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    89
  shows "((\<lambda>u. f u/(u-w)) has_contour_integral (2 * of_real pi * \<i> * f w))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    90
         (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    91
using assms by (force simp: holomorphic_on_imp_continuous_on holomorphic_on_subset Cauchy_integral_circlepath)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    92
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    93
subsection\<^marker>\<open>tag unimportant\<close> \<open>General stepping result for derivative formulas\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    94
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    95
lemma Cauchy_next_derivative:
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    96
  fixes f' :: "complex \<Rightarrow> complex"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
    97
  defines "h \<equiv> \<lambda>k w u. f' u / (u-w)^k"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    98
  assumes "continuous_on (path_image \<gamma>) f'"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
    99
      and leB: "\<And>t. t \<in> {0..1} \<Longrightarrow> norm (vector_derivative \<gamma> (at t)) \<le> B"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   100
      and int: "\<And>w. w \<in> S - path_image \<gamma> \<Longrightarrow> (h k w has_contour_integral f w) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   101
      and k: "k \<noteq> 0"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   102
      and "open S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   103
      and \<gamma>: "valid_path \<gamma>"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   104
      and w: "w \<in> S - path_image \<gamma>"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   105
    shows "h (Suc k) w contour_integrable_on \<gamma>"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   106
      and "(f has_field_derivative (k * contour_integral \<gamma> (h (Suc k) w))) (at w)"  (is "?thes2")
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   107
proof -
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   108
  have "open (S - path_image \<gamma>)" using \<open>open S\<close> closed_valid_path_image \<gamma> by blast
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   109
  then obtain d where "d>0" and d: "ball w d \<subseteq> S - path_image \<gamma>" using w
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   110
    using open_contains_ball by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   111
  have [simp]: "\<And>n. cmod (1 + of_nat n) = 1 + of_nat n"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   112
    by (metis norm_of_nat of_nat_Suc)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   113
  have cint: "(\<lambda>z. (h k x z - h k w z) / (x * k - w * k)) contour_integrable_on \<gamma>"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   114
    if "x \<noteq> w" "cmod (x-w) < d" for x::complex
80090
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
   115
  proof -
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
   116
    have "x \<in> S - path_image \<gamma>"
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
   117
      by (metis d dist_commute dist_norm mem_ball subsetD that(2))
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
   118
    then show ?thesis
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
   119
      using contour_integrable_diff contour_integrable_div contour_integrable_on_def int w
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
   120
      by meson
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
   121
  qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   122
  then have 1: "\<forall>\<^sub>F x in at w. (\<lambda>z. (h k x z - h k w z) / (x-w) / of_nat k)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   123
                         contour_integrable_on \<gamma>"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   124
    unfolding eventually_at 
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   125
    by (force intro: exI [where x=d] simp add: \<open>d > 0\<close> dist_norm field_simps)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   126
  have bim_g: "bounded (image f' (path_image \<gamma>))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   127
    by (simp add: compact_imp_bounded compact_continuous_image compact_valid_path_image assms)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   128
  then obtain C where "C > 0" and C: "\<And>x. \<lbrakk>0 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cmod (f' (\<gamma> x)) \<le> C"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   129
    by (force simp: bounded_pos path_image_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   130
  have twom: "\<forall>\<^sub>F n in at w.
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   131
               \<forall>x\<in>path_image \<gamma>.
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   132
                cmod ((inverse (x-n) ^ k - inverse (x-w) ^ k) / (n-w) / k - inverse (x-w) ^ Suc k) < e"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   133
         if "0 < e" for e
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   134
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   135
    have *: "cmod ((inverse (x-u) ^ k - inverse (x-w) ^ k) / ((u-w) * k) - inverse (x-w) ^ Suc k) < e"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   136
            if x: "x \<in> path_image \<gamma>" and "u \<noteq> w" and uwd: "cmod (u-w) < d/2"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   137
                and uw_less: "cmod (u-w) < e * (d/2) ^ (k+2) / (1 + real k)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   138
            for u x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   139
    proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   140
      define ff where [abs_def]:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   141
        "ff n w =
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   142
          (if n = 0 then inverse(x-w)^k
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   143
           else if n = 1 then k / (x-w)^(Suc k)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   144
           else (k * of_real(Suc k)) / (x-w)^(k + 2))" for n :: nat and w
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   145
      have km1: "\<And>z::complex. z \<noteq> 0 \<Longrightarrow> z ^ (k - Suc 0) = z ^ k / z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   146
        by (simp add: field_simps) (metis Suc_pred \<open>k \<noteq> 0\<close> neq0_conv power_Suc)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   147
      have ff1: "(ff i has_field_derivative ff (Suc i) z) (at z within ball w (d/2))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   148
              if "z \<in> ball w (d/2)" "i \<le> 1" for i z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   149
      proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   150
        have "z \<notin> path_image \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   151
          using \<open>x \<in> path_image \<gamma>\<close> d that ball_divide_subset_numeral by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   152
        then have xz[simp]: "x \<noteq> z" using \<open>x \<in> path_image \<gamma>\<close> by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   153
        then have neq: "x * x + z * z \<noteq> x * (z * 2)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   154
          by (blast intro: dest!: sum_sqs_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   155
        with xz have "\<And>v. v \<noteq> 0 \<Longrightarrow> (x * x + z * z) * v \<noteq> (x * (z * 2) * v)" by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   156
        then have neqq: "\<And>v. v \<noteq> 0 \<Longrightarrow> x * (x * v) + z * (z * v) \<noteq> x * (z * (2 * v))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   157
          by (simp add: algebra_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   158
        show ?thesis using \<open>i \<le> 1\<close>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   159
          apply (simp add: ff_def dist_norm Nat.le_Suc_eq, safe)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   160
          apply (rule derivative_eq_intros | simp add: km1 | simp add: field_simps neq neqq)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   161
          done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   162
      qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   163
      { fix a::real and b::real assume ab: "a > 0" "b > 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   164
        then have "k * (1 + real k) * (1 / a) \<le> k * (1 + real k) * (4 / b) \<longleftrightarrow> b \<le> 4 * a"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   165
          by (subst mult_le_cancel_left_pos)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   166
            (use \<open>k \<noteq> 0\<close> in \<open>auto simp: divide_simps\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   167
        with ab have "real k * (1 + real k) / a \<le> (real k * 4 + real k * real k * 4) / b \<longleftrightarrow> b \<le> 4 * a"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   168
          by (simp add: field_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   169
      } note canc = this
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   170
      have ff2: "cmod (ff (Suc 1) v) \<le> real (k * (k + 1)) / (d/2) ^ (k + 2)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   171
                if "v \<in> ball w (d/2)" for v
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   172
      proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   173
        have lessd: "\<And>z. cmod (\<gamma> z - v) < d/2 \<Longrightarrow> cmod (w - \<gamma> z) < d"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   174
          by (metis that norm_minus_commute norm_triangle_half_r dist_norm mem_ball)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   175
        have "d/2 \<le> cmod (x-v)" using d x that
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   176
          using lessd d x unfolding path_image_def
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   177
          by (smt (verit, best) dist_norm imageE insert_Diff mem_ball subset_Diff_insert)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   178
        then have "d \<le> cmod (x-v) * 2"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   179
          by (simp add: field_split_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   180
        then have dpow_le: "d ^ (k+2) \<le> (cmod (x-v) * 2) ^ (k+2)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   181
          using \<open>0 < d\<close> order_less_imp_le power_mono by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   182
        have "x \<noteq> v" using that
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   183
          using \<open>x \<in> path_image \<gamma>\<close> ball_divide_subset_numeral d by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   184
        then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   185
        using \<open>d > 0\<close> apply (simp add: ff_def norm_mult norm_divide norm_power dist_norm canc)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   186
        using dpow_le apply (simp add: field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   187
        done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   188
      qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   189
      have ub: "u \<in> ball w (d/2)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   190
        using uwd by (simp add: dist_commute dist_norm)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   191
      have "cmod (inverse (x-u) ^ k - (inverse (x-w) ^ k + of_nat k * (u-w) / ((x-w) * (x-w) ^ k)))
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   192
                  \<le> (real k * 4 + real k * real k * 4) * (cmod (u-w) * cmod (u-w)) / (d * (d * (d/2) ^ k))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   193
        using complex_Taylor [OF _ ff1 ff2 _ ub, of w, simplified]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   194
        by (simp add: ff_def \<open>0 < d\<close>)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   195
      then have "cmod (inverse (x-u) ^ k - (inverse (x-w) ^ k + of_nat k * (u-w) / ((x-w) * (x-w) ^ k)))
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   196
                  \<le> (cmod (u-w) * real k) * (1 + real k) * cmod (u-w) / (d/2) ^ (k+2)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   197
        by (simp add: field_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   198
      then have "cmod (inverse (x-u) ^ k - (inverse (x-w) ^ k + of_nat k * (u-w) / ((x-w) * (x-w) ^ k)))
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   199
                 / (cmod (u-w) * real k)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   200
                  \<le> (1 + real k) * cmod (u-w) / (d/2) ^ (k+2)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   201
        using \<open>k \<noteq> 0\<close> \<open>u \<noteq> w\<close> by (simp add: mult_ac zero_less_mult_iff pos_divide_le_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   202
      also have "\<dots> < e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   203
        using uw_less \<open>0 < d\<close> by (simp add: mult_ac divide_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   204
      finally have e: "cmod (inverse (x-u)^k - (inverse (x-w)^k + of_nat k * (u-w) / ((x-w) * (x-w)^k)))
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   205
                        / cmod ((u-w) * real k)   <   e"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   206
        by (simp add: norm_mult)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   207
      have "x \<noteq> u"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   208
        using uwd \<open>0 < d\<close> x d by (force simp: dist_norm ball_def norm_minus_commute)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   209
      show ?thesis
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   210
        using \<open>k \<noteq> 0\<close> \<open>x \<noteq> u\<close> \<open>u \<noteq> w\<close> le_less_trans [OF _ e]
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   211
        by (simp add: field_simps flip: norm_divide)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   212
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   213
    show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   214
      unfolding eventually_at
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   215
      apply (rule_tac x = "min (d/2) ((e*(d/2)^(k + 2))/(Suc k))" in exI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   216
      apply (force simp: \<open>d > 0\<close> dist_norm that simp del: power_Suc intro: *)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   217
      done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   218
  qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   219
  have 2: "uniform_limit (path_image \<gamma>) (\<lambda>x z. (h k x z - h k w z) / (x-w) / k) (h (Suc k) w) (at w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   220
    unfolding uniform_limit_iff dist_norm
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   221
  proof clarify
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   222
    fix e::real
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   223
    assume "0 < e"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   224
    have *: "cmod ((h k x (\<gamma> u) - h k w (\<gamma> u)) / ((x-w) * k) - h (Suc k) w (\<gamma> u)) < e"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   225
          if ec: "cmod ((inverse (\<gamma> u - x) ^ k - inverse (\<gamma> u - w) ^ k) / ((x-w) * k) -
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   226
                  inverse (\<gamma> u - w) * inverse (\<gamma> u - w) ^ k) < e / C"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   227
                 and x: "0 \<le> u" "u \<le> 1"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   228
               for x u
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   229
    proof (cases "(f' (\<gamma> u)) = 0")
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   230
      case True then show ?thesis by (simp add: \<open>0 < e\<close> h_def)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   231
    next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   232
      case False
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   233
      have "cmod ((h k x (\<gamma> u) - h k w (\<gamma> u)) / ((x-w) * k) - h (Suc k) w (\<gamma> u)) =
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   234
            cmod (f' (\<gamma> u) * ((inverse (\<gamma> u - x) ^ k - inverse (\<gamma> u - w) ^ k) / ((x-w) * k) -
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   235
                             inverse (\<gamma> u - w) * inverse (\<gamma> u - w) ^ k))"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   236
        by (simp add: h_def field_simps)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   237
      also have "\<dots> = cmod (f' (\<gamma> u)) *
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   238
                       cmod ((inverse (\<gamma> u - x) ^ k - inverse (\<gamma> u - w) ^ k) / ((x-w) * k) -
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   239
                             inverse (\<gamma> u - w) * inverse (\<gamma> u - w) ^ k)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   240
        by (simp add: norm_mult)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   241
      also have "\<dots> < cmod (f' (\<gamma> u)) * (e/C)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   242
        using False mult_strict_left_mono [OF ec] by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   243
      also have "\<dots> \<le> e" using C
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   244
        by (metis False \<open>0 < e\<close> frac_le less_eq_real_def mult.commute pos_le_divide_eq x zero_less_norm_iff)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   245
      finally show ?thesis .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   246
    qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   247
    show "\<forall>\<^sub>F u in at w.
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   248
              \<forall>x\<in>path_image \<gamma>.
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   249
               cmod ((h k u x - h k w x) / (u-w) / of_nat k - h (Suc k) w x) < e"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   250
      using twom [OF divide_pos_pos [OF \<open>0 < e\<close> \<open>C > 0\<close>]] *
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   251
      unfolding path_image_def h_def
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   252
      by (force elim: eventually_mono)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   253
  qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   254
  show "h (Suc k) w contour_integrable_on \<gamma>"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   255
    using contour_integral_uniform_limit [OF 1 2 leB \<gamma>] by (simp add: h_def)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   256
  have *: "(\<lambda>u. contour_integral \<gamma> (\<lambda>x. (h k u x - h k w x) / (u-w) / k))
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   257
           \<midarrow>w\<rightarrow> contour_integral \<gamma> (h (Suc k) w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   258
    by (rule contour_integral_uniform_limit [OF 1 2 leB \<gamma>]) auto
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   259
  have **: "contour_integral \<gamma> (\<lambda>x. (h k u x - h k w x) / ((u-w) * k)) =
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   260
              (f u - f w) / (u-w) / k"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   261
    if "dist u w < d" for u
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   262
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   263
    have "u \<in> S - path_image \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   264
      by (metis subsetD d dist_commute mem_ball that)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   265
    then have "(h k u has_contour_integral f u) \<gamma>" "(h k w has_contour_integral f w) \<gamma>"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   266
      using w by (simp_all add: field_simps int)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   267
    then show ?thesis
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   268
      using contour_integral_unique has_contour_integral_diff
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   269
        has_contour_integral_div by force
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   270
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   271
  show ?thes2
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   272
    unfolding has_field_derivative_iff
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   273
    by (simp add: \<open>k \<noteq> 0\<close> ** Lim_transform_within [OF tendsto_mult_left [OF *] \<open>0 < d\<close>])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   274
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   275
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   276
lemma Cauchy_next_derivative_circlepath:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   277
  assumes contf: "continuous_on (path_image (circlepath z r)) f"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   278
      and int: "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>u. f u / (u-w)^k) has_contour_integral g w) (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   279
      and k: "k \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   280
      and w: "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   281
    shows "(\<lambda>u. f u / (u-w)^(Suc k)) contour_integrable_on (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   282
           (is "?thes1")
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   283
      and "(g has_field_derivative (k * contour_integral (circlepath z r) (\<lambda>u. f u/(u-w)^(Suc k)))) (at w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   284
           (is "?thes2")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   285
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   286
  have "r > 0" using w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   287
    using ball_eq_empty by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   288
  have wim: "w \<in> ball z r - path_image (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   289
    using w by (auto simp: dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   290
  show ?thes1 ?thes2
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   291
    by (rule Cauchy_next_derivative [OF contf _ int k open_ball valid_path_circlepath wim, where B = "2 * pi * \<bar>r\<bar>"];
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   292
        auto simp: vector_derivative_circlepath norm_mult)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   293
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   294
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   295
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   296
text\<open> In particular, the first derivative formula.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   297
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   298
lemma Cauchy_derivative_integral_circlepath:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   299
  assumes contf: "continuous_on (cball z r) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   300
      and holf: "f holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   301
      and w: "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   302
    shows "(\<lambda>u. f u/(u-w)^2) contour_integrable_on (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   303
           (is "?thes1")
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   304
      and "(f has_field_derivative (1 / (2 * of_real pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u / (u-w)^2))) (at w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   305
           (is "?thes2")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   306
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   307
  have [simp]: "r \<ge> 0" using w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   308
    using ball_eq_empty by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   309
  have f: "continuous_on (path_image (circlepath z r)) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   310
    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   311
  have int: "\<And>w. dist z w < r \<Longrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   312
                 ((\<lambda>u. f u / (u-w)) has_contour_integral (\<lambda>x. 2 * of_real pi * \<i> * f x) w) (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   313
    by (rule Cauchy_integral_circlepath [OF contf holf]) (simp add: dist_norm norm_minus_commute)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   314
  show ?thes1
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
   315
    unfolding power2_eq_square
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
   316
    using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1]
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
   317
    by fastforce
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   318
  have "((\<lambda>x. 2 * of_real pi * \<i> * f x) has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u-w)^2)) (at w)"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
   319
    unfolding power2_eq_square
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
   320
    using int Cauchy_next_derivative_circlepath [OF f _ _ w, where k=1 and g = "\<lambda>x. 2 * of_real pi * \<i> * f x"]
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
   321
    by fastforce
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   322
  then have fder: "(f has_field_derivative contour_integral (circlepath z r) (\<lambda>u. f u / (u-w)^2) / (2 * of_real pi * \<i>)) (at w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   323
    by (rule DERIV_cdivide [where f = "\<lambda>x. 2 * of_real pi * \<i> * f x" and c = "2 * of_real pi * \<i>", simplified])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   324
  show ?thes2
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   325
    by simp (rule fder)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   326
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   327
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   328
subsection\<open>Existence of all higher derivatives\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   329
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   330
proposition derivative_is_holomorphic:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   331
  assumes "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   332
      and fder: "\<And>z. z \<in> S \<Longrightarrow> (f has_field_derivative f' z) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   333
    shows "f' holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   334
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   335
  have *: "\<exists>h. (f' has_field_derivative h) (at z)" if "z \<in> S" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   336
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   337
    obtain r where "r > 0" and r: "cball z r \<subseteq> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   338
      using open_contains_cball \<open>z \<in> S\<close> \<open>open S\<close> by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   339
    then have holf_cball: "f holomorphic_on cball z r"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   340
      unfolding holomorphic_on_def
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   341
      using field_differentiable_at_within field_differentiable_def fder by fastforce
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   342
    then have "continuous_on (path_image (circlepath z r)) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   343
      using \<open>r > 0\<close> by (force elim: holomorphic_on_subset [THEN holomorphic_on_imp_continuous_on])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   344
    then have contfpi: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1/(2 * of_real pi*\<i>) * f x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   345
      by (auto intro: continuous_intros)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   346
    have contf_cball: "continuous_on (cball z r) f" using holf_cball
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   347
      by (simp add: holomorphic_on_imp_continuous_on holomorphic_on_subset)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   348
    have holf_ball: "f holomorphic_on ball z r" using holf_cball
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   349
      using ball_subset_cball holomorphic_on_subset by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   350
    { fix w  assume w: "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   351
      have intf: "(\<lambda>u. f u / (u-w)\<^sup>2) contour_integrable_on circlepath z r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   352
        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   353
      have fder': "(f has_field_derivative 1 / (2 * of_real pi * \<i>) * contour_integral (circlepath z r) (\<lambda>u. f u / (u-w)\<^sup>2))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   354
                  (at w)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   355
        by (blast intro: w Cauchy_derivative_integral_circlepath [OF contf_cball holf_ball])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   356
      have f'_eq: "f' w = contour_integral (circlepath z r) (\<lambda>u. f u / (u-w)\<^sup>2) / (2 * of_real pi * \<i>)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   357
        using fder' ball_subset_cball r w by (force intro: DERIV_unique [OF fder])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   358
      have "((\<lambda>u. f u / (u-w)\<^sup>2 / (2 * of_real pi * \<i>)) has_contour_integral
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   359
                contour_integral (circlepath z r) (\<lambda>u. f u / (u-w)\<^sup>2) / (2 * of_real pi * \<i>))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   360
                (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   361
        by (rule has_contour_integral_div [OF has_contour_integral_integral [OF intf]])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   362
      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u-w)\<^sup>2)) has_contour_integral
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   363
                contour_integral (circlepath z r) (\<lambda>u. f u / (u-w)\<^sup>2) / (2 * of_real pi * \<i>))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   364
                (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   365
        by (simp add: algebra_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   366
      then have "((\<lambda>u. f u / (2 * of_real pi * \<i> * (u-w)\<^sup>2)) has_contour_integral f' w) (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   367
        by (simp add: f'_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   368
    } note * = this
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   369
    show ?thesis
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   370
      using Cauchy_next_derivative_circlepath [OF contfpi, of 2 f'] \<open>0 < r\<close> *
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   371
      using centre_in_ball mem_ball by force
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   372
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   373
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   374
    by (simp add: holomorphic_on_open [OF \<open>open S\<close>] *)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   375
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   376
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   377
lemma holomorphic_deriv [holomorphic_intros]:
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   378
  "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv f) holomorphic_on S"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   379
  by (metis DERIV_deriv_iff_field_differentiable at_within_open derivative_is_holomorphic holomorphic_on_def)
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   380
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   381
lemma holomorphic_deriv_compose:
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   382
  assumes g: "g holomorphic_on B" and f: "f holomorphic_on A" and "f ` A \<subseteq> B" "open B"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   383
  shows   "(\<lambda>x. deriv g (f x)) holomorphic_on A"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   384
  using holomorphic_on_compose_gen [OF f holomorphic_deriv[OF g]] assms
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   385
  by (auto simp: o_def)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   386
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   387
lemma analytic_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv f) analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   388
  using analytic_on_holomorphic holomorphic_deriv by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   389
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   390
lemma holomorphic_higher_deriv [holomorphic_intros]: "\<lbrakk>f holomorphic_on S; open S\<rbrakk> \<Longrightarrow> (deriv ^^ n) f holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   391
  by (induction n) (auto simp: holomorphic_deriv)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   392
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   393
lemma analytic_higher_deriv [analytic_intros]: "f analytic_on S \<Longrightarrow> (deriv ^^ n) f analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   394
  unfolding analytic_on_def using holomorphic_higher_deriv by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   395
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   396
lemma has_field_derivative_higher_deriv:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   397
     "\<lbrakk>f holomorphic_on S; open S; x \<in> S\<rbrakk>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   398
      \<Longrightarrow> ((deriv ^^ n) f has_field_derivative (deriv ^^ (Suc n)) f x) (at x)"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
   399
  using holomorphic_derivI holomorphic_higher_deriv by fastforce
73928
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   400
  
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   401
lemma higher_deriv_cmult:
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   402
  assumes "f holomorphic_on A" "x \<in> A" "open A"
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   403
  shows   "(deriv ^^ j) (\<lambda>x. c * f x) x = c * (deriv ^^ j) f x"
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   404
  using assms
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   405
proof (induction j arbitrary: f x)
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   406
  case (Suc j f x)
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   407
  have "deriv ((deriv ^^ j) (\<lambda>x. c * f x)) x = deriv (\<lambda>x. c * (deriv ^^ j) f x) x"
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   408
    using eventually_nhds_in_open[of A x] assms(2,3) Suc.prems
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   409
    by (intro deriv_cong_ev refl) (auto elim!: eventually_mono simp: Suc.IH)
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   410
  also have "\<dots> = c * deriv ((deriv ^^ j) f) x" using Suc.prems assms(2,3)
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   411
    by (intro deriv_cmult holomorphic_on_imp_differentiable_at holomorphic_higher_deriv) auto
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   412
  finally show ?case by simp
3b76524f5a85 Imported lots of material from Stirling_Formula/Gamma_Asymptotics
paulson <lp15@cam.ac.uk>
parents: 73790
diff changeset
   413
qed simp_all
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   414
82459
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   415
lemma higher_deriv_cmult':
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   416
  assumes "f analytic_on {x}"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   417
  shows   "(deriv ^^ j) (\<lambda>x. c * f x) x = c * (deriv ^^ j) f x"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   418
  using assms higher_deriv_cmult[of f _ x j c] assms
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   419
  using analytic_at_two by blast
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   420
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   421
lemma deriv_cmult':
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   422
  assumes "f analytic_on {x}"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   423
  shows   "deriv (\<lambda>x. c * f x) x = c * deriv f x"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   424
  using higher_deriv_cmult'[OF assms, of 1 c] by simp
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   425
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   426
lemma analytic_derivI:
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   427
  assumes "f analytic_on {z}"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   428
  shows   "(f has_field_derivative (deriv f z)) (at z within A)"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   429
  using assms holomorphic_derivI[of f _ z] analytic_at by blast
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   430
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   431
lemma deriv_compose_analytic:
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   432
  fixes f g :: "complex \<Rightarrow> complex"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   433
  assumes "f analytic_on {g z}" "g analytic_on {z}"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   434
  shows "deriv (\<lambda>x. f (g x)) z = deriv f (g z) * deriv g z"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   435
proof -
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   436
  have "((f \<circ> g) has_field_derivative (deriv f (g z) * deriv g z)) (at z)"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   437
    by (intro DERIV_chain analytic_derivI assms)
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   438
  thus ?thesis
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   439
    by (auto intro!: DERIV_imp_deriv simp add: o_def)
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   440
qed
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   441
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   442
lemma valid_path_compose_holomorphic:
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   443
  assumes "valid_path g" "f holomorphic_on S" and "open S" "path_image g \<subseteq> S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   444
  shows "valid_path (f \<circ> g)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   445
  by (meson assms holomorphic_deriv holomorphic_on_imp_continuous_on holomorphic_on_imp_differentiable_at
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   446
      holomorphic_on_subset subsetD valid_path_compose)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   447
82459
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   448
lemma valid_path_compose_analytic:
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   449
  assumes "valid_path g" and holo:"f analytic_on S" and "path_image g \<subseteq> S"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   450
  shows "valid_path (f \<circ> g)"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   451
proof (rule valid_path_compose[OF \<open>valid_path g\<close>])
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   452
  fix x assume "x \<in> path_image g"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   453
  then show "f field_differentiable at x"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   454
    using analytic_on_imp_differentiable_at analytic_on_open assms holo by blast
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   455
next
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   456
  show "continuous_on (path_image g) (deriv f)"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   457
    by (intro holomorphic_on_imp_continuous_on analytic_imp_holomorphic analytic_intros
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   458
              analytic_on_subset[OF holo] assms)
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   459
qed
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   460
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   461
lemma analytic_on_deriv [analytic_intros]:
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   462
  assumes "f analytic_on g ` A"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   463
  assumes "g analytic_on A"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   464
  shows   "(\<lambda>x. deriv f (g x)) analytic_on A"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   465
proof -
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   466
  have "(deriv f \<circ> g) analytic_on A"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   467
    by (rule analytic_on_compose_gen[OF assms(2) analytic_deriv[OF assms(1)]]) auto
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   468
  thus ?thesis
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   469
    by (simp add: o_def)
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   470
qed
82517
111b1b2a2d13 new lemmas for HOL-Complex_Analysis; overhaul of isolated_zeros
Manuel Eberl <manuel@pruvisto.org>
parents: 82461
diff changeset
   471
82459
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   472
lemma contour_integral_comp_analyticW:
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   473
  assumes "f analytic_on s" "valid_path \<gamma>" "path_image \<gamma> \<subseteq> s"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   474
  shows "contour_integral (f \<circ> \<gamma>) g = contour_integral \<gamma> (\<lambda>w. deriv f w * g (f w))"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   475
proof -
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   476
  obtain spikes where "finite spikes" and \<gamma>_diff: "\<gamma> C1_differentiable_on {0..1} - spikes"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   477
    using \<open>valid_path \<gamma>\<close> unfolding valid_path_def piecewise_C1_differentiable_on_def by auto  
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   478
  show "contour_integral (f \<circ> \<gamma>) g 
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   479
      = contour_integral \<gamma> (\<lambda>w. deriv f w * g (f w))"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   480
    unfolding contour_integral_integral
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   481
  proof (rule integral_spike[rule_format,OF negligible_finite[OF \<open>finite spikes\<close>]])
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   482
    fix t::real assume t:"t \<in> {0..1} - spikes"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   483
    then have "\<gamma> differentiable at t" 
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   484
      using \<gamma>_diff unfolding C1_differentiable_on_eq by auto
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   485
    moreover have "f field_differentiable at (\<gamma> t)" 
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   486
    proof -
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   487
      have "\<gamma> t \<in> s" using t assms unfolding path_image_def by auto 
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   488
      thus ?thesis 
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   489
        using \<open>f analytic_on s\<close>  analytic_on_imp_differentiable_at by blast
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   490
    qed
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   491
    ultimately show "deriv f (\<gamma> t) * g (f (\<gamma> t)) * vector_derivative \<gamma> (at t) =
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   492
         g ((f \<circ> \<gamma>) t) * vector_derivative (f \<circ> \<gamma>) (at t)"
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   493
      by (subst vector_derivative_chain_at_general) (simp_all add:field_simps)
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   494
  qed
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   495
qed
a1de627d417a More of Manuel's material
paulson <lp15@cam.ac.uk>
parents: 81874
diff changeset
   496
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   497
subsection\<open>Morera's theorem\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   498
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   499
lemma Morera_local_triangle_ball:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   500
  assumes "\<And>z. z \<in> S
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   501
          \<Longrightarrow> \<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   502
                    (\<forall>b c. closed_segment b c \<subseteq> ball a e
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   503
                           \<longrightarrow> contour_integral (linepath a b) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   504
                               contour_integral (linepath b c) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   505
                               contour_integral (linepath c a) f = 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   506
  shows "f analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   507
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   508
  { fix z  assume "z \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   509
    with assms obtain e a where
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   510
            "0 < e" and z: "z \<in> ball a e" and contf: "continuous_on (ball a e) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   511
        and 0: "\<And>b c. closed_segment b c \<subseteq> ball a e
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   512
                      \<Longrightarrow> contour_integral (linepath a b) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   513
                          contour_integral (linepath b c) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   514
                          contour_integral (linepath c a) f = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   515
      by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   516
    have az: "dist a z < e" using mem_ball z by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   517
    have "\<exists>e>0. f holomorphic_on ball z e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   518
    proof (intro exI conjI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   519
      show "f holomorphic_on ball z (e - dist a z)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   520
      proof (rule holomorphic_on_subset)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   521
        show "ball z (e - dist a z) \<subseteq> ball a e"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   522
          by (simp add: dist_commute ball_subset_ball_iff)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   523
        have sub_ball: "\<And>y. dist a y < e \<Longrightarrow> closed_segment a y \<subseteq> ball a e"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   524
          by (meson \<open>0 < e\<close> centre_in_ball convex_ball convex_contains_segment mem_ball)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   525
        show "f holomorphic_on ball a e"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   526
          using triangle_contour_integrals_starlike_primitive [OF contf _ open_ball, of a]
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   527
            derivative_is_holomorphic[OF open_ball]
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   528
          by (force simp add: 0 \<open>0 < e\<close> sub_ball)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   529
      qed
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   530
    qed (simp add: az)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   531
  }
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   532
  then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   533
    by (simp add: analytic_on_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   534
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   535
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   536
lemma Morera_local_triangle:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   537
  assumes "\<And>z. z \<in> S
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   538
          \<Longrightarrow> \<exists>t. open t \<and> z \<in> t \<and> continuous_on t f \<and>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   539
                  (\<forall>a b c. convex hull {a,b,c} \<subseteq> t
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   540
                              \<longrightarrow> contour_integral (linepath a b) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   541
                                  contour_integral (linepath b c) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   542
                                  contour_integral (linepath c a) f = 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   543
  shows "f analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   544
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   545
  { fix z  assume "z \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   546
    with assms obtain t where
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   547
            "open t" and z: "z \<in> t" and contf: "continuous_on t f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   548
        and 0: "\<And>a b c. convex hull {a,b,c} \<subseteq> t
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   549
                      \<Longrightarrow> contour_integral (linepath a b) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   550
                          contour_integral (linepath b c) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   551
                          contour_integral (linepath c a) f = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   552
      by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   553
    then obtain e where "e>0" and e: "ball z e \<subseteq> t"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   554
      using open_contains_ball by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   555
    have [simp]: "continuous_on (ball z e) f" using contf
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   556
      using continuous_on_subset e by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   557
    have eq0: "\<And>b c. closed_segment b c \<subseteq> ball z e \<Longrightarrow>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   558
                         contour_integral (linepath z b) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   559
                         contour_integral (linepath b c) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   560
                         contour_integral (linepath c z) f = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   561
      by (meson 0 z \<open>0 < e\<close> centre_in_ball closed_segment_subset convex_ball dual_order.trans e starlike_convex_subset)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   562
    have "\<exists>e a. 0 < e \<and> z \<in> ball a e \<and> continuous_on (ball a e) f \<and>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   563
                (\<forall>b c. closed_segment b c \<subseteq> ball a e \<longrightarrow>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   564
                       contour_integral (linepath a b) f + contour_integral (linepath b c) f + contour_integral (linepath c a) f = 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   565
      using \<open>e > 0\<close> eq0 by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   566
  }
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   567
  then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   568
    by (simp add: Morera_local_triangle_ball)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   569
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   570
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   571
proposition Morera_triangle:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   572
    "\<lbrakk>continuous_on S f; open S;
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   573
      \<And>a b c. convex hull {a,b,c} \<subseteq> S
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   574
              \<longrightarrow> contour_integral (linepath a b) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   575
                  contour_integral (linepath b c) f +
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   576
                  contour_integral (linepath c a) f = 0\<rbrakk>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   577
     \<Longrightarrow> f analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   578
  using Morera_local_triangle by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   579
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   580
subsection\<open>Combining theorems for higher derivatives including Leibniz rule\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   581
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   582
lemma higher_deriv_linear [simp]:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   583
    "(deriv ^^ n) (\<lambda>w. c*w) = (\<lambda>z. if n = 0 then c*z else if n = 1 then c else 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   584
  by (induction n) auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   585
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   586
lemma higher_deriv_const [simp]: "(deriv ^^ n) (\<lambda>w. c) = (\<lambda>w. if n=0 then c else 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   587
  by (induction n) auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   588
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   589
lemma higher_deriv_ident [simp]:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   590
     "(deriv ^^ n) (\<lambda>w. w) z = (if n = 0 then z else if n = 1 then 1 else 0)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   591
proof (induction n)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   592
  case (Suc n)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   593
  then show ?case by (metis higher_deriv_linear lambda_one)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   594
qed auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   595
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   596
lemma higher_deriv_id [simp]:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   597
     "(deriv ^^ n) id z = (if n = 0 then z else if n = 1 then 1 else 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   598
  by (simp add: id_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   599
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   600
lemma has_complex_derivative_funpow_1:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   601
     "\<lbrakk>(f has_field_derivative 1) (at z); f z = z\<rbrakk> \<Longrightarrow> (f^^n has_field_derivative 1) (at z)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   602
proof (induction n)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   603
  case 0
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   604
  then show ?case
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   605
    by (simp add: id_def)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   606
next
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   607
  case (Suc n)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   608
  then show ?case
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   609
    by (metis DERIV_chain funpow_Suc_right mult.right_neutral)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   610
qed
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   611
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   612
lemma higher_deriv_uminus:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   613
  assumes "f holomorphic_on S" "open S" and z: "z \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   614
    shows "(deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   615
using z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   616
proof (induction n arbitrary: z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   617
  case 0 then show ?case by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   618
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   619
  case (Suc n z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   620
  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   621
    using Suc.prems assms has_field_derivative_higher_deriv by auto
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   622
  have "\<And>x. x \<in> S \<Longrightarrow> - (deriv ^^ n) f x = (deriv ^^ n) (\<lambda>w. - f w) x"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   623
    by (auto simp add: Suc)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   624
  then have "((deriv ^^ n) (\<lambda>w. - f w) has_field_derivative - deriv ((deriv ^^ n) f) z) (at z)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   625
    using  has_field_derivative_transform_within_open [of "\<lambda>w. -((deriv ^^ n) f w)"]
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   626
    using "*" DERIV_minus Suc.prems \<open>open S\<close> by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   627
  then show ?case
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   628
    by (simp add: DERIV_imp_deriv)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   629
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   630
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   631
lemma higher_deriv_add:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   632
  fixes z::complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   633
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   634
    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   635
using z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   636
proof (induction n arbitrary: z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   637
  case 0 then show ?case by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   638
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   639
  case (Suc n z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   640
  have *: "((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   641
          "((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   642
    using Suc.prems assms has_field_derivative_higher_deriv by auto
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   643
  have "\<And>x. x \<in> S \<Longrightarrow> (deriv ^^ n) f x + (deriv ^^ n) g x = (deriv ^^ n) (\<lambda>w. f w + g w) x"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   644
    by (auto simp add: Suc)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   645
  then have "((deriv ^^ n) (\<lambda>w. f w + g w) has_field_derivative
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   646
        deriv ((deriv ^^ n) f) z + deriv ((deriv ^^ n) g) z) (at z)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   647
    using  has_field_derivative_transform_within_open [of "\<lambda>w. (deriv ^^ n) f w + (deriv ^^ n) g w"]
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   648
    using "*" Deriv.field_differentiable_add Suc.prems \<open>open S\<close> by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   649
  then show ?case
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   650
    by (simp add: DERIV_imp_deriv)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   651
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   652
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   653
lemma higher_deriv_diff:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   654
  fixes z::complex
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   655
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" "z \<in> S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   656
    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   657
  unfolding diff_conv_add_uminus higher_deriv_add
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   658
  using assms higher_deriv_add higher_deriv_uminus holomorphic_on_minus by presburger
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   659
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   660
lemma Suc_choose: "Suc n choose k = (n choose k) + (if k = 0 then 0 else (n choose (k-1)))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   661
  by (cases k) simp_all
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   662
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   663
lemma higher_deriv_mult:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   664
  fixes z::complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   665
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   666
    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   667
           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n-i)) g z)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   668
using z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   669
proof (induction n arbitrary: z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   670
  case 0 then show ?case by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   671
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   672
  case (Suc n z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   673
  have *: "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) z) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   674
          "\<And>n. ((deriv ^^ n) g has_field_derivative deriv ((deriv ^^ n) g) z) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   675
    using Suc.prems assms has_field_derivative_higher_deriv by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   676
  have sumeq: "(\<Sum>i = 0..n.
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   677
               of_nat (n choose i) * (deriv ((deriv ^^ i) f) z * (deriv ^^ (n-i)) g z + deriv ((deriv ^^ (n-i)) g) z * (deriv ^^ i) f z)) =
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   678
            g z * deriv ((deriv ^^ n) f) z + (\<Sum>i = 0..n. (deriv ^^ i) f z * (of_nat (Suc n choose i) * (deriv ^^ (Suc n - i)) g z))"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   679
    apply (simp add: Suc_choose algebra_simps sum.distrib)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   680
    apply (subst (4) sum_Suc_reindex)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   681
    apply (auto simp: algebra_simps Suc_diff_le intro: sum.cong)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   682
    done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   683
  have "((deriv ^^ n) (\<lambda>w. f w * g w) has_field_derivative
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   684
         (\<Sum>i = 0..Suc n. (Suc n choose i) * (deriv ^^ i) f z * (deriv ^^ (Suc n - i)) g z))
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   685
        (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   686
    apply (rule has_field_derivative_transform_within_open
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   687
        [of "\<lambda>w. (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f w * (deriv ^^ (n-i)) g w)" _ _ S])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   688
       apply (simp add: algebra_simps)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   689
       apply (rule derivative_eq_intros | simp)+
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   690
           apply (auto intro: DERIV_mult * \<open>open S\<close> Suc.prems Suc.IH [symmetric])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   691
    by (metis (no_types, lifting) mult.commute sum.cong sumeq)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   692
  then show ?case
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   693
    unfolding funpow.simps o_apply
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   694
    by (simp add: DERIV_imp_deriv)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   695
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   696
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   697
lemma higher_deriv_transform_within_open:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   698
  fixes z::complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   699
  assumes "f holomorphic_on S" "g holomorphic_on S" "open S" and z: "z \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   700
      and fg: "\<And>w. w \<in> S \<Longrightarrow> f w = g w"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   701
    shows "(deriv ^^ i) f z = (deriv ^^ i) g z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   702
using z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   703
by (induction i arbitrary: z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   704
   (auto simp: fg intro: complex_derivative_transform_within_open holomorphic_higher_deriv assms)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   705
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   706
lemma higher_deriv_compose_linear':
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   707
  fixes z::complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   708
  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S"
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   709
      and fg: "\<And>w. w \<in> S \<Longrightarrow> u*w + c \<in> T"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   710
    shows "(deriv ^^ n) (\<lambda>w. f (u*w + c)) z = u^n * (deriv ^^ n) f (u*z + c)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   711
using z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   712
proof (induction n arbitrary: z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   713
  case 0 then show ?case by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   714
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   715
  case (Suc n z)
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   716
  have holo0: "f holomorphic_on (\<lambda>w. u * w+c) ` S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   717
    by (meson fg f holomorphic_on_subset image_subset_iff)
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   718
  have holo2: "(deriv ^^ n) f holomorphic_on (\<lambda>w. u * w+c) ` S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   719
    by (meson f fg holomorphic_higher_deriv holomorphic_on_subset image_subset_iff T)
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   720
  have holo3: "(\<lambda>z. u ^ n * (deriv ^^ n) f (u * z+c)) holomorphic_on S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   721
    by (intro holo2 holomorphic_on_compose [where g="(deriv ^^ n) f", unfolded o_def] holomorphic_intros)
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   722
  have "(\<lambda>w. u * w+c) holomorphic_on S" "f holomorphic_on (\<lambda>w. u * w+c) ` S"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   723
    by (rule holo0 holomorphic_intros)+
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   724
  then have holo1: "(\<lambda>w. f (u * w+c)) holomorphic_on S"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   725
    by (rule holomorphic_on_compose [where g=f, unfolded o_def])
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   726
  have "deriv ((deriv ^^ n) (\<lambda>w. f (u * w+c))) z = deriv (\<lambda>z. u^n * (deriv ^^ n) f (u*z+c)) z"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   727
  proof (rule complex_derivative_transform_within_open [OF _ holo3 S Suc.prems])
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   728
    show "(deriv ^^ n) (\<lambda>w. f (u * w+c)) holomorphic_on S"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   729
      by (rule holomorphic_higher_deriv [OF holo1 S])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   730
  qed (simp add: Suc.IH)
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   731
  also have "\<dots> = u^n * deriv (\<lambda>z. (deriv ^^ n) f (u * z+c)) z"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   732
  proof -
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   733
    have "(deriv ^^ n) f analytic_on T"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   734
      by (simp add: analytic_on_open f holomorphic_higher_deriv T)
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   735
    then have "(\<lambda>w. (deriv ^^ n) f (u * w+c)) analytic_on S"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   736
        using holomorphic_on_compose[OF _ holo2] \<open>(\<lambda>w. u * w+c) holomorphic_on S\<close>
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   737
        by (simp add: S analytic_on_open o_def)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   738
    then show ?thesis
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   739
      by (intro deriv_cmult analytic_on_imp_differentiable_at [OF _ Suc.prems])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   740
  qed
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   741
  also have "\<dots> = u * u ^ n * deriv ((deriv ^^ n) f) (u * z+c)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   742
  proof -
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   743
    have "(deriv ^^ n) f field_differentiable at (u * z+c)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   744
      using Suc.prems T f fg holomorphic_higher_deriv holomorphic_on_imp_differentiable_at by blast
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   745
    then show ?thesis
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   746
      by (simp add: deriv_compose_linear')
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   747
  qed
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   748
  finally show ?case
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   749
    by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   750
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   751
78700
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   752
lemma higher_deriv_compose_linear:
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   753
  fixes z::complex
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   754
  assumes f: "f holomorphic_on T" and S: "open S" and T: "open T" and z: "z \<in> S"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   755
      and fg: "\<And>w. w \<in> S \<Longrightarrow> u * w \<in> T"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   756
    shows "(deriv ^^ n) (\<lambda>w. f (u * w)) z = u^n * (deriv ^^ n) f (u * z)"
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   757
  using higher_deriv_compose_linear' [where c=0] assms by simp
4de5b127c124 Importing or moving a few more useful theorems
paulson <lp15@cam.ac.uk>
parents: 78517
diff changeset
   758
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   759
lemma higher_deriv_add_at:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   760
  assumes "f analytic_on {z}" "g analytic_on {z}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   761
    shows "(deriv ^^ n) (\<lambda>w. f w + g w) z = (deriv ^^ n) f z + (deriv ^^ n) g z"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   762
  using analytic_at_two assms higher_deriv_add by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   763
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   764
lemma higher_deriv_diff_at:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   765
  assumes "f analytic_on {z}" "g analytic_on {z}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   766
    shows "(deriv ^^ n) (\<lambda>w. f w - g w) z = (deriv ^^ n) f z - (deriv ^^ n) g z"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   767
  using analytic_at_two assms higher_deriv_diff by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   768
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   769
lemma higher_deriv_uminus_at:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   770
   "f analytic_on {z}  \<Longrightarrow> (deriv ^^ n) (\<lambda>w. -(f w)) z = - ((deriv ^^ n) f z)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   771
  using higher_deriv_uminus by (auto simp: analytic_at)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   772
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   773
lemma higher_deriv_mult_at:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   774
  assumes "f analytic_on {z}" "g analytic_on {z}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   775
    shows "(deriv ^^ n) (\<lambda>w. f w * g w) z =
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   776
           (\<Sum>i = 0..n. of_nat (n choose i) * (deriv ^^ i) f z * (deriv ^^ (n-i)) g z)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   777
  using analytic_at_two assms higher_deriv_mult by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   778
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   779
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   780
text\<open> Nonexistence of isolated singularities and a stronger integral formula.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   781
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   782
proposition no_isolated_singularity:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   783
  fixes z::complex
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   784
  assumes f: "continuous_on S f" and holf: "f holomorphic_on (S-K)" and S: "open S" and K: "finite K"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   785
    shows "f holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   786
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   787
  { fix z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   788
    assume "z \<in> S" and cdf: "\<And>x. x \<in> S - K \<Longrightarrow> f field_differentiable at x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   789
    have "f field_differentiable at z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   790
    proof (cases "z \<in> K")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   791
      case False then show ?thesis by (blast intro: cdf \<open>z \<in> S\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   792
    next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   793
      case True
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   794
      with finite_set_avoid [OF K, of z]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   795
      obtain d where "d>0" and d: "\<And>x. \<lbrakk>x\<in>K; x \<noteq> z\<rbrakk> \<Longrightarrow> d \<le> dist z x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   796
        by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   797
      obtain e where "e>0" and e: "ball z e \<subseteq> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   798
        using  S \<open>z \<in> S\<close> by (force simp: open_contains_ball)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   799
      have fde: "continuous_on (ball z (min d e)) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   800
        by (metis Int_iff ball_min_Int continuous_on_subset e f subsetI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   801
      have cont: "{a,b,c} \<subseteq> ball z (min d e) \<Longrightarrow> continuous_on (convex hull {a, b, c}) f" for a b c
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   802
        by (simp add: hull_minimal continuous_on_subset [OF fde])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   803
      have fd: "\<lbrakk>{a,b,c} \<subseteq> ball z (min d e); x \<in> interior (convex hull {a, b, c}) - K\<rbrakk>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   804
            \<Longrightarrow> f field_differentiable at x" for a b c x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   805
        by (metis cdf Diff_iff Int_iff ball_min_Int subsetD convex_ball e interior_mono interior_subset subset_hull)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   806
      obtain g where "\<And>w. w \<in> ball z (min d e) \<Longrightarrow> (g has_field_derivative f w) (at w within ball z (min d e))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   807
        apply (rule contour_integral_convex_primitive
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   808
                     [OF convex_ball fde Cauchy_theorem_triangle_cofinite [OF _ K]])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   809
        using cont fd by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   810
      then have "f holomorphic_on ball z (min d e)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   811
        by (metis open_ball at_within_open derivative_is_holomorphic)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   812
      then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   813
        unfolding holomorphic_on_def
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   814
        by (metis open_ball \<open>0 < d\<close> \<open>0 < e\<close> at_within_open centre_in_ball min_less_iff_conj)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   815
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   816
  }
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   817
  with holf S K show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   818
    by (simp add: holomorphic_on_open open_Diff finite_imp_closed field_differentiable_def [symmetric])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   819
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   820
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   821
lemma no_isolated_singularity':
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   822
  fixes z::complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   823
  assumes f: "\<And>z. z \<in> K \<Longrightarrow> (f \<longlongrightarrow> f z) (at z within S)"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   824
      and holf: "f holomorphic_on (S-K)" and S: "open S" and K: "finite K"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   825
    shows "f holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   826
proof (rule no_isolated_singularity[OF _ assms(2-)])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   827
  have "continuous_on (S-K) f"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   828
    using holf holomorphic_on_imp_continuous_on by auto
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   829
  then show "continuous_on S f"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   830
    by (metis Diff_iff K S at_within_open continuous_on_eq_continuous_at
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   831
        continuous_within f finite_imp_closed open_Diff) 
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   832
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   833
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   834
proposition Cauchy_integral_formula_convex:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   835
  assumes S: "convex S" and K: "finite K" and contf: "continuous_on S f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   836
    and fcd: "(\<And>x. x \<in> interior S - K \<Longrightarrow> f field_differentiable at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   837
    and z: "z \<in> interior S" and vpg: "valid_path \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   838
    and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   839
  shows "((\<lambda>w. f w / (w-z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   840
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   841
  have *: "\<And>x. x \<in> interior S \<Longrightarrow> f field_differentiable at x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   842
    unfolding holomorphic_on_open [symmetric] field_differentiable_def
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   843
    using no_isolated_singularity [where S = "interior S"]
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   844
    by (meson K contf continuous_on_subset fcd field_differentiable_def open_interior
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   845
        has_field_derivative_at_within holomorphic_derivI holomorphic_onI interior_subset)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   846
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   847
    by (rule Cauchy_integral_formula_weak [OF S finite.emptyI contf]) (use * assms in auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   848
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   849
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   850
text\<open> Formula for higher derivatives.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   851
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   852
lemma Cauchy_has_contour_integral_higher_derivative_circlepath:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   853
  assumes contf: "continuous_on (cball z r) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   854
      and holf: "f holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   855
      and w: "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   856
    shows "((\<lambda>u. f u / (u-w) ^ (Suc k)) has_contour_integral ((2 * pi * \<i>) / (fact k) * (deriv ^^ k) f w))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   857
           (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   858
using w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   859
proof (induction k arbitrary: w)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   860
  case 0 then show ?case
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   861
    using assms by (auto simp: Cauchy_integral_circlepath dist_commute dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   862
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   863
  case (Suc k)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   864
  have [simp]: "r > 0" using w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   865
    using ball_eq_empty by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   866
  have f: "continuous_on (path_image (circlepath z r)) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   867
    by (rule continuous_on_subset [OF contf]) (force simp: cball_def sphere_def less_imp_le)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   868
  obtain X where X: "((\<lambda>u. f u / (u-w) ^ Suc (Suc k)) has_contour_integral X) (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   869
    using Cauchy_next_derivative_circlepath(1) [OF f Suc.IH _ Suc.prems]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   870
    by (auto simp: contour_integrable_on_def)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   871
  then have con: "contour_integral (circlepath z r) ((\<lambda>u. f u / (u-w) ^ Suc (Suc k))) = X"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   872
    by (rule contour_integral_unique)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   873
  have "\<And>n. ((deriv ^^ n) f has_field_derivative deriv ((deriv ^^ n) f) w) (at w)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   874
    using Suc.prems assms has_field_derivative_higher_deriv by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   875
  then have dnf_diff: "\<And>n. (deriv ^^ n) f field_differentiable (at w)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   876
    by (force simp: field_differentiable_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   877
  have "deriv (\<lambda>w. complex_of_real (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w) w =
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   878
          of_nat (Suc k) * contour_integral (circlepath z r) (\<lambda>u. f u / (u-w) ^ Suc (Suc k))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   879
    by (force intro!: DERIV_imp_deriv Cauchy_next_derivative_circlepath [OF f Suc.IH _ Suc.prems])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   880
  also have "\<dots> = of_nat (Suc k) * X"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   881
    by (simp only: con)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   882
  finally have "deriv (\<lambda>w. ((2 * pi) * \<i> / (fact k)) * (deriv ^^ k) f w) w = of_nat (Suc k) * X" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   883
  then have "((2 * pi) * \<i> / (fact k)) * deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   884
    by (metis deriv_cmult dnf_diff)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   885
  then have "deriv (\<lambda>w. (deriv ^^ k) f w) w = of_nat (Suc k) * X / ((2 * pi) * \<i> / (fact k))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   886
    by (simp add: field_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   887
  then show ?case
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   888
  using of_nat_eq_0_iff X by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   889
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   890
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   891
lemma Cauchy_higher_derivative_integral_circlepath:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   892
  assumes contf: "continuous_on (cball z r) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   893
      and holf: "f holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   894
      and w: "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   895
    shows "(\<lambda>u. f u / (u-w)^(Suc k)) contour_integrable_on (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   896
           (is "?thes1")
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   897
      and "(deriv ^^ k) f w = (fact k) / (2 * pi * \<i>) * contour_integral(circlepath z r) (\<lambda>u. f u/(u-w)^(Suc k))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   898
           (is "?thes2")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   899
proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   900
  have *: "((\<lambda>u. f u / (u-w) ^ Suc k) has_contour_integral (2 * pi) * \<i> / (fact k) * (deriv ^^ k) f w)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   901
           (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   902
    using Cauchy_has_contour_integral_higher_derivative_circlepath [OF assms]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   903
    by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   904
  show ?thes1 using *
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   905
    using contour_integrable_on_def by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   906
  show ?thes2
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   907
    unfolding contour_integral_unique [OF *] by (simp add: field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   908
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   909
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   910
corollary Cauchy_contour_integral_circlepath:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   911
  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   912
  shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u-w)^(Suc k)) = (2 * pi * \<i>) * (deriv ^^ k) f w / (fact k)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
   913
  by (simp add: Cauchy_higher_derivative_integral_circlepath [OF assms])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   914
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   915
lemma Cauchy_contour_integral_circlepath_2:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   916
  assumes "continuous_on (cball z r) f" "f holomorphic_on ball z r" "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   917
    shows "contour_integral(circlepath z r) (\<lambda>u. f u/(u-w)^2) = (2 * pi * \<i>) * deriv f w"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   918
  using Cauchy_contour_integral_circlepath [OF assms, of 1]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   919
  by (simp add: power2_eq_square)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   920
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   921
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   922
subsection\<open>A holomorphic function is analytic, i.e. has local power series\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   923
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   924
theorem holomorphic_power_series:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   925
  assumes holf: "f holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   926
      and w: "w \<in> ball z r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   927
    shows "((\<lambda>n. (deriv ^^ n) f z / (fact n) * (w-z)^n) sums f w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   928
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   929
  \<comment> \<open>Replacing \<^term>\<open>r\<close> and the original (weak) premises with stronger ones\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   930
  obtain r where "r > 0" and holfc: "f holomorphic_on cball z r" and w: "w \<in> ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   931
  proof
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   932
    have "cball z ((r + dist w z) / 2) \<subseteq> ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   933
      using w by (simp add: dist_commute field_sum_of_halves subset_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   934
    then show "f holomorphic_on cball z ((r + dist w z) / 2)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   935
      by (rule holomorphic_on_subset [OF holf])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   936
    have "r > 0"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   937
      by (metis w dist_norm mem_ball norm_ge_zero not_less_iff_gr_or_eq order_less_le_trans)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   938
    then show "0 < (r + dist w z) / 2"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   939
      by simp (use zero_le_dist [of w z] in linarith)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   940
  qed (use w in \<open>auto simp: dist_commute\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   941
  then have holf: "f holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   942
    using ball_subset_cball holomorphic_on_subset by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   943
  have contf: "continuous_on (cball z r) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   944
    by (simp add: holfc holomorphic_on_imp_continuous_on)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   945
  have cint: "\<And>k. (\<lambda>u. f u / (u-z) ^ Suc k) contour_integrable_on circlepath z r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   946
    by (rule Cauchy_higher_derivative_integral_circlepath [OF contf holf]) (simp add: \<open>0 < r\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   947
  obtain B where "0 < B" and B: "\<And>u. u \<in> cball z r \<Longrightarrow> norm(f u) \<le> B"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   948
    by (metis (no_types) bounded_pos compact_cball compact_continuous_image compact_imp_bounded contf image_eqI)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   949
  obtain k where k: "0 < k" "k \<le> r" and wz_eq: "norm(w-z) = r - k"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   950
             and kle: "\<And>u. norm(u-z) = r \<Longrightarrow> k \<le> norm(u-w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   951
  proof
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   952
    show "\<And>u. cmod (u-z) = r \<Longrightarrow> r - dist z w \<le> cmod (u-w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   953
      by (metis add_diff_eq diff_add_cancel dist_norm norm_diff_ineq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   954
  qed (use w in \<open>auto simp: dist_norm norm_minus_commute\<close>)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   955
  have ul: "uniform_limit (sphere z r) (\<lambda>n x. (\<Sum>k<n. (w-z) ^ k * (f x / (x-z) ^ Suc k))) (\<lambda>x. f x / (x-w)) sequentially"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   956
    unfolding uniform_limit_iff dist_norm
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   957
  proof clarify
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   958
    fix e::real
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   959
    assume "0 < e"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   960
    have rr: "0 \<le> (r-k) / r" "(r-k) / r < 1" using  k by auto
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   961
    obtain n where n: "((r-k) / r) ^ n < e / B * k"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   962
      using real_arch_pow_inv [of "e/B*k" "(r-k)/r"] \<open>0 < e\<close> \<open>0 < B\<close> k by force
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   963
    have "norm ((\<Sum>k<N. (w-z) ^ k * f u / (u-z) ^ Suc k) - f u / (u-w)) < e"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   964
         if "n \<le> N" and r: "r = dist z u"  for N u
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   965
    proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   966
      have N: "((r-k) / r) ^ N < e / B * k"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   967
        using le_less_trans [OF power_decreasing n]
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   968
        using \<open>n \<le> N\<close> k by auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   969
      have u [simp]: "(u \<noteq> z) \<and> (u \<noteq> w)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   970
        using \<open>0 < r\<close> r w by auto
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   971
      have wzu_not1: "(w-z) / (u-z) \<noteq> 1"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   972
        by (metis (no_types) dist_norm divide_eq_1_iff less_irrefl mem_ball norm_minus_commute r w)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   973
      have "norm ((\<Sum>k<N. (w-z) ^ k * f u / (u-z) ^ Suc k) * (u-w) - f u)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   974
            = norm ((\<Sum>k<N. (((w-z) / (u-z)) ^ k)) * f u * (u-w) / (u-z) - f u)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   975
        unfolding sum_distrib_right sum_divide_distrib power_divide by (simp add: algebra_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   976
      also have "\<dots> = norm ((((w-z) / (u-z)) ^ N - 1) * (u-w) / (((w-z) / (u-z) - 1) * (u-z)) - 1) * norm (f u)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   977
        using \<open>0 < B\<close>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   978
        apply (simp add: geometric_sum [OF wzu_not1] flip: norm_mult)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   979
        apply (simp add: field_simps)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   980
        done
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   981
      also have "\<dots> = norm ((u-z) ^ N * (w-u) - ((w-z) ^ N - (u-z) ^ N) * (u-w)) / (r ^ N * norm (u-w)) * norm (f u)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   982
        using \<open>0 < r\<close> r by (simp add: divide_simps norm_mult norm_divide norm_power dist_norm norm_minus_commute)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   983
      also have "\<dots> = norm ((w-z) ^ N * (w-u)) / (r ^ N * norm (u-w)) * norm (f u)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   984
        by (simp add: algebra_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   985
      also have "\<dots> = norm (w-z) ^ N * norm (f u) / r ^ N"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   986
        by (simp add: norm_mult norm_power norm_minus_commute)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   987
      also have "\<dots> \<le> (((r-k)/r)^N) * B"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   988
        using \<open>0 < r\<close> w k
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
   989
        by (simp add: B divide_simps mult_mono r wz_eq)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   990
      also have "\<dots> < e * k"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   991
        using \<open>0 < B\<close> N by (simp add: divide_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   992
      also have "\<dots> \<le> e * norm (u-w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   993
        using r kle \<open>0 < e\<close> by (simp add: dist_commute dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   994
      finally show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   995
        by (simp add: field_split_simps norm_divide del: power_Suc)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   996
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   997
    with \<open>0 < r\<close> show "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>sphere z r.
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
   998
                norm ((\<Sum>k<n. (w-z) ^ k * (f x / (x-z) ^ Suc k)) - f x / (x-w)) < e"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
   999
      by (auto simp: mult_ac less_imp_le eventually_sequentially Ball_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1000
  qed
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1001
  have \<section>: "\<And>x k. k\<in> {..<x} \<Longrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1002
           (\<lambda>u. (w-z) ^ k * (f u / (u-z) ^ Suc k)) contour_integrable_on circlepath z r"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1003
    using contour_integrable_lmul [OF cint, of "(w-z) ^ a" for a] by (simp add: field_simps)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1004
  have eq: "\<And>n.
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1005
             (\<Sum>k<n. contour_integral (circlepath z r) (\<lambda>u. f u / (u-z) ^ Suc k) * (w-z) ^ k) =
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1006
             contour_integral (circlepath z r) (\<lambda>u. \<Sum>k<n. (w-z) ^ k * (f u / (u-z) ^ Suc k))"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1007
    apply (subst contour_integral_sum)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1008
    apply (simp_all only: \<section> finite_lessThan contour_integral_lmul cint algebra_simps)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1009
    done
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1010
  have "\<And>u k. k \<in> {..<u} \<Longrightarrow> (\<lambda>x. f x / (x-z) ^ Suc k) contour_integrable_on circlepath z r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1011
    using \<open>0 < r\<close> by (force intro!: Cauchy_higher_derivative_integral_circlepath [OF contf holf])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1012
  then have "\<And>u. (\<lambda>y. \<Sum>k<u. (w-z) ^ k * (f y / (y-z) ^ Suc k)) contour_integrable_on circlepath z r"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1013
    by (intro contour_integrable_sum contour_integrable_lmul, simp)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1014
  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u-z)^(Suc k)) * (w-z)^k)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1015
        sums contour_integral (circlepath z r) (\<lambda>u. f u/(u-w))"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1016
    unfolding sums_def eq 
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1017
    using \<open>0 < r\<close> contour_integral_uniform_limit_circlepath [OF eventuallyI ul]    
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1018
    by fastforce
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1019
  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u/(u-z)^(Suc k)) * (w-z)^k)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1020
             sums (2 * of_real pi * \<i> * f w)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1021
    using w by (auto simp: dist_commute dist_norm contour_integral_unique [OF Cauchy_integral_circlepath_simple [OF holfc]])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1022
  then have "(\<lambda>k. contour_integral (circlepath z r) (\<lambda>u. f u / (u-z) ^ Suc k) * (w-z)^k / (\<i> * (of_real pi * 2)))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1023
            sums ((2 * of_real pi * \<i> * f w) / (\<i> * (complex_of_real pi * 2)))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1024
    by (rule sums_divide)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1025
  then have "(\<lambda>n. (w-z) ^ n * contour_integral (circlepath z r) (\<lambda>u. f u / (u-z) ^ Suc n) / (\<i> * (of_real pi * 2)))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1026
            sums f w"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1027
    by (simp add: field_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1028
  then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1029
    by (simp add: field_simps \<open>0 < r\<close> Cauchy_higher_derivative_integral_circlepath [OF contf holf])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1030
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1031
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1032
subsection\<open>The Liouville theorem and the Fundamental Theorem of Algebra\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1033
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1034
text\<open> These weak Liouville versions don't even need the derivative formula.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1035
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1036
lemma Liouville_weak_0:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1037
  assumes holf: "f holomorphic_on UNIV" and inf: "(f \<longlongrightarrow> 0) at_infinity"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1038
    shows "f z = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1039
proof (rule ccontr)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1040
  assume fz: "f z \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1041
  with inf [unfolded Lim_at_infinity, rule_format, of "norm(f z)/2"]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1042
  obtain B where B: "\<And>x. B \<le> cmod x \<Longrightarrow> norm (f x) * 2 < cmod (f z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1043
    by (auto simp: dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1044
  define R where "R = 1 + \<bar>B\<bar> + norm z"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1045
  have "R > 0"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1046
    unfolding R_def by (smt (verit) norm_ge_zero)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1047
  have *: "((\<lambda>u. f u / (u-z)) has_contour_integral 2 * complex_of_real pi * \<i> * f z) (circlepath z R)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1048
    using continuous_on_subset holf  holomorphic_on_subset \<open>0 < R\<close>
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1049
    by (force intro: holomorphic_on_imp_continuous_on Cauchy_integral_circlepath)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1050
  have "cmod (x-z) = R \<Longrightarrow> cmod (f x) * 2 < cmod (f z)" for x
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1051
    unfolding R_def by (rule B) (use norm_triangle_ineq4 [of x z] in auto)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1052
  with \<open>R > 0\<close> fz show False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1053
    using has_contour_integral_bound_circlepath [OF *, of "norm(f z)/2/R"]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1054
    by (auto simp: less_imp_le norm_mult norm_divide field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1055
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1056
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1057
proposition Liouville_weak:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1058
  assumes "f holomorphic_on UNIV" and "(f \<longlongrightarrow> l) at_infinity"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1059
    shows "f z = l"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1060
  using Liouville_weak_0 [of "\<lambda>z. f z - l"]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1061
  by (simp add: assms holomorphic_on_diff LIM_zero)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1062
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1063
proposition Liouville_weak_inverse:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1064
  assumes "f holomorphic_on UNIV" and unbounded: "\<And>B. eventually (\<lambda>x. norm (f x) \<ge> B) at_infinity"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1065
    obtains z where "f z = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1066
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1067
  { assume f: "\<And>z. f z \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1068
    have 1: "(\<lambda>x. 1 / f x) holomorphic_on UNIV"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1069
      by (simp add: holomorphic_on_divide assms f)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1070
    have 2: "((\<lambda>x. 1 / f x) \<longlongrightarrow> 0) at_infinity"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1071
    proof (rule tendstoI [OF eventually_mono])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1072
      fix e::real
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1073
      assume "e > 0"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1074
      show "eventually (\<lambda>x. 2/e \<le> cmod (f x)) at_infinity"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1075
        by (rule_tac B="2/e" in unbounded)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1076
    qed (simp add: dist_norm norm_divide field_split_simps)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1077
    have False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1078
      using Liouville_weak_0 [OF 1 2] f by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1079
  }
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1080
  then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1081
    using that by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1082
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1083
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1084
text\<open> In particular we get the Fundamental Theorem of Algebra.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1085
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1086
theorem fundamental_theorem_of_algebra:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1087
    fixes a :: "nat \<Rightarrow> complex"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1088
  assumes "a 0 = 0 \<or> (\<exists>i \<in> {1..n}. a i \<noteq> 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1089
  obtains z where "(\<Sum>i\<le>n. a i * z^i) = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1090
using assms
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1091
proof (elim disjE bexE)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1092
  assume "a 0 = 0" then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1093
    by (auto simp: that [of 0])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1094
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1095
  fix i
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1096
  assume i: "i \<in> {1..n}" and nz: "a i \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1097
  have 1: "(\<lambda>z. \<Sum>i\<le>n. a i * z^i) holomorphic_on UNIV"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1098
    by (rule holomorphic_intros)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1099
  show thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1100
  proof (rule Liouville_weak_inverse [OF 1])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1101
    show "\<forall>\<^sub>F x in at_infinity. B \<le> cmod (\<Sum>i\<le>n. a i * x ^ i)" for B
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1102
      using i nz by (intro polyfun_extremal exI[of _ i]) auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1103
  qed (use that in auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1104
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1105
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1106
subsection\<open>Weierstrass convergence theorem\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1107
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1108
lemma holomorphic_uniform_limit:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1109
  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and> (f n) holomorphic_on ball z r) F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1110
      and ulim: "uniform_limit (cball z r) f g F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1111
      and F:  "\<not> trivial_limit F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1112
  obtains "continuous_on (cball z r) g" "g holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1113
proof (cases r "0::real" rule: linorder_cases)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1114
  case less then show ?thesis by (force simp: ball_empty less_imp_le continuous_on_def holomorphic_on_def intro: that)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1115
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1116
  case equal then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1117
    by (force simp: holomorphic_on_def intro: that)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1118
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1119
  case greater
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1120
  have contg: "continuous_on (cball z r) g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1121
    using cont uniform_limit_theorem [OF eventually_mono ulim F]  by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1122
  have "path_image (circlepath z r) \<subseteq> cball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1123
    using \<open>0 < r\<close> by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1124
  then have 1: "continuous_on (path_image (circlepath z r)) (\<lambda>x. 1 / (2 * complex_of_real pi * \<i>) * g x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1125
    by (intro continuous_intros continuous_on_subset [OF contg])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1126
  have 2: "((\<lambda>u. 1 / (2 * of_real pi * \<i>) * g u / (u-w) ^ 1) has_contour_integral g w) (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1127
       if w: "w \<in> ball z r" for w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1128
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1129
    define d where "d = (r - norm(w-z))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1130
    have "0 < d"  "d \<le> r" using w by (auto simp: norm_minus_commute d_def dist_norm)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1131
    have dle: "\<And>u. cmod (z-u) = r \<Longrightarrow> d \<le> cmod (u-w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1132
      unfolding d_def by (metis add_diff_eq diff_add_cancel norm_diff_ineq norm_minus_commute)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1133
    have ev_int: "\<forall>\<^sub>F n in F. (\<lambda>u. f n u / (u-w)) contour_integrable_on circlepath z r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1134
      using w
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1135
      by (auto intro: eventually_mono [OF cont] Cauchy_higher_derivative_integral_circlepath [where k=0, simplified])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1136
    have "\<And>e. \<lbrakk>0 < r; 0 < d; 0 < e\<rbrakk>
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1137
         \<Longrightarrow> \<forall>\<^sub>F n in F.
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1138
                \<forall>x\<in>sphere z r.
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1139
                   x \<noteq> w \<longrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1140
                   cmod (f n x - g x) < e * cmod (x-w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1141
      apply (rule_tac e1="e * d" in eventually_mono [OF uniform_limitD [OF ulim]])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1142
       apply (force simp: dist_norm intro: dle mult_left_mono less_le_trans)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1143
      done
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1144
    then have ul_less: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x-w)) (\<lambda>x. g x / (x-w)) F"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1145
      using greater \<open>0 < d\<close>
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1146
      by (auto simp add: uniform_limit_iff dist_norm norm_divide diff_divide_distrib [symmetric] divide_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1147
    have g_cint: "(\<lambda>u. g u/(u-w)) contour_integrable_on circlepath z r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1148
      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1149
    have cif_tends_cig: "((\<lambda>n. contour_integral(circlepath z r) (\<lambda>u. f n u / (u-w))) \<longlongrightarrow> contour_integral(circlepath z r) (\<lambda>u. g u/(u-w))) F"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1150
      by (rule contour_integral_uniform_limit_circlepath [OF ev_int ul_less F \<open>0 < r\<close>])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1151
    have f_tends_cig: "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> contour_integral (circlepath z r) (\<lambda>u. g u / (u-w))) F"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1152
    proof (rule Lim_transform_eventually)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1153
      show "\<forall>\<^sub>F x in F. contour_integral (circlepath z r) (\<lambda>u. f x u / (u-w))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1154
                     = 2 * of_real pi * \<i> * f x w"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1155
        using w\<open>0 < d\<close> d_def
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1156
        by (auto intro: eventually_mono [OF cont contour_integral_unique [OF Cauchy_integral_circlepath]])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1157
    qed (auto simp: cif_tends_cig)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1158
    have "\<And>e. 0 < e \<Longrightarrow> \<forall>\<^sub>F n in F. dist (f n w) (g w) < e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1159
      by (rule eventually_mono [OF uniform_limitD [OF ulim]]) (use w in auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1160
    then have "((\<lambda>n. 2 * of_real pi * \<i> * f n w) \<longlongrightarrow> 2 * of_real pi * \<i> * g w) F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1161
      by (rule tendsto_mult_left [OF tendstoI])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1162
    then have "((\<lambda>u. g u / (u-w)) has_contour_integral 2 * of_real pi * \<i> * g w) (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1163
      using has_contour_integral_integral [OF g_cint] tendsto_unique [OF F f_tends_cig] w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1164
      by fastforce
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1165
    then have "((\<lambda>u. g u / (2 * of_real pi * \<i> * (u-w))) has_contour_integral g w) (circlepath z r)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1166
      using has_contour_integral_div [where c = "2 * of_real pi * \<i>"]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1167
      by (force simp: field_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1168
    then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1169
      by (simp add: dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1170
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1171
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1172
    using Cauchy_next_derivative_circlepath(2) [OF 1 2, simplified]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1173
    by (fastforce simp add: holomorphic_on_open contg intro: that)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1174
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1175
82461
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1176
lemma higher_deriv_complex_uniform_limit:
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1177
  assumes ulim: "uniform_limit A f g F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1178
      and f_holo: "eventually (\<lambda>n. f n holomorphic_on A) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1179
      and F: "F \<noteq> bot"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1180
      and A: "open A" "z \<in> A"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1181
    shows "((\<lambda>n. (deriv ^^ m) (f n) z) \<longlongrightarrow> (deriv ^^ m) g z) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1182
proof -
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1183
  obtain r where r: "r > 0" "cball z r \<subseteq> A"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1184
    using A by (meson open_contains_cball)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1185
  have r': "ball z r \<subseteq> A"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1186
    using r by auto
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1187
  define h where "h = (\<lambda>n z. f n z - g z)"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1188
  define c where "c = of_real (2*pi) * \<i> / fact m"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1189
  have [simp]: "c \<noteq> 0"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1190
    by (simp add: c_def)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1191
  have "g holomorphic_on ball z r \<and> continuous_on (cball z r) g"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1192
  proof (rule holomorphic_uniform_limit)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1193
    show "uniform_limit (cball z r) f g F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1194
      by (rule uniform_limit_on_subset[OF ulim r(2)])
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1195
    show "\<forall>\<^sub>F n in F. continuous_on (cball z r) (f n) \<and> f n holomorphic_on ball z r" using f_holo
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1196
      by eventually_elim
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1197
         (use holomorphic_on_subset[OF _ r(2)] holomorphic_on_subset[OF _ r'] 
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1198
          in  \<open>auto intro!: holomorphic_on_imp_continuous_on\<close>)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1199
  qed (use F in auto)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1200
  hence g_holo: "g holomorphic_on ball z r" and g_cont: "continuous_on (cball z r) g"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1201
    by blast+
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1202
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1203
  have ulim': "uniform_limit (sphere z r) (\<lambda>n x. h n x / (x - z) ^ (Suc m)) (\<lambda>_. 0) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1204
  proof -
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1205
    have "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - z) ^ Suc m) (\<lambda>x. g x / (x - z) ^ Suc m) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1206
    proof (intro uniform_lim_divide uniform_limit_intros uniform_limit_on_subset[OF ulim])
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1207
      have "compact (g ` sphere z r)"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1208
        by (intro compact_continuous_image continuous_on_subset[OF g_cont]) auto
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1209
      thus "bounded (g ` sphere z r)"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1210
        by (rule compact_imp_bounded)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1211
      show "r ^ Suc m \<le> norm ((x - z) ^ Suc m)" if "x \<in> sphere z r" for x unfolding norm_power
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1212
        by (intro power_mono) (use that r(1) in \<open>auto simp: dist_norm norm_minus_commute\<close>)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1213
    qed (use r in auto)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1214
    hence "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x - z) ^ Suc m - g x / (x - z) ^ Suc m) 
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1215
             (\<lambda>x. g x / (x - z) ^ Suc m - g x / (x - z) ^ Suc m) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1216
      by (intro uniform_limit_intros)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1217
    thus ?thesis
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1218
      by (simp add: h_def diff_divide_distrib)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1219
  qed
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1220
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1221
  have has_integral: "eventually (\<lambda>n. ((\<lambda>u. h n u / (u - z) ^ Suc m) has_contour_integral 
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1222
                         c * (deriv ^^ m) (h n) z) (circlepath z r)) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1223
    using f_holo
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1224
  proof eventually_elim
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1225
    case (elim n)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1226
    show ?case
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1227
      unfolding c_def
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1228
    proof (rule Cauchy_has_contour_integral_higher_derivative_circlepath)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1229
      show "continuous_on (cball z r) (h n)" unfolding h_def 
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1230
        by (intro continuous_intros g_cont holomorphic_on_imp_continuous_on
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1231
                  holomorphic_on_subset[OF elim] r)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1232
      show "h n holomorphic_on ball z r"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1233
        unfolding h_def by (intro holomorphic_intros g_holo holomorphic_on_subset[OF elim] r')
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1234
    qed (use r(1) in auto)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1235
  qed
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1236
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1237
  have "((\<lambda>n. contour_integral (circlepath z r) (\<lambda>u. h n u / (u - z) ^ Suc m)) \<longlongrightarrow> 
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1238
         contour_integral (circlepath z r) (\<lambda>u. 0 / (u - z) ^ Suc m)) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1239
  proof (rule contour_integral_uniform_limit_circlepath)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1240
    show "\<forall>\<^sub>F n in F. (\<lambda>u. h n u / (u - z) ^ Suc m) contour_integrable_on circlepath z r"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1241
      using has_integral by eventually_elim (blast intro: has_contour_integral_integrable)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1242
  qed (use r(1) \<open>F \<noteq> bot\<close> ulim' in simp_all)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1243
  hence "((\<lambda>n. contour_integral (circlepath z r) (\<lambda>u. h n u / (u - z) ^ Suc m)) \<longlongrightarrow> 0) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1244
    by simp
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1245
  also have "?this \<longleftrightarrow> ((\<lambda>n. c * (deriv ^^ m) (h n) z) \<longlongrightarrow> 0) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1246
  proof (rule tendsto_cong)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1247
    show "\<forall>\<^sub>F x in F. contour_integral (circlepath z r) (\<lambda>u. h x u / (u - z) ^ Suc m) =
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1248
                       c * (deriv ^^ m) (h x) z"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1249
      using has_integral by eventually_elim (simp add: contour_integral_unique)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1250
  qed
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1251
  finally have "((\<lambda>n. (deriv ^^ m) g z + c * (deriv ^^ m) (h n) z / c) \<longlongrightarrow> 
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1252
                  (deriv ^^ m) g z + 0 / c) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1253
    by (intro tendsto_intros) auto
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1254
  also have "?this \<longleftrightarrow> ((\<lambda>n. (deriv ^^ m) (f n) z) \<longlongrightarrow> (deriv ^^ m) g z) F"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1255
  proof (intro filterlim_cong)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1256
    show "\<forall>\<^sub>F n in F. (deriv ^^ m) g z + c * (deriv ^^ m) (h n) z / c = (deriv ^^ m) (f n) z"
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1257
      using f_holo
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1258
    proof eventually_elim
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1259
      case (elim n)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1260
      have "(deriv ^^ m) (h n) z = (deriv ^^ m) (f n) z - (deriv ^^ m) g z" unfolding h_def
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1261
        by (rule higher_deriv_diff holomorphic_on_subset[OF elim r'] g_holo A)+ (use r(1) in auto)
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1262
      thus ?case
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1263
        by simp
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1264
    qed
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1265
  qed auto
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1266
  finally show ?thesis .
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1267
qed
eea85bbd2feb Another of Manuel's theorems
paulson <lp15@cam.ac.uk>
parents: 82459
diff changeset
  1268
82534
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1269
lemma deriv_complex_uniform_limit:
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1270
  assumes ulim: "uniform_limit A f g F"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1271
      and f_holo: "eventually (\<lambda>n. f n holomorphic_on A) F"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1272
      and F: "F \<noteq> bot"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1273
      and A: "open A" "z \<in> A"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1274
    shows "((\<lambda>n. deriv (f n) z) \<longlongrightarrow> deriv g z) F"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1275
  using higher_deriv_complex_uniform_limit[OF assms, of 1] by simp
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1276
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1277
lemma logderiv_prodinf_complex_uniform_limit:
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1278
  fixes f :: "nat \<Rightarrow> complex \<Rightarrow> complex"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1279
  assumes lim: "uniform_limit A (\<lambda>n x. \<Prod>k<n. f k x) P sequentially"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1280
  assumes holo: "\<And>k. f k holomorphic_on A"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1281
  assumes nz: "P z \<noteq> 0"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1282
  assumes A: "open A" "z \<in> A"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1283
  shows   "(\<lambda>k. deriv (f k) z / f k z) sums (deriv P z / P z)"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1284
proof -
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1285
  define f' where "f' = (\<lambda>k. deriv (f k))"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1286
  note [derivative_intros] = has_field_derivative_prod'
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1287
  have [derivative_intros]: 
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1288
    "(f k has_field_derivative f' k z) (at z within B)" if "z \<in> A" for B z k
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1289
    using that holomorphic_derivI[OF holo[of k],  of z B] A unfolding f'_def by auto
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1290
  have lim': "(\<lambda>n. \<Prod>k<n. f k z) \<longlonglongrightarrow> P z"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1291
    using lim by (rule tendsto_uniform_limitI) fact+
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1292
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1293
  have nz': "f k z \<noteq> 0" for k
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1294
  proof
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1295
    assume "f k z = 0"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1296
    have "eventually (\<lambda>n. (\<Prod>k<n. f k z) = 0) sequentially"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1297
      using eventually_gt_at_top[of k] by eventually_elim (use \<open>f k z = 0\<close> in auto)
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1298
    hence "(\<lambda>n. (\<Prod>k<n. f k z)) \<longlonglongrightarrow> 0"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1299
      by (rule tendsto_eventually)
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1300
    with lim' have "P z = 0"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1301
      using tendsto_unique sequentially_bot by blast
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1302
    with nz show False
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1303
      by simp
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1304
  qed
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1305
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1306
  from lim have "(\<lambda>n. deriv (\<lambda>x. \<Prod>k<n. f k x) z) \<longlonglongrightarrow> deriv P z"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1307
    by (rule deriv_complex_uniform_limit)
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1308
       (use A in \<open>auto intro!: always_eventually holomorphic_intros holo\<close>)
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1309
  also have "(\<lambda>n. deriv (\<lambda>x. \<Prod>k<n. f k x) z) = (\<lambda>n. (\<Prod>k<n. f k z) * (\<Sum>k<n. f' k z / f k z))"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1310
    using \<open>z \<in> A\<close> by (auto intro!: ext DERIV_imp_deriv derivative_eq_intros simp: nz')
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1311
  finally have "(\<lambda>n. (\<Prod>k<n. f k z) * (\<Sum>k<n. f' k z / f k z)) \<longlonglongrightarrow> deriv P z" .
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1312
  hence "(\<lambda>n. (\<Prod>k<n. f k z) * (\<Sum>k<n. f' k z / f k z) / (\<Prod>k<n. f k z)) \<longlonglongrightarrow> deriv P z / P z"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1313
    by (intro tendsto_intros) (use nz lim' in auto)
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1314
  also have "(\<lambda>n. (\<Prod>k<n. f k z) * (\<Sum>k<n. f' k z / f k z) / (\<Prod>k<n. f k z)) =
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1315
             (\<lambda>n. (\<Sum>k<n. f' k z / f k z))"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1316
    by (simp add: nz')
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1317
  finally show "(\<lambda>k. f' k z / f k z) sums (deriv P z / P z)"
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1318
    unfolding sums_def .
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1319
qed
34190188b40f some facts about derivatives of products
Manuel Eberl <manuel@pruvisto.org>
parents: 82517
diff changeset
  1320
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1321
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1322
text\<open> Version showing that the limit is the limit of the derivatives.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1323
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1324
proposition has_complex_derivative_uniform_limit:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1325
  fixes z::complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1326
  assumes cont: "eventually (\<lambda>n. continuous_on (cball z r) (f n) \<and>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1327
                               (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))) F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1328
      and ulim: "uniform_limit (cball z r) f g F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1329
      and F:  "\<not> trivial_limit F" and "0 < r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1330
  obtains g' where
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1331
      "continuous_on (cball z r) g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1332
      "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1333
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1334
  let ?conint = "contour_integral (circlepath z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1335
  have g: "continuous_on (cball z r) g" "g holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1336
    by (rule holomorphic_uniform_limit [OF eventually_mono [OF cont] ulim F];
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1337
             auto simp: holomorphic_on_open field_differentiable_def)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1338
  then obtain g' where g': "\<And>x. x \<in> ball z r \<Longrightarrow> (g has_field_derivative g' x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1339
    using DERIV_deriv_iff_has_field_derivative
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1340
    by (fastforce simp add: holomorphic_on_open)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1341
  then have derg: "\<And>x. x \<in> ball z r \<Longrightarrow> deriv g x = g' x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1342
    by (simp add: DERIV_imp_deriv)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1343
  have tends_f'n_g': "((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F" if w: "w \<in> ball z r" for w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1344
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1345
    have eq_f': "?conint (\<lambda>x. f n x / (x-w)\<^sup>2) - ?conint (\<lambda>x. g x / (x-w)\<^sup>2) = (f' n w - g' w) * (2 * of_real pi * \<i>)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1346
             if cont_fn: "continuous_on (cball z r) (f n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1347
             and fnd: "\<And>w. w \<in> ball z r \<Longrightarrow> (f n has_field_derivative f' n w) (at w)" for n
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1348
    proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1349
      have hol_fn: "f n holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1350
        using fnd by (force simp: holomorphic_on_open)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1351
      have "(f n has_field_derivative 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u-w)\<^sup>2)) (at w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1352
        by (rule Cauchy_derivative_integral_circlepath [OF cont_fn hol_fn w])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1353
      then have f': "f' n w = 1 / (2 * of_real pi * \<i>) * ?conint (\<lambda>u. f n u / (u-w)\<^sup>2)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1354
        using DERIV_unique [OF fnd] w by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1355
      show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1356
        by (simp add: f' Cauchy_contour_integral_circlepath_2 [OF g w] derg [OF w] field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1357
    qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1358
    define d where "d = (r - norm(w-z))^2"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1359
    have "d > 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1360
      using w by (simp add: dist_commute dist_norm d_def)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1361
    have dle: "d \<le> cmod ((y-w)\<^sup>2)" if "r = cmod (z-y)" for y
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1362
      by (smt (verit, best) d_def diff_add_cancel diff_diff_eq2 dist_norm mem_ball
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1363
          norm_minus_commute norm_power norm_triangle_ineq2 power_mono that w)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1364
    have 1: "\<forall>\<^sub>F n in F. (\<lambda>x. f n x / (x-w)\<^sup>2) contour_integrable_on circlepath z r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1365
      by (force simp: holomorphic_on_open intro: w Cauchy_derivative_integral_circlepath eventually_mono [OF cont])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1366
    have 2: "uniform_limit (sphere z r) (\<lambda>n x. f n x / (x-w)\<^sup>2) (\<lambda>x. g x / (x-w)\<^sup>2) F"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1367
      unfolding uniform_limit_iff
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1368
    proof clarify
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1369
      fix e::real
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1370
      assume "e > 0"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1371
      with \<open>r > 0\<close> 
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1372
      have "\<forall>\<^sub>F n in F. \<forall>x. x \<noteq> w \<longrightarrow> cmod (z-x) = r \<longrightarrow> cmod (f n x - g x) < e * cmod ((x-w)\<^sup>2)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1373
        by (force simp: \<open>0 < d\<close> dist_norm dle intro: less_le_trans eventually_mono [OF uniform_limitD [OF ulim], of "e*d"])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1374
      with \<open>r > 0\<close> \<open>e > 0\<close> 
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1375
      show "\<forall>\<^sub>F n in F. \<forall>x\<in>sphere z r. dist (f n x / (x-w)\<^sup>2) (g x / (x-w)\<^sup>2) < e"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1376
        by (simp add: norm_divide field_split_simps sphere_def dist_norm)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1377
    qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1378
    have "((\<lambda>n. contour_integral (circlepath z r) (\<lambda>x. f n x / (x-w)\<^sup>2))
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1379
             \<longlongrightarrow> contour_integral (circlepath z r) ((\<lambda>x. g x / (x-w)\<^sup>2))) F"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1380
      by (rule contour_integral_uniform_limit_circlepath [OF 1 2 F \<open>0 < r\<close>])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1381
    then have tendsto_0: "((\<lambda>n. 1 / (2 * of_real pi * \<i>) * (?conint (\<lambda>x. f n x / (x-w)\<^sup>2) - ?conint (\<lambda>x. g x / (x-w)\<^sup>2))) \<longlongrightarrow> 0) F"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1382
      using Lim_null by (force intro!: tendsto_mult_right_zero)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1383
    have "((\<lambda>n. f' n w - g' w) \<longlongrightarrow> 0) F"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1384
      by (force simp: divide_simps 
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1385
          intro: eq_f' eventually_mono [OF cont] Lim_transform_eventually [OF tendsto_0])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1386
    then show ?thesis using Lim_null by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1387
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1388
  obtain g' where "\<And>w. w \<in> ball z r \<Longrightarrow> (g has_field_derivative (g' w)) (at w) \<and> ((\<lambda>n. f' n w) \<longlongrightarrow> g' w) F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1389
      by (blast intro: tends_f'n_g' g')
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1390
  then show ?thesis using g
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1391
    using that by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1392
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1393
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1394
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1395
subsection\<^marker>\<open>tag unimportant\<close> \<open>Some more simple/convenient versions for applications\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1396
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1397
lemma holomorphic_uniform_sequence:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1398
  assumes S: "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1399
      and hol_fn: "\<And>n. (f n) holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1400
      and ulim_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1401
  shows "g holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1402
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1403
  have "\<exists>f'. (g has_field_derivative f') (at z)" if "z \<in> S" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1404
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1405
    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1406
               and ul: "uniform_limit (cball z r) f g sequentially"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1407
      using ulim_g [OF \<open>z \<in> S\<close>] by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1408
    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and> f n holomorphic_on ball z r"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1409
      by (smt (verit, best) ball_subset_cball hol_fn holomorphic_on_imp_continuous_on 
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1410
          holomorphic_on_subset not_eventuallyD r)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1411
    show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1412
      using \<open>0 < r\<close> centre_in_ball ul
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1413
      by (auto simp: holomorphic_on_open intro: holomorphic_uniform_limit [OF *])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1414
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1415
  with S show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1416
    by (simp add: holomorphic_on_open)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1417
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1418
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1419
lemma has_complex_derivative_uniform_sequence:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1420
  fixes S :: "complex set"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1421
  assumes S: "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1422
      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> ((f n) has_field_derivative f' n x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1423
      and ulim_g: "\<And>x. x \<in> S
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1424
             \<Longrightarrow> \<exists>d. 0 < d \<and> cball x d \<subseteq> S \<and> uniform_limit (cball x d) f g sequentially"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1425
  shows "\<exists>g'. \<forall>x \<in> S. (g has_field_derivative g' x) (at x) \<and> ((\<lambda>n. f' n x) \<longlongrightarrow> g' x) sequentially"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1426
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1427
  have y: "\<exists>y. (g has_field_derivative y) (at z) \<and> (\<lambda>n. f' n z) \<longlonglongrightarrow> y" if "z \<in> S" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1428
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1429
    obtain r where "0 < r" and r: "cball z r \<subseteq> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1430
               and ul: "uniform_limit (cball z r) f g sequentially"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1431
      using ulim_g [OF \<open>z \<in> S\<close>] by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1432
    have *: "\<forall>\<^sub>F n in sequentially. continuous_on (cball z r) (f n) \<and>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1433
                                   (\<forall>w \<in> ball z r. ((f n) has_field_derivative (f' n w)) (at w))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1434
    proof (intro eventuallyI conjI ballI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1435
      show "continuous_on (cball z r) (f x)" for x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1436
        by (meson S continuous_on_subset hfd holomorphic_on_imp_continuous_on holomorphic_on_open r)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1437
      show "w \<in> ball z r \<Longrightarrow> (f x has_field_derivative f' x w) (at w)" for w x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1438
        using ball_subset_cball hfd r by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1439
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1440
    show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1441
      by (rule has_complex_derivative_uniform_limit [OF *, of g]) (use \<open>0 < r\<close> ul in \<open>force+\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1442
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1443
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1444
    by (rule bchoice) (blast intro: y)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1445
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1446
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1447
subsection\<open>On analytic functions defined by a series\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1448
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1449
lemma series_and_derivative_comparison:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1450
  fixes S :: "complex set"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1451
  assumes S: "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1452
      and h: "summable h"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1453
      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1454
      and to_g: "\<forall>\<^sub>F n in sequentially. \<forall>x\<in>S. norm (f n x) \<le> h n"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1455
  obtains g g' where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1456
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1457
  obtain g where g: "uniform_limit S (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1458
    using Weierstrass_m_test_ev [OF to_g h]  by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1459
  have *: "\<exists>d>0. cball x d \<subseteq> S \<and> uniform_limit (cball x d) (\<lambda>n x. \<Sum>i<n. f i x) g sequentially"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1460
    if "x \<in> S" for x
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1461
    using open_contains_cball [of "S"] \<open>x \<in> S\<close> S g uniform_limit_on_subset by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1462
  have "\<And>x. x \<in> S \<Longrightarrow> (\<lambda>n. \<Sum>i<n. f i x) \<longlonglongrightarrow> g x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1463
    by (metis tendsto_uniform_limitI [OF g])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1464
  moreover have "\<exists>g'. \<forall>x\<in>S. (g has_field_derivative g' x) (at x) \<and> (\<lambda>n. \<Sum>i<n. f' i x) \<longlonglongrightarrow> g' x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1465
    by (rule has_complex_derivative_uniform_sequence [OF S]) (auto intro: * hfd DERIV_sum)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1466
  ultimately show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1467
    by (metis sums_def that)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1468
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1469
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1470
text\<open>A version where we only have local uniform/comparative convergence.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1471
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1472
lemma series_and_derivative_comparison_local:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1473
  fixes S :: "complex set"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1474
  assumes S: "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1475
      and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1476
      and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. norm (f n y) \<le> h n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1477
  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1478
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1479
  have "\<exists>y. (\<lambda>n. f n z) sums (\<Sum>n. f n z) \<and> (\<lambda>n. f' n z) sums y \<and> ((\<lambda>x. \<Sum>n. f n x) has_field_derivative y) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1480
       if "z \<in> S" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1481
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1482
    obtain d h where "0 < d" "summable h" and le_h: "\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball z d \<inter> S. norm (f n y) \<le> h n"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1483
      using to_g \<open>z \<in> S\<close> by meson
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1484
    then obtain r where "r>0" and r: "ball z r \<subseteq> ball z d \<inter> S" using \<open>z \<in> S\<close> S
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1485
      by (metis Int_iff open_ball centre_in_ball open_Int open_contains_ball_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1486
    have 1: "open (ball z d \<inter> S)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1487
      by (simp add: open_Int S)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1488
    have 2: "\<And>n x. x \<in> ball z d \<inter> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1489
      by (auto simp: hfd)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1490
    obtain g g' where gg': "\<forall>x \<in> ball z d \<inter> S. ((\<lambda>n. f n x) sums g x) \<and>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1491
                                    ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1492
      by (auto intro: le_h series_and_derivative_comparison [OF 1 \<open>summable h\<close> hfd])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1493
    then have "(\<lambda>n. f' n z) sums g' z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1494
      by (meson \<open>0 < r\<close> centre_in_ball contra_subsetD r)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1495
    moreover have "(\<lambda>n. f n z) sums (\<Sum>n. f n z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1496
      using  summable_sums centre_in_ball \<open>0 < d\<close> \<open>summable h\<close> le_h
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1497
      by (metis (full_types) Int_iff gg' summable_def that)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1498
    moreover have "((\<lambda>x. \<Sum>n. f n x) has_field_derivative g' z) (at z)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1499
      by (metis (no_types, lifting) "1" r \<open>0 < r\<close> gg' has_field_derivative_transform_within_open 
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1500
          open_contains_ball_eq sums_unique)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1501
    ultimately show ?thesis by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1502
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1503
  then show ?thesis
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1504
    by meson
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1505
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1506
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1507
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1508
text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1509
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1510
lemma series_and_derivative_comparison_complex:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1511
  fixes S :: "complex set"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1512
  assumes S: "open S"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1513
    and hfd: "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative f' n x) (at x)"
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1514
    and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1515
  shows "\<exists>g g'. \<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> ((\<lambda>n. f' n x) sums g' x) \<and> (g has_field_derivative g' x) (at x)"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1516
  apply (rule series_and_derivative_comparison_local [OF S hfd], assumption)
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1517
  apply (rule ex_forward [OF to_g], assumption)
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1518
  apply (erule exE)
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1519
  apply (rule_tac x="Re \<circ> h" in exI)
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1520
  apply (force simp: summable_Re o_def nonneg_Reals_cmod_eq_Re image_subset_iff)
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1521
  done
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1522
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1523
text\<open>Sometimes convenient to compare with a complex series of positive reals. (?)\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1524
lemma series_differentiable_comparison_complex:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1525
  fixes S :: "complex set"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1526
  assumes S: "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1527
    and hfd: "\<And>n x. x \<in> S \<Longrightarrow> f n field_differentiable (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1528
    and to_g: "\<And>x. x \<in> S \<Longrightarrow> \<exists>d h. 0 < d \<and> summable h \<and> range h \<subseteq> \<real>\<^sub>\<ge>\<^sub>0 \<and> (\<forall>\<^sub>F n in sequentially. \<forall>y\<in>ball x d \<inter> S. cmod(f n y) \<le> cmod (h n))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1529
  obtains g where "\<forall>x \<in> S. ((\<lambda>n. f n x) sums g x) \<and> g field_differentiable (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1530
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1531
  have hfd': "\<And>n x. x \<in> S \<Longrightarrow> (f n has_field_derivative deriv (f n) x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1532
    using hfd field_differentiable_derivI by blast
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1533
  show ?thesis
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1534
    by (metis field_differentiable_def that series_and_derivative_comparison_complex [OF S hfd' to_g]) 
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1535
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1536
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1537
text\<open>In particular, a power series is analytic inside circle of convergence.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1538
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1539
lemma power_series_and_derivative_0:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1540
  fixes a :: "nat \<Rightarrow> complex" and r::real
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1541
  assumes "summable (\<lambda>n. a n * r^n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1542
    shows "\<exists>g g'. \<forall>z. cmod z < r \<longrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1543
             ((\<lambda>n. a n * z^n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * z^(n-1)) sums g' z) \<and> (g has_field_derivative g' z) (at z)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1544
proof (cases "0 < r")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1545
  case True
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1546
    have der: "\<And>n z. ((\<lambda>x. a n * x ^ n) has_field_derivative of_nat n * a n * z ^ (n-1)) (at z)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1547
      by (rule derivative_eq_intros | simp)+
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1548
    have y_le: "cmod y \<le> cmod (of_real r + of_real (cmod z)) / 2" 
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1549
      if "cmod (z-y) * 2 < r - cmod z" for z y
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1550
      by (smt (verit, best) field_sum_of_halves norm_minus_commute norm_of_real norm_triangle_ineq2 of_real_add that)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1551
    have "summable (\<lambda>n. a n * complex_of_real r ^ n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1552
      using assms \<open>r > 0\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1553
    moreover have "\<And>z. cmod z < r \<Longrightarrow> cmod ((of_real r + of_real (cmod z)) / 2) < cmod (of_real r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1554
      using \<open>r > 0\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1555
      by (simp flip: of_real_add)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1556
    ultimately have sum: "\<And>z. cmod z < r \<Longrightarrow> summable (\<lambda>n. of_real (cmod (a n)) * ((of_real r + complex_of_real (cmod z)) / 2) ^ n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1557
      by (rule power_series_conv_imp_absconv_weak)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1558
    have "\<exists>g g'. \<forall>z \<in> ball 0 r. (\<lambda>n.  (a n) * z ^ n) sums g z \<and>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1559
               (\<lambda>n. of_nat n * (a n) * z ^ (n-1)) sums g' z \<and> (g has_field_derivative g' z) (at z)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1560
      apply (rule series_and_derivative_comparison_complex [OF open_ball der])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1561
      apply (rule_tac x="(r - norm z)/2" in exI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1562
      apply (rule_tac x="\<lambda>n. of_real(norm(a n)*((r + norm z)/2)^n)" in exI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1563
      using \<open>r > 0\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1564
      apply (auto simp: sum eventually_sequentially norm_mult norm_power dist_norm intro!: mult_left_mono power_mono y_le)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1565
      done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1566
  then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1567
    by (simp add: ball_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1568
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1569
  case False then show ?thesis
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1570
    unfolding not_less using less_le_trans norm_not_less_zero by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1571
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1572
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1573
proposition\<^marker>\<open>tag unimportant\<close> power_series_and_derivative:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1574
  fixes a :: "nat \<Rightarrow> complex" and r::real
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1575
  assumes "summable (\<lambda>n. a n * r^n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1576
    obtains g g' where "\<forall>z \<in> ball w r.
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1577
             ((\<lambda>n. a n * (z-w) ^ n) sums g z) \<and> ((\<lambda>n. of_nat n * a n * (z-w) ^ (n-1)) sums g' z) \<and>
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1578
              (g has_field_derivative g' z) (at z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1579
  using power_series_and_derivative_0 [OF assms]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1580
  apply clarify
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1581
  apply (rule_tac g="(\<lambda>z. g(z-w))" in that)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1582
  using DERIV_shift [where z="-w"]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1583
  apply (auto simp: norm_minus_commute Ball_def dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1584
  done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1585
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1586
proposition\<^marker>\<open>tag unimportant\<close> power_series_holomorphic:
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1587
  assumes "\<And>w. w \<in> ball z r \<Longrightarrow> ((\<lambda>n. a n*(w-z)^n) sums f w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1588
    shows "f holomorphic_on ball z r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1589
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1590
  have "\<exists>f'. (f has_field_derivative f') (at w)" if w: "dist z w < r" for w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1591
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1592
    have wz: "cmod (w-z) < r" using w
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1593
      by (auto simp: field_split_simps dist_norm norm_minus_commute)
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1594
    then have "0 \<le> r"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1595
      by (meson less_eq_real_def norm_ge_zero order_trans)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1596
    have inb: "z + complex_of_real ((dist z w + r) / 2) \<in> ball z r"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1597
      using w by (simp add: dist_norm \<open>0\<le>r\<close> flip: of_real_add)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1598
    have sum: "summable (\<lambda>n. a n * of_real (((cmod (z-w) + r) / 2) ^ n))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1599
      using assms [OF inb] by (force simp: summable_def dist_norm)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1600
    obtain g g' where gg': "\<And>u. u \<in> ball z ((cmod (z-w) + r) / 2) \<Longrightarrow>
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1601
                               (\<lambda>n. a n * (u-z) ^ n) sums g u \<and>
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1602
                               (\<lambda>n. of_nat n * a n * (u-z) ^ (n-1)) sums g' u \<and> (g has_field_derivative g' u) (at u)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1603
      by (rule power_series_and_derivative [OF sum, of z]) fastforce
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1604
    have [simp]: "g u = f u" if "cmod (u-w) < (r - cmod (z-w)) / 2" for u
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1605
    proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1606
      have less: "cmod (z-u) * 2 < cmod (z-w) + r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1607
        using that dist_triangle2 [of z u w]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1608
        by (simp add: dist_norm [symmetric] algebra_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1609
      have "(\<lambda>n. a n * (u-z) ^ n) sums g u" "(\<lambda>n. a n * (u-z) ^ n) sums f u"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1610
        using gg' [of u] less w by (auto simp: assms dist_norm)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1611
      then show ?thesis
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1612
        by (metis sums_unique2)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1613
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1614
    have "(f has_field_derivative g' w) (at w)"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1615
    proof (rule has_field_derivative_transform_within [where d="(r - norm(z-w))/2"])
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1616
    qed (use w gg' [of w] in \<open>(force simp: dist_norm)+\<close>)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1617
    then show ?thesis ..
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1618
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1619
  then show ?thesis by (simp add: holomorphic_on_open)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1620
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1621
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1622
corollary holomorphic_iff_power_series:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1623
     "f holomorphic_on ball z r \<longleftrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1624
      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w-z)^n) sums f w)"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1625
  using power_series_holomorphic [where a = "\<lambda>n. (deriv ^^ n) f z / (fact n)"] holomorphic_power_series
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1626
  by blast
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1627
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1628
lemma power_series_analytic:
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1629
     "(\<And>w. w \<in> ball z r \<Longrightarrow> (\<lambda>n. a n*(w-z)^n) sums f w) \<Longrightarrow> f analytic_on ball z r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1630
  by (force simp: analytic_on_open intro!: power_series_holomorphic)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1631
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1632
lemma analytic_iff_power_series:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1633
     "f analytic_on ball z r \<longleftrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1634
      (\<forall>w \<in> ball z r. (\<lambda>n. (deriv ^^ n) f z / (fact n) * (w-z)^n) sums f w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1635
  by (simp add: analytic_on_open holomorphic_iff_power_series)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1636
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1637
subsection\<^marker>\<open>tag unimportant\<close> \<open>Equality between holomorphic functions, on open ball then connected set\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1638
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1639
lemma holomorphic_fun_eq_on_ball:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1640
   "\<lbrakk>f holomorphic_on ball z r; g holomorphic_on ball z r;
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1641
     w \<in> ball z r;
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1642
     \<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z\<rbrakk>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1643
     \<Longrightarrow> f w = g w"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1644
  by (auto simp: holomorphic_iff_power_series sums_unique2 [of "\<lambda>n. (deriv ^^ n) f z / (fact n) * (w-z)^n"])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1645
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1646
lemma holomorphic_fun_eq_0_on_ball:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1647
   "\<lbrakk>f holomorphic_on ball z r;  w \<in> ball z r;
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1648
     \<And>n. (deriv ^^ n) f z = 0\<rbrakk>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1649
     \<Longrightarrow> f w = 0"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1650
  using holomorphic_fun_eq_on_ball [where g = "\<lambda>z. 0"] by simp
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1651
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1652
lemma holomorphic_fun_eq_0_on_connected:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1653
  assumes holf: "f holomorphic_on S" and "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1654
      and cons: "connected S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1655
      and der: "\<And>n. (deriv ^^ n) f z = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1656
      and "z \<in> S" "w \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1657
    shows "f w = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1658
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1659
  have *: "ball x e \<subseteq> (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1660
    if "\<forall>u. (deriv ^^ u) f x = 0" "ball x e \<subseteq> S" for x e
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1661
  proof -
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1662
    have "(deriv ^^ m) ((deriv ^^ n) f) x = 0" for m n
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1663
      by (metis funpow_add o_apply that(1))
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1664
    then have "\<And>x' n. dist x x' < e \<Longrightarrow> (deriv ^^ n) f x' = 0"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1665
      using \<open>open S\<close> 
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1666
      by (meson holf holomorphic_fun_eq_0_on_ball holomorphic_higher_deriv holomorphic_on_subset mem_ball that(2))
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1667
    with that show ?thesis by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1668
  qed
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1669
  obtain e where "e>0" and e: "ball w e \<subseteq> S" using openE [OF \<open>open S\<close> \<open>w \<in> S\<close>] .
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1670
  then have holfb: "f holomorphic_on ball w e"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1671
    using holf holomorphic_on_subset by blast
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1672
  have "open (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1673
    using \<open>open S\<close>
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1674
    apply (simp add: open_contains_ball Ball_def image_iff)
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1675
    by (metis (mono_tags) "*" mem_Collect_eq)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1676
  then have "openin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1677
    by (force intro: open_subset)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1678
  moreover have "closedin (top_of_set S) (\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0})"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1679
    using assms
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1680
    by (auto intro: continuous_closedin_preimage_constant holomorphic_on_imp_continuous_on holomorphic_higher_deriv)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1681
  moreover have "(\<Inter>n. {w \<in> S. (deriv ^^ n) f w = 0}) = S \<Longrightarrow> f w = 0"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1682
    using \<open>e>0\<close> e by (force intro: holomorphic_fun_eq_0_on_ball [OF holfb])
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1683
  ultimately show ?thesis
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1684
    using cons der \<open>z \<in> S\<close>
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1685
    by (auto simp add: connected_clopen)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1686
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1687
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1688
lemma holomorphic_fun_eq_on_connected:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1689
  assumes "f holomorphic_on S" "g holomorphic_on S" and "open S"  "connected S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1690
      and "\<And>n. (deriv ^^ n) f z = (deriv ^^ n) g z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1691
      and "z \<in> S" "w \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1692
    shows "f w = g w"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1693
proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>x. f x - g x" S z, simplified])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1694
  show "(\<lambda>x. f x - g x) holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1695
    by (intro assms holomorphic_intros)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1696
  show "\<And>n. (deriv ^^ n) (\<lambda>x. f x - g x) z = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1697
    using assms higher_deriv_diff by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1698
qed (use assms in auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1699
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1700
lemma holomorphic_fun_eq_const_on_connected:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1701
  assumes holf: "f holomorphic_on S" and "open S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1702
      and cons: "connected S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1703
      and der: "\<And>n. 0 < n \<Longrightarrow> (deriv ^^ n) f z = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1704
      and "z \<in> S" "w \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1705
    shows "f w = f z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1706
proof (rule holomorphic_fun_eq_0_on_connected [of "\<lambda>w. f w - f z" S z, simplified])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1707
  show "(\<lambda>w. f w - f z) holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1708
    by (intro assms holomorphic_intros)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1709
  show "\<And>n. (deriv ^^ n) (\<lambda>w. f w - f z) z = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1710
    by (subst higher_deriv_diff) (use assms in \<open>auto intro: holomorphic_intros\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1711
qed (use assms in auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1712
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1713
subsection\<^marker>\<open>tag unimportant\<close> \<open>Some basic lemmas about poles/singularities\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1714
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1715
lemma pole_lemma:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1716
  assumes holf: "f holomorphic_on S" and a: "a \<in> interior S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1717
    shows "(\<lambda>z. if z = a then deriv f a
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1718
                else (f z - f a) / (z-a)) holomorphic_on S" (is "?F holomorphic_on S")
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1719
proof -
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1720
  have *: "?F field_differentiable (at u within S)" if "u \<in> S" "u \<noteq> a" for u
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1721
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1722
    have fcd: "f field_differentiable at u within S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1723
      using holf holomorphic_on_def by (simp add: \<open>u \<in> S\<close>)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1724
    have cd: "(\<lambda>z. (f z - f a) / (z-a)) field_differentiable at u within S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1725
      by (rule fcd derivative_intros | simp add: that)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1726
    have "0 < dist a u" using that dist_nz by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1727
    then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1728
      by (rule field_differentiable_transform_within [OF _ _ _ cd]) (auto simp: \<open>u \<in> S\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1729
  qed
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1730
  moreover
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1731
  have "?F field_differentiable at a" if "0 < e" "ball a e \<subseteq> S" for e
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1732
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1733
    have holfb: "f holomorphic_on ball a e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1734
      by (rule holomorphic_on_subset [OF holf \<open>ball a e \<subseteq> S\<close>])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1735
    have 2: "?F holomorphic_on ball a e - {a}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1736
      using mem_ball that
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1737
      by (auto simp add: holomorphic_on_def simp flip: field_differentiable_def intro: * field_differentiable_within_subset)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1738
    have "isCont (\<lambda>z. if z = a then deriv f a else (f z - f a) / (z-a)) x"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1739
            if "dist a x < e" for x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1740
    proof (cases "x=a")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1741
      case True
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1742
      then have "f field_differentiable at a"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1743
        using holfb \<open>0 < e\<close> holomorphic_on_imp_differentiable_at by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1744
      with True show ?thesis
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1745
        by (smt (verit) DERIV_deriv_iff_field_differentiable LIM_equal continuous_at has_field_derivativeD)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1746
    next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1747
      case False with 2 that show ?thesis
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1748
        by (simp add: field_differentiable_imp_continuous_at holomorphic_on_imp_differentiable_at open_Diff)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1749
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1750
    then have 1: "continuous_on (ball a e) ?F"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1751
      by (clarsimp simp:  continuous_on_eq_continuous_at)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1752
    have "?F holomorphic_on ball a e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1753
      by (auto intro: no_isolated_singularity [OF 1 2])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1754
    with that show ?thesis
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1755
      by (simp add: holomorphic_on_imp_differentiable_at)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1756
  qed
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1757
  ultimately show ?thesis
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1758
    by (metis (lifting) a at_within_interior holomorphic_onI mem_interior)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1759
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1760
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1761
lemma pole_theorem:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1762
  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1763
      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z-a) * f z"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1764
    shows "(\<lambda>z. if z = a then deriv g a
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1765
                 else f z - g a/(z-a)) holomorphic_on S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1766
  using pole_lemma [OF holg a]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1767
  by (rule holomorphic_transform) (simp add: eq field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1768
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1769
lemma pole_lemma_open:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1770
  assumes "f holomorphic_on S" "open S"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1771
    shows "(\<lambda>z. if z = a then deriv f a else (f z - f a)/(z-a)) holomorphic_on S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1772
proof (cases "a \<in> S")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1773
  case True with assms interior_eq pole_lemma
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1774
    show ?thesis by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1775
next
80090
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
  1776
  case False 
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1777
  then have "(\<lambda>z. (f z - f a) / (z-a)) field_differentiable at x within S"
80090
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
  1778
    if "x \<in> S" for x
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1779
    using assms that unfolding holomorphic_on_def
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1780
    by (intro derivative_intros) auto
80090
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
  1781
  with False show ?thesis
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
  1782
    using holomorphic_on_def holomorphic_transform by presburger
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1783
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1784
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1785
lemma pole_theorem_open:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1786
  assumes holg: "g holomorphic_on S" and S: "open S"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1787
      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z-a) * f z"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1788
    shows "(\<lambda>z. if z = a then deriv g a
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1789
                 else f z - g a/(z-a)) holomorphic_on S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1790
  using pole_lemma_open [OF holg S]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1791
  by (rule holomorphic_transform) (auto simp: eq divide_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1792
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1793
lemma pole_theorem_0:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1794
  assumes holg: "g holomorphic_on S" and a: "a \<in> interior S"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1795
      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z-a) * f z"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1796
      and [simp]: "f a = deriv g a" "g a = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1797
    shows "f holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1798
  using pole_theorem [OF holg a eq]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1799
  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1800
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1801
lemma pole_theorem_open_0:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1802
  assumes holg: "g holomorphic_on S" and S: "open S"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1803
      and eq: "\<And>z. z \<in> S - {a} \<Longrightarrow> g z = (z-a) * f z"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1804
      and [simp]: "f a = deriv g a" "g a = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1805
    shows "f holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1806
  using pole_theorem_open [OF holg S eq]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1807
  by (rule holomorphic_transform) (auto simp: eq field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1808
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1809
lemma pole_theorem_analytic:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1810
  assumes g: "g analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1811
      and eq: "\<And>z. z \<in> S
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1812
             \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w-a) * f w)"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1813
    shows "(\<lambda>z. if z = a then deriv g a else f z - g a/(z-a)) analytic_on S" (is "?F analytic_on S")
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1814
  unfolding analytic_on_def
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1815
proof
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1816
  fix x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1817
  assume "x \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1818
  with g obtain e where "0 < e" and e: "g holomorphic_on ball x e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1819
    by (auto simp add: analytic_on_def)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1820
  obtain d where "0 < d" and d: "\<And>w. w \<in> ball x d - {a} \<Longrightarrow> g w = (w-a) * f w"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1821
    using \<open>x \<in> S\<close> eq by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1822
  have "?F holomorphic_on ball x (min d e)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1823
    using d e \<open>x \<in> S\<close> by (fastforce simp: holomorphic_on_subset subset_ball intro!: pole_theorem_open)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1824
  then show "\<exists>e>0. ?F holomorphic_on ball x e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1825
    using \<open>0 < d\<close> \<open>0 < e\<close> not_le by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1826
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1827
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1828
lemma pole_theorem_analytic_0:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1829
  assumes g: "g analytic_on S"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1830
      and eq: "\<And>z. z \<in> S \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>w \<in> ball z d - {a}. g w = (w-a) * f w)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1831
      and [simp]: "f a = deriv g a" "g a = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1832
    shows "f analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1833
proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1834
  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z-a)) = f"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1835
    by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1836
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1837
    using pole_theorem_analytic [OF g eq] by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1838
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1839
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1840
lemma pole_theorem_analytic_open_superset:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1841
  assumes g: "g analytic_on S" and "S \<subseteq> T" "open T"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1842
      and eq: "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z-a) * f z"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1843
    shows "(\<lambda>z. if z = a then deriv g a else f z - g a/(z-a)) analytic_on S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1844
proof (rule pole_theorem_analytic [OF g])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1845
  fix z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1846
  assume "z \<in> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1847
  then obtain e where "0 < e" and e: "ball z e \<subseteq> T"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1848
    using assms openE by blast
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1849
  then show "\<exists>d>0. \<forall>w\<in>ball z d - {a}. g w = (w-a) * f w"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1850
    using eq by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1851
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1852
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1853
lemma pole_theorem_analytic_open_superset_0:
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1854
  assumes g: "g analytic_on S" "S \<subseteq> T" "open T" "\<And>z. z \<in> T - {a} \<Longrightarrow> g z = (z-a) * f z"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1855
      and [simp]: "f a = deriv g a" "g a = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1856
    shows "f analytic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1857
proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1858
  have [simp]: "(\<lambda>z. if z = a then deriv g a else f z - g a / (z-a)) = f"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1859
    by auto
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1860
  have "(\<lambda>z. if z = a then deriv g a else f z - g a/(z-a)) analytic_on S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1861
    by (rule pole_theorem_analytic_open_superset [OF g])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1862
  then show ?thesis by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1863
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1864
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1865
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1866
subsection\<open>General, homology form of Cauchy's theorem\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1867
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1868
text\<open>Proof is based on Dixon's, as presented in Lang's "Complex Analysis" book (page 147).\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1869
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1870
lemma contour_integral_continuous_on_linepath_2D:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1871
  assumes "open U" and cont_dw: "\<And>w. w \<in> U \<Longrightarrow> F w contour_integrable_on (linepath a b)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1872
      and cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). F x y)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1873
      and abu: "closed_segment a b \<subseteq> U"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1874
    shows "continuous_on U (\<lambda>w. contour_integral (linepath a b) (F w))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1875
proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1876
  have "\<exists>d>0. \<forall>x'\<in>U. dist x' w < d \<longrightarrow>
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1877
                     dist (contour_integral (linepath a b) (F x'))
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1878
                          (contour_integral (linepath a b) (F w)) \<le> \<epsilon>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1879
          if "w \<in> U" "0 < \<epsilon>" "a \<noteq> b" for w \<epsilon>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1880
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1881
    obtain \<delta> where "\<delta>>0" and \<delta>: "cball w \<delta> \<subseteq> U" using open_contains_cball \<open>open U\<close> \<open>w \<in> U\<close> by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1882
    let ?TZ = "cball w \<delta>  \<times> closed_segment a b"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1883
    have "uniformly_continuous_on ?TZ (\<lambda>(x,y). F x y)"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1884
      by (metis Sigma_mono \<delta> abu compact_Times compact_cball compact_segment compact_uniformly_continuous 
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  1885
          cond_uu continuous_on_subset)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1886
    then obtain \<eta> where "\<eta>>0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1887
        and \<eta>: "\<And>x x'. \<lbrakk>x\<in>?TZ; x'\<in>?TZ; dist x' x < \<eta>\<rbrakk> \<Longrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1888
                         dist ((\<lambda>(x,y). F x y) x') ((\<lambda>(x,y). F x y) x) < \<epsilon>/norm(b-a)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1889
      using \<open>0 < \<epsilon>\<close> \<open>a \<noteq> b\<close>
82538
4b132ea7d575 More tidying and some variable renaming
paulson <lp15@cam.ac.uk>
parents: 82517
diff changeset
  1890
      by (auto elim: uniformly_continuous_onE [where \<epsilon> = "\<epsilon>/norm(b-a)"])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1891
    have \<eta>: "\<lbrakk>norm (w - x1) \<le> \<delta>;   x2 \<in> closed_segment a b;
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1892
              norm (w - x1') \<le> \<delta>;  x2' \<in> closed_segment a b; norm ((x1', x2') - (x1, x2)) < \<eta>\<rbrakk>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1893
              \<Longrightarrow> norm (F x1' x2' - F x1 x2) \<le> \<epsilon> / cmod (b-a)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1894
             for x1 x2 x1' x2'
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1895
      using \<eta> [of "(x1,x2)" "(x1',x2')"] by (force simp: dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1896
    have le_ee: "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1897
                if "x' \<in> U" "cmod (x' - w) < \<delta>" "cmod (x' - w) < \<eta>"  for x'
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1898
    proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1899
      have "(\<lambda>x. F x' x - F w x) contour_integrable_on linepath a b"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1900
        by (simp add: \<open>w \<in> U\<close> cont_dw contour_integrable_diff that)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1901
      then have "cmod (contour_integral (linepath a b) (\<lambda>x. F x' x - F w x)) \<le> \<epsilon>/norm(b-a) * norm(b-a)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1902
        using has_contour_integral_bound_linepath [OF has_contour_integral_integral _ \<eta>]
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  1903
        using \<open>0 < \<epsilon>\<close> \<open>0 < \<delta>\<close> that by (force simp: norm_minus_commute)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1904
      also have "\<dots> = \<epsilon>" using \<open>a \<noteq> b\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1905
      finally show ?thesis .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1906
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1907
    show ?thesis
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1908
      using \<open>0 < \<delta>\<close> \<open>0 < \<eta>\<close> \<open>w \<in> U\<close>
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1909
      apply (intro exI[where x="min \<delta> \<eta>"])
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1910
      by (auto simp: dist_norm contour_integral_diff [OF cont_dw cont_dw, symmetric]  intro: le_ee)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1911
  qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1912
  then show ?thesis
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1913
    by (metis (no_types, lifting) continuous_onI continuous_on_iff
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1914
        contour_integral_trivial dist_self)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1915
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1916
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1917
text\<open>This version has \<^term>\<open>polynomial_function \<gamma>\<close> as an additional assumption.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1918
lemma Cauchy_integral_formula_global_weak:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1919
  assumes "open U" and holf: "f holomorphic_on U"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1920
        and z: "z \<in> U" and \<gamma>: "polynomial_function \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1921
        and pasz: "path_image \<gamma> \<subseteq> U - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1922
        and zero: "\<And>w. w \<notin> U \<Longrightarrow> winding_number \<gamma> w = 0"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1923
      shows "((\<lambda>w. f w / (w-z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1924
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1925
  obtain \<gamma>' where pf\<gamma>': "polynomial_function \<gamma>'" and \<gamma>': "\<And>x. (\<gamma> has_vector_derivative (\<gamma>' x)) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1926
    using has_vector_derivative_polynomial_function [OF \<gamma>] by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1927
  then have "bounded(path_image \<gamma>')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1928
    by (simp add: path_image_def compact_imp_bounded compact_continuous_image continuous_on_polymonial_function)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1929
  then obtain B where "B>0" and B: "\<And>x. x \<in> path_image \<gamma>' \<Longrightarrow> norm x \<le> B"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1930
    using bounded_pos by force
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1931
  define d where [abs_def]: "d z w = (if w = z then deriv f z else (f w - f z)/(w-z))" for z w
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1932
  define v where "v = {w. w \<notin> path_image \<gamma> \<and> winding_number \<gamma> w = 0}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1933
  have "path \<gamma>" "valid_path \<gamma>" using \<gamma>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1934
    by (auto simp: path_polynomial_function valid_path_polynomial_function)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1935
  then have ov: "open v"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1936
    by (simp add: v_def open_winding_number_levelsets loop)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1937
  have uv_Un: "U \<union> v = UNIV"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1938
    using pasz zero by (auto simp: v_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1939
  have conf: "continuous_on U f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1940
    by (metis holf holomorphic_on_imp_continuous_on)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1941
  have hol_d: "(d y) holomorphic_on U" if "y \<in> U" for y
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1942
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1943
    have *: "(\<lambda>c. if c = y then deriv f y else (f c - f y) / (c-y)) holomorphic_on U"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1944
      by (simp add: holf pole_lemma_open \<open>open U\<close>)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1945
    then have "isCont (\<lambda>x. if x = y then deriv f y else (f x - f y) / (x-y)) y"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1946
      using at_within_open field_differentiable_imp_continuous_at holomorphic_on_def that \<open>open U\<close> by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1947
    then have "continuous_on U (d y)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1948
      using "*" d_def holomorphic_on_imp_continuous_on by auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1949
    moreover have "d y holomorphic_on U - {y}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1950
    proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1951
      have "(\<lambda>w. if w = y then deriv f y else (f w - f y) / (w-y)) field_differentiable at w"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1952
        if "w \<in> U - {y}" for w
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1953
      proof (rule field_differentiable_transform_within)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1954
        show "(\<lambda>w. (f w - f y) / (w-y)) field_differentiable at w"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1955
          using that \<open>open U\<close> holf 
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1956
          by (auto intro!: holomorphic_on_imp_differentiable_at derivative_intros)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1957
        show "dist w y > 0"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1958
          using that by auto
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1959
      qed (auto simp: dist_commute)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1960
      then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1961
        unfolding field_differentiable_def by (simp add: d_def holomorphic_on_open \<open>open U\<close> open_delete)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1962
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1963
    ultimately show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1964
      by (rule no_isolated_singularity) (auto simp: \<open>open U\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1965
  qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1966
  have cint_fxy: "(\<lambda>x. (f x - f y) / (x-y)) contour_integrable_on \<gamma>" if "y \<notin> path_image \<gamma>" for y
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1967
  proof (rule contour_integrable_holomorphic_simple [where S = "U-{y}"])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1968
    show "(\<lambda>x. (f x - f y) / (x-y)) holomorphic_on U - {y}"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1969
      by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1970
    show "path_image \<gamma> \<subseteq> U - {y}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1971
      using pasz that by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1972
  qed (auto simp: \<open>open U\<close> open_delete \<open>valid_path \<gamma>\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1973
  define h where
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1974
    "h z = (if z \<in> U then contour_integral \<gamma> (d z) else contour_integral \<gamma> (\<lambda>w. f w/(w-z)))" for z
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1975
  have U: "((d z) has_contour_integral h z) \<gamma>" if "z \<in> U" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1976
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1977
    have "d z holomorphic_on U"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1978
      by (simp add: hol_d that)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1979
    with that show ?thesis
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1980
      by (metis Diff_subset \<open>valid_path \<gamma>\<close> \<open>open U\<close> contour_integrable_holomorphic_simple h_def 
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1981
          has_contour_integral_integral pasz subset_trans)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1982
  qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1983
  have V: "((\<lambda>w. f w / (w-z)) has_contour_integral h z) \<gamma>" if z: "z \<in> v" for z
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1984
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1985
    have 0: "0 = (f z) * 2 * of_real (2 * pi) * \<i> * winding_number \<gamma> z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1986
      using v_def z by auto
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1987
    then have "((\<lambda>x. 1 / (x-z)) has_contour_integral 0) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1988
     using z v_def  has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close>] by fastforce
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1989
    then have "((\<lambda>x. f z * (1 / (x-z))) has_contour_integral 0) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1990
      using has_contour_integral_lmul by fastforce
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1991
    then have "((\<lambda>x. f z / (x-z)) has_contour_integral 0) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1992
      by (simp add: field_split_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1993
    moreover have "((\<lambda>x. (f x - f z) / (x-z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
80090
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
  1994
      by (metis (no_types, lifting) z cint_fxy contour_integral_eq d_def has_contour_integral_integral mem_Collect_eq v_def)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1995
    ultimately have *: "((\<lambda>x. f z / (x-z) + (f x - f z) / (x-z)) has_contour_integral (0 + contour_integral \<gamma> (d z))) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1996
      by (rule has_contour_integral_add)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  1997
    have "((\<lambda>w. f w / (w-z)) has_contour_integral contour_integral \<gamma> (d z)) \<gamma>"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  1998
      if "z \<in> U"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  1999
      using * by (auto simp: divide_simps has_contour_integral_eq)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2000
    moreover have "((\<lambda>w. f w / (w-z)) has_contour_integral contour_integral \<gamma> (\<lambda>w. f w / (w-z))) \<gamma>"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2001
      if "z \<notin> U"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2002
    proof (rule has_contour_integral_integral [OF contour_integrable_holomorphic_simple [where S=U]])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2003
      show "(\<lambda>w. f w / (w-z)) holomorphic_on U"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2004
        by (rule holomorphic_intros assms | use that in force)+
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2005
    qed (use \<open>open U\<close> pasz \<open>valid_path \<gamma>\<close> in auto)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2006
    ultimately show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2007
      using z by (simp add: h_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2008
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2009
  have znot: "z \<notin> path_image \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2010
    using pasz by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2011
  obtain d0 where "d0>0" and d0: "\<And>x y. x \<in> path_image \<gamma> \<Longrightarrow> y \<in> - U \<Longrightarrow> d0 \<le> dist x y"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2012
    using separate_compact_closed [of "path_image \<gamma>" "-U"] pasz \<open>open U\<close> \<open>path \<gamma>\<close> compact_path_image
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2013
    by blast    
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2014
  obtain dd where "0 < dd" and dd: "{y + k | y k. y \<in> path_image \<gamma> \<and> k \<in> ball 0 dd} \<subseteq> U"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2015
  proof
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2016
    show "0 < d0 / 2" using \<open>0 < d0\<close> by auto
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2017
  qed (use \<open>0 < d0\<close> d0 in \<open>force simp: dist_norm\<close>)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2018
  define T where "T \<equiv> {y + k |y k. y \<in> path_image \<gamma> \<and> k \<in> cball 0 (dd / 2)}"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2019
  have "\<And>x x'. \<lbrakk>x \<in> path_image \<gamma>; dist x x' * 2 < dd\<rbrakk> 
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2020
              \<Longrightarrow> \<exists>y k. x' = y + k \<and> y \<in> path_image \<gamma> \<and> dist 0 k * 2 \<le> dd"
80090
646cd337bb08 Tiny tweaks to proofs
paulson <lp15@cam.ac.uk>
parents: 78700
diff changeset
  2021
    by (metis add.commute diff_add_cancel dist_0_norm dist_commute dist_norm less_eq_real_def)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2022
  then have subt: "path_image \<gamma> \<subseteq> interior T"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2023
    using \<open>0 < dd\<close> 
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2024
    apply (clarsimp simp add: mem_interior T_def)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2025
    apply (rule_tac x="dd/2" in exI, auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2026
    done
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2027
  have "compact T"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2028
    unfolding T_def
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2029
    using \<open>valid_path \<gamma>\<close> compact_cball compact_sums compact_valid_path_image by blast
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2030
  have T: "T \<subseteq> U"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2031
    unfolding T_def using \<open>0 < dd\<close> dd by fastforce
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2032
  obtain L where "L>0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2033
           and L: "\<And>f B. \<lbrakk>f holomorphic_on interior T; \<And>z. z\<in>interior T \<Longrightarrow> cmod (f z) \<le> B\<rbrakk> \<Longrightarrow>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2034
                         cmod (contour_integral \<gamma> f) \<le> L * B"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2035
      using contour_integral_bound_exists [OF open_interior \<open>valid_path \<gamma>\<close> subt]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2036
      by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2037
  have "bounded(f ` T)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2038
    by (meson \<open>compact T\<close> compact_continuous_image compact_imp_bounded conf continuous_on_subset T)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2039
  then obtain D where "D>0" and D: "\<And>x. x \<in> T \<Longrightarrow> norm (f x) \<le> D"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2040
    by (auto simp: bounded_pos)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2041
  obtain C where "C>0" and C: "\<And>x. x \<in> T \<Longrightarrow> norm x \<le> C"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2042
    using \<open>compact T\<close> bounded_pos compact_imp_bounded by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2043
  have "dist (h y) 0 \<le> e" if "0 < e" and le: "D * L / e + C \<le> cmod y" for e y
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2044
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2045
    have "D * L / e > 0"  using \<open>D>0\<close> \<open>L>0\<close> \<open>e>0\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2046
    with le have ybig: "norm y > C" by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2047
    with C have "y \<notin> T"  by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2048
    then have ynot: "y \<notin> path_image \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2049
      using subt interior_subset by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2050
    have [simp]: "winding_number \<gamma> y = 0"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2051
    proof (rule winding_number_zero_outside)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2052
      show "path_image \<gamma> \<subseteq> cball 0 C"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2053
        by (meson C interior_subset mem_cball_0 subset_eq subt)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2054
    qed (use ybig loop \<open>path \<gamma>\<close> in auto)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2055
    have [simp]: "h y = contour_integral \<gamma> (\<lambda>w. f w/(w-y))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2056
      by (rule contour_integral_unique [symmetric]) (simp add: v_def ynot V)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2057
    have holint: "(\<lambda>w. f w / (w-y)) holomorphic_on interior T"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2058
    proof (intro holomorphic_intros)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2059
      show "f holomorphic_on interior T"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2060
        using holf holomorphic_on_subset interior_subset T by blast
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2061
    qed (use \<open>y \<notin> T\<close> interior_subset in auto)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2062
    have leD: "cmod (f z / (z-y)) \<le> D * (e / L / D)" if z: "z \<in> interior T" for z
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2063
    proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2064
      have "D * L / e + cmod z \<le> cmod y"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2065
        using le C [of z] z using interior_subset by force
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2066
      then have DL2: "D * L / e \<le> cmod (z-y)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2067
        using norm_triangle_ineq2 [of y z] by (simp add: norm_minus_commute)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2068
      have "cmod (f z / (z-y)) = cmod (f z) * inverse (cmod (z-y))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2069
        by (simp add: norm_mult norm_inverse Fields.field_class.field_divide_inverse)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2070
      also have "\<dots> \<le> D * (e / L / D)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2071
      proof (rule mult_mono)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2072
        show "cmod (f z) \<le> D"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2073
          using D interior_subset z by blast 
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2074
        show "inverse (cmod (z-y)) \<le> e / L / D" "D \<ge> 0"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2075
          using \<open>L>0\<close> \<open>e>0\<close> \<open>D>0\<close> DL2 by (auto simp: norm_divide field_split_simps)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2076
      qed auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2077
      finally show ?thesis .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2078
    qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2079
    have "dist (h y) 0 = cmod (contour_integral \<gamma> (\<lambda>w. f w / (w-y)))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2080
      by (simp add: dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2081
    also have "\<dots> \<le> L * (D * (e / L / D))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2082
      by (rule L [OF holint leD])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2083
    also have "\<dots> = e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2084
      using  \<open>L>0\<close> \<open>0 < D\<close> by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2085
    finally show ?thesis .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2086
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2087
  then have "(h \<longlongrightarrow> 0) at_infinity"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2088
    by (meson Lim_at_infinityI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2089
  moreover have "h holomorphic_on UNIV"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2090
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2091
    have con_ff: "continuous (at (x,z)) (\<lambda>(x,y). (f y - f x) / (y-x))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2092
                 if "x \<in> U" "z \<in> U" "x \<noteq> z" for x z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2093
      using that conf
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2094
      apply (simp add: split_def continuous_on_eq_continuous_at \<open>open U\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2095
      apply (simp | rule continuous_intros continuous_within_compose2 [where g=f])+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2096
      done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2097
    have con_fstsnd: "continuous_on UNIV (\<lambda>x. (fst x - snd x) ::complex)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2098
      by (rule continuous_intros)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2099
    have open_uu_Id: "open (U \<times> U - Id)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2100
    proof (rule open_Diff)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2101
      show "open (U \<times> U)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2102
        by (simp add: open_Times \<open>open U\<close>)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2103
      show "closed (Id :: complex rel)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2104
        using continuous_closed_preimage_constant [OF con_fstsnd closed_UNIV, of 0]
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2105
        by (auto simp: Id_fstsnd_eq algebra_simps)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2106
    qed
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2107
    have con_derf: "continuous (at z) (deriv f)" if "z \<in> U" for z
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2108
      by (meson analytic_at analytic_at_imp_isCont assms(1) holf holomorphic_deriv that)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2109
    have tendsto_f': "((\<lambda>(x,y). if y = x then deriv f (x)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2110
                                else (f (y) - f (x)) / (y-x)) \<longlongrightarrow> deriv f x)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2111
                      (at (x, x) within U \<times> U)" if "x \<in> U" for x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2112
    proof (rule Lim_withinI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2113
      fix e::real assume "0 < e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2114
      obtain k1 where "k1>0" and k1: "\<And>x'. norm (x' - x) \<le> k1 \<Longrightarrow> norm (deriv f x' - deriv f x) < e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2115
        using \<open>0 < e\<close> continuous_within_E [OF con_derf [OF \<open>x \<in> U\<close>]]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2116
        by (metis UNIV_I dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2117
      obtain k2 where "k2>0" and k2: "ball x k2 \<subseteq> U"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2118
        by (blast intro: openE [OF \<open>open U\<close>] \<open>x \<in> U\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2119
      have neq: "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2120
                    if "z' \<noteq> x'" and less_k1: "norm (x'-x, z'-x) < k1" and less_k2: "norm (x'-x, z'-x) < k2"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2121
                 for x' z'
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2122
      proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2123
        have cs_less: "w \<in> closed_segment x' z' \<Longrightarrow> cmod (w-x) \<le> norm (x'-x, z'-x)" for w
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2124
          using segment_furthest_le [of w x' z' x]
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2125
          by (metis (no_types) dist_commute dist_norm norm_fst_le norm_snd_le order_trans)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2126
        have derf_le: "w \<in> closed_segment x' z' \<Longrightarrow> z' \<noteq> x' \<Longrightarrow> cmod (deriv f w - deriv f x) \<le> e" for w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2127
          by (blast intro: cs_less less_k1 k1 [unfolded divide_const_simps dist_norm] less_imp_le le_less_trans)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2128
        have f_has_der: "\<And>x. x \<in> U \<Longrightarrow> (f has_field_derivative deriv f x) (at x within U)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2129
          by (metis DERIV_deriv_iff_field_differentiable at_within_open holf holomorphic_on_def \<open>open U\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2130
        have "closed_segment x' z' \<subseteq> U"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2131
          by (rule order_trans [OF _ k2]) (simp add: cs_less  le_less_trans [OF _ less_k2] dist_complex_def norm_minus_commute subset_iff)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2132
        then have cint_derf: "(deriv f has_contour_integral f z' - f x') (linepath x' z')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2133
          using contour_integral_primitive [OF f_has_der valid_path_linepath] pasz  by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2134
        then have *: "((\<lambda>x. deriv f x / (z' - x')) has_contour_integral (f z' - f x') / (z' - x')) (linepath x' z')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2135
          by (rule has_contour_integral_div)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2136
        have "norm ((f z' - f x') / (z' - x') - deriv f x) \<le> e/norm(z' - x') * norm(z' - x')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2137
          apply (rule has_contour_integral_bound_linepath [OF has_contour_integral_diff [OF *]])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2138
          using has_contour_integral_div [where c = "z' - x'", OF has_contour_integral_const_linepath [of "deriv f x" z' x']]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2139
                 \<open>e > 0\<close>  \<open>z' \<noteq> x'\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2140
          apply (auto simp: norm_divide divide_simps derf_le)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2141
          done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2142
        also have "\<dots> \<le> e" using \<open>0 < e\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2143
        finally show ?thesis .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2144
      qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2145
      show "\<exists>d>0. \<forall>xa\<in>U \<times> U.
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2146
                  0 < dist xa (x, x) \<and> dist xa (x, x) < d \<longrightarrow>
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2147
                  dist (case xa of (x, y) \<Rightarrow> if y = x then deriv f x else (f y - f x) / (y-x)) (deriv f x) \<le> e"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2148
        apply (rule_tac x="min k1 k2" in exI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2149
        using \<open>k1>0\<close> \<open>k2>0\<close> \<open>e>0\<close>
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2150
        by (force simp: dist_norm neq intro: dual_order.strict_trans2 k1 less_imp_le norm_fst_le)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2151
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2152
    have con_pa_f: "continuous_on (path_image \<gamma>) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2153
      by (meson holf holomorphic_on_imp_continuous_on holomorphic_on_subset interior_subset subt T)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2154
    have le_B: "\<And>T. T \<in> {0..1} \<Longrightarrow> cmod (vector_derivative \<gamma> (at T)) \<le> B"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2155
      using \<gamma>' B by (simp add: path_image_def vector_derivative_at rev_image_eqI)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2156
    have f_has_cint: "\<And>w. w \<in> v - path_image \<gamma> \<Longrightarrow> ((\<lambda>u. f u / (u-w) ^ 1) has_contour_integral h w) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2157
      by (simp add: V)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2158
    have "\<And>x y. \<lbrakk>x \<in> U; y \<in> U; y \<noteq> x\<rbrakk> \<Longrightarrow> (\<lambda>(x, y). d x y) \<midarrow>(x, y)\<rightarrow> (f y - f x) / (y - x)"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2159
      unfolding d_def
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2160
      apply (rule Lim_transform_within_open [OF _ open_uu_Id, where f = "(\<lambda>(x,y). (f y - f x) / (y-x))"])
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2161
      using con_ff by (auto simp: continuous_within)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2162
    then have cond_uu: "continuous_on (U \<times> U) (\<lambda>(x,y). d x y)"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2163
      unfolding continuous_on_eq_continuous_within continuous_within d_def
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2164
      by (fastforce simp add: tendsto_f' intro: Lim_at_imp_Lim_at_within)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2165
    have hol_dw: "(\<lambda>z. d z w) holomorphic_on U" if "w \<in> U" for w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2166
    proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2167
      have "continuous_on U ((\<lambda>(x,y). d x y) \<circ> (\<lambda>z. (w,z)))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2168
        by (rule continuous_on_compose continuous_intros continuous_on_subset [OF cond_uu] | force intro: that)+
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2169
      then have *: "continuous_on U (\<lambda>z. if w = z then deriv f z else (f w - f z) / (w-z))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2170
        by (rule rev_iffD1 [OF _ continuous_on_cong [OF refl]]) (simp add: d_def field_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2171
      have **: "(\<lambda>z. if w = z then deriv f z else (f w - f z) / (w-z)) field_differentiable at x"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2172
        if "x \<in> U" "x \<noteq> w" for x
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2173
      proof (rule_tac f = "\<lambda>x. (f w - f x)/(w-x)" and d = "dist x w" in field_differentiable_transform_within)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2174
        show "(\<lambda>x. (f w - f x) / (w-x)) field_differentiable at x"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2175
          using that \<open>open U\<close>
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2176
          by (intro derivative_intros holomorphic_on_imp_differentiable_at [OF holf]; force)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2177
      qed (use that \<open>open U\<close> in \<open>auto simp: dist_commute\<close>)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2178
      show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2179
        unfolding d_def
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2180
      proof (rule no_isolated_singularity [OF * _ \<open>open U\<close>])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2181
        show "(\<lambda>z. if w = z then deriv f z else (f w - f z) / (w-z)) holomorphic_on U - {w}"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2182
          by (auto simp: field_differentiable_def [symmetric] holomorphic_on_open open_Diff \<open>open U\<close> **)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2183
      qed auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2184
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2185
    { fix a b
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2186
      assume abu: "closed_segment a b \<subseteq> U"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2187
      have cont_cint_d: "continuous_on U (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2188
      proof (rule contour_integral_continuous_on_linepath_2D [OF \<open>open U\<close> _ _ abu])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2189
        show "\<And>w. w \<in> U \<Longrightarrow> (\<lambda>z. d z w) contour_integrable_on (linepath a b)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2190
          by (metis abu hol_dw continuous_on_subset contour_integrable_continuous_linepath holomorphic_on_imp_continuous_on)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2191
        show "continuous_on (U \<times> U) (\<lambda>(x, y). d y x)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2192
          by (auto intro: continuous_on_swap_args cond_uu)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2193
      qed
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2194
      have cont_cint_d\<gamma>: "continuous_on {0..1} ((\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) \<circ> \<gamma>)"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  2195
        by (metis Diff_subset \<open>path \<gamma>\<close> cont_cint_d continuous_on_compose continuous_on_subset pasz path_def path_image_def)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2196
      have "continuous_on {0..1} (\<lambda>x. vector_derivative \<gamma> (at x))"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2197
        using pf\<gamma>' by (simp add: continuous_on_polymonial_function vector_derivative_at [OF \<gamma>'])
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  2198
      then have cint_cint: "(\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w)) contour_integrable_on \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2199
        apply (simp add: contour_integrable_on)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2200
        apply (rule integrable_continuous_real)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2201
        by (rule continuous_on_mult [OF cont_cint_d\<gamma> [unfolded o_def]])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2202
      have "contour_integral (linepath a b) h = contour_integral (linepath a b) (\<lambda>z. contour_integral \<gamma> (d z))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2203
        using abu  by (force simp: h_def intro: contour_integral_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2204
      also have "\<dots> =  contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2205
      proof (rule contour_integral_swap)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2206
        show "continuous_on (path_image (linepath a b) \<times> path_image \<gamma>) (\<lambda>(y1, y2). d y1 y2)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2207
          using abu pasz by (auto intro: continuous_on_subset [OF cond_uu])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2208
        show "continuous_on {0..1} (\<lambda>t. vector_derivative (linepath a b) (at t))"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2209
          by (auto intro!: continuous_intros)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2210
        show "continuous_on {0..1} (\<lambda>t. vector_derivative \<gamma> (at t))"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2211
          by (metis \<gamma>' continuous_on_eq path_def path_polynomial_function pf\<gamma>' vector_derivative_at)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2212
      qed (use \<open>valid_path \<gamma>\<close> in auto)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2213
      finally have cint_h_eq:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2214
          "contour_integral (linepath a b) h =
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2215
                    contour_integral \<gamma> (\<lambda>w. contour_integral (linepath a b) (\<lambda>z. d z w))" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2216
      note cint_cint cint_h_eq
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2217
    } note cint_h = this
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2218
    have conthu: "continuous_on U h"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2219
    proof (simp add: continuous_on_sequentially, clarify)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2220
      fix a x
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2221
      assume x: "x \<in> U" and au: "\<forall>n. a n \<in> U" and ax: "a \<longlonglongrightarrow> x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2222
      then have A1: "\<forall>\<^sub>F n in sequentially. d (a n) contour_integrable_on \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2223
        by (meson U contour_integrable_on_def eventuallyI)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2224
      obtain dd where "dd>0" and dd: "cball x dd \<subseteq> U" using open_contains_cball \<open>open U\<close> x by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2225
      have A2: "uniform_limit (path_image \<gamma>) (\<lambda>n. d (a n)) (d x) sequentially"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2226
        unfolding uniform_limit_iff dist_norm
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2227
      proof clarify
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2228
        fix ee::real
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2229
        assume "0 < ee"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2230
        show "\<forall>\<^sub>F n in sequentially. \<forall>\<xi>\<in>path_image \<gamma>. cmod (d (a n) \<xi> - d x \<xi>) < ee"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2231
        proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2232
          let ?ddpa = "{(w,z) |w z. w \<in> cball x dd \<and> z \<in> path_image \<gamma>}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2233
          have "uniformly_continuous_on ?ddpa (\<lambda>(x,y). d x y)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2234
          proof (rule compact_uniformly_continuous [OF continuous_on_subset[OF cond_uu]])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2235
            show "compact {(w, z) |w z. w \<in> cball x dd \<and> z \<in> path_image \<gamma>}"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2236
              using \<open>valid_path \<gamma>\<close>
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2237
              by (auto simp: compact_Times compact_valid_path_image simp del: mem_cball)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2238
          qed (use dd pasz in auto)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2239
          then obtain kk where "kk>0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2240
            and kk: "\<And>x x'. \<lbrakk>x \<in> ?ddpa; x' \<in> ?ddpa; dist x' x < kk\<rbrakk> \<Longrightarrow>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2241
                             dist ((\<lambda>(x,y). d x y) x') ((\<lambda>(x,y). d x y) x) < ee"
82538
4b132ea7d575 More tidying and some variable renaming
paulson <lp15@cam.ac.uk>
parents: 82517
diff changeset
  2242
            by (rule uniformly_continuous_onE [where \<epsilon> = ee]) (use \<open>0 < ee\<close> in auto)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2243
          have kk: "\<lbrakk>norm (w-x) \<le> dd; z \<in> path_image \<gamma>; norm ((w, z) - (x, z)) < kk\<rbrakk> \<Longrightarrow> norm (d w z - d x z) < ee"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2244
            for  w z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2245
            using \<open>dd>0\<close> kk [of "(x,z)" "(w,z)"] by (force simp: norm_minus_commute dist_norm)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2246
          obtain no where "\<forall>n\<ge>no. dist (a n) x < min dd kk"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2247
            using ax unfolding lim_sequentially
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2248
            by (meson \<open>0 < dd\<close> \<open>0 < kk\<close> min_less_iff_conj)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2249
          then show ?thesis
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2250
            using \<open>dd > 0\<close> \<open>kk > 0\<close> by (fastforce simp: eventually_sequentially kk dist_norm)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2251
        qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2252
      qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2253
      have "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> contour_integral \<gamma> (d x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2254
        by (rule contour_integral_uniform_limit [OF A1 A2 le_B]) (auto simp: \<open>valid_path \<gamma>\<close>)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2255
      then have tendsto_hx: "(\<lambda>n. contour_integral \<gamma> (d (a n))) \<longlonglongrightarrow> h x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2256
        by (simp add: h_def x)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2257
      then show "(h \<circ> a) \<longlonglongrightarrow> h x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2258
        by (simp add: h_def x au o_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2259
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2260
    show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2261
    proof (simp add: holomorphic_on_open field_differentiable_def [symmetric], clarify)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2262
      fix z0
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2263
      consider "z0 \<in> v" | "z0 \<in> U" using uv_Un by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2264
      then show "h field_differentiable at z0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2265
      proof cases
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2266
        assume "z0 \<in> v" then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2267
          using Cauchy_next_derivative [OF con_pa_f le_B f_has_cint _ ov] V f_has_cint \<open>valid_path \<gamma>\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2268
          by (auto simp: field_differentiable_def v_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2269
      next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2270
        assume "z0 \<in> U" then
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2271
        obtain e where "e>0" and e: "ball z0 e \<subseteq> U" by (blast intro: openE [OF \<open>open U\<close>])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2272
        have *: "contour_integral (linepath a b) h + contour_integral (linepath b c) h + contour_integral (linepath c a) h = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2273
                if abc_subset: "convex hull {a, b, c} \<subseteq> ball z0 e"  for a b c
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2274
        proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2275
          have *: "\<And>x1 x2 z. z \<in> U \<Longrightarrow> closed_segment x1 x2 \<subseteq> U \<Longrightarrow> (\<lambda>w. d w z) contour_integrable_on linepath x1 x2"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2276
            using  hol_dw holomorphic_on_imp_continuous_on \<open>open U\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2277
            by (auto intro!: contour_integrable_holomorphic_simple)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2278
          have abc: "closed_segment a b \<subseteq> U"  "closed_segment b c \<subseteq> U"  "closed_segment c a \<subseteq> U"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2279
            using that e segments_subset_convex_hull by fastforce+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2280
          have eq0: "\<And>w. w \<in> U \<Longrightarrow> contour_integral (linepath a b +++ linepath b c +++ linepath c a) (\<lambda>z. d z w) = 0"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2281
          proof (rule contour_integral_unique [OF Cauchy_theorem_triangle])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2282
            show "\<And>w. w \<in> U \<Longrightarrow> (\<lambda>z. d z w) holomorphic_on convex hull {a, b, c}"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2283
              using e abc_subset by (auto intro: holomorphic_on_subset [OF hol_dw])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2284
          qed
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2285
          have "\<And>z. z \<in> path_image \<gamma> \<Longrightarrow>
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2286
                         contour_integral (linepath a b) (\<lambda>x. d x z) +
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2287
                         (contour_integral (linepath b c) (\<lambda>x. d x z) +
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2288
                          contour_integral (linepath c a) (\<lambda>x. d x z)) = 0"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2289
            using abc pasz U "*" eq0 by auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2290
          then show ?thesis
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2291
            by (simp add: contour_integral_eq_0 cint_h abc contour_integrable_add contour_integral_add [symmetric] add_ac)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2292
        qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2293
        show ?thesis
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2294
          using e \<open>e > 0\<close> 
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2295
          by (auto intro!: holomorphic_on_imp_differentiable_at [OF _ open_ball] analytic_imp_holomorphic
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2296
                           Morera_triangle continuous_on_subset [OF conthu] *)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2297
      qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2298
    qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2299
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2300
  ultimately have [simp]: "h z = 0" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2301
    by (meson Liouville_weak)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2302
  have "((\<lambda>w. 1 / (w-z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2303
    by (rule has_contour_integral_winding_number [OF \<open>valid_path \<gamma>\<close> znot])
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2304
  then have "((\<lambda>w. f z * (1 / (w-z))) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2305
    by (metis mult.commute has_contour_integral_lmul)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2306
  then have 1: "((\<lambda>w. f z / (w-z)) has_contour_integral complex_of_real (2 * pi) * \<i> * winding_number \<gamma> z * f z) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2307
    by (simp add: field_split_simps)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2308
  moreover have 2: "((\<lambda>w. (f w - f z) / (w-z)) has_contour_integral 0) \<gamma>"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2309
    using U [OF z] pasz d_def by (force elim: has_contour_integral_eq [where g = "\<lambda>w. (f w - f z)/(w-z)"])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2310
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2311
    using has_contour_integral_add [OF 1 2]  by (simp add: diff_divide_distrib)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2312
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2313
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2314
theorem Cauchy_integral_formula_global:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2315
    assumes S: "open S" and holf: "f holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2316
        and z: "z \<in> S" and vpg: "valid_path \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2317
        and pasz: "path_image \<gamma> \<subseteq> S - {z}" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2318
        and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2319
      shows "((\<lambda>w. f w / (w-z)) has_contour_integral (2*pi * \<i> * winding_number \<gamma> z * f z)) \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2320
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2321
  have "path \<gamma>" using vpg by (blast intro: valid_path_imp_path)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2322
  have hols: "(\<lambda>w. f w / (w-z)) holomorphic_on S - {z}" "(\<lambda>w. 1 / (w-z)) holomorphic_on S - {z}"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2323
    by (rule holomorphic_intros holomorphic_on_subset [OF holf] | force)+
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2324
  then have cint_fw: "(\<lambda>w. f w / (w-z)) contour_integrable_on \<gamma>"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2325
    by (meson contour_integrable_holomorphic_simple holomorphic_on_imp_continuous_on open_delete S vpg pasz)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2326
  obtain d where "d>0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2327
      and d: "\<And>g h. \<lbrakk>valid_path g; valid_path h; \<forall>t\<in>{0..1}. cmod (g t - \<gamma> t) < d \<and> cmod (h t - \<gamma> t) < d;
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2328
                     pathstart h = pathstart g \<and> pathfinish h = pathfinish g\<rbrakk>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2329
                     \<Longrightarrow> path_image h \<subseteq> S - {z} \<and> (\<forall>f. f holomorphic_on S - {z} \<longrightarrow> contour_integral h f = contour_integral g f)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2330
    using contour_integral_nearby_ends [OF _ \<open>path \<gamma>\<close> pasz] S by (simp add: open_Diff) metis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2331
  obtain p where polyp: "polynomial_function p"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2332
             and ps: "pathstart p = pathstart \<gamma>" and pf: "pathfinish p = pathfinish \<gamma>" and led: "\<forall>t\<in>{0..1}. cmod (p t - \<gamma> t) < d"
72379
504fe7365820 more tidying of messy proofs
paulson <lp15@cam.ac.uk>
parents: 72266
diff changeset
  2333
    using path_approx_polynomial_function [OF \<open>path \<gamma>\<close> \<open>d > 0\<close>] by metis
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2334
  then have ploop: "pathfinish p = pathstart p" using loop by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2335
  have vpp: "valid_path p"  using polyp valid_path_polynomial_function by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2336
  have [simp]: "z \<notin> path_image \<gamma>" using pasz by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2337
  have paps: "path_image p \<subseteq> S - {z}" and cint_eq: "(\<And>f. f holomorphic_on S - {z} \<Longrightarrow> contour_integral p f = contour_integral \<gamma> f)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2338
    using pf ps led d [OF vpg vpp] \<open>d > 0\<close> by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2339
  have wn_eq: "winding_number p z = winding_number \<gamma> z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2340
    using vpp paps
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2341
    by (simp add: subset_Diff_insert vpg valid_path_polynomial_function winding_number_valid_path cint_eq hols)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2342
  have "winding_number p w = winding_number \<gamma> w" if "w \<notin> S" for w
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2343
  proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2344
    have hol: "(\<lambda>v. 1 / (v-w)) holomorphic_on S - {z}"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2345
      using that by (force intro: holomorphic_intros holomorphic_on_subset [OF holf])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2346
   have "w \<notin> path_image p" "w \<notin> path_image \<gamma>" using paps pasz that by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2347
   then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2348
    using vpp vpg by (simp add: subset_Diff_insert valid_path_polynomial_function winding_number_valid_path cint_eq [OF hol])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2349
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2350
  then have wn0: "\<And>w. w \<notin> S \<Longrightarrow> winding_number p w = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2351
    by (simp add: zero)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2352
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2353
    using Cauchy_integral_formula_global_weak [OF S holf z polyp paps ploop wn0] hols
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2354
    by (metis wn_eq cint_eq has_contour_integral_eqpath cint_fw cint_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2355
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2356
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2357
theorem Cauchy_theorem_global:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2358
    assumes S: "open S" and holf: "f holomorphic_on S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2359
        and vpg: "valid_path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2360
        and pas: "path_image \<gamma> \<subseteq> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2361
        and zero: "\<And>w. w \<notin> S \<Longrightarrow> winding_number \<gamma> w = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2362
      shows "(f has_contour_integral 0) \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2363
proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2364
  have "path_image \<gamma> \<noteq> S"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2365
    by (metis compact_valid_path_image vpg compact_open path_image_nonempty S)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2366
  then obtain z where "z \<in> S" and znot: "z \<notin> path_image \<gamma>" and pasz: "path_image \<gamma> \<subseteq> S - {z}"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2367
    using pas by blast
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2368
  have hol: "(\<lambda>w. (w-z) * f w) holomorphic_on S"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2369
    by (rule holomorphic_intros holf)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2370
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2371
    using Cauchy_integral_formula_global [OF S hol \<open>z \<in> S\<close> vpg pasz loop zero]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2372
    by (auto simp: znot elim!: has_contour_integral_eq)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2373
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2374
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2375
corollary Cauchy_theorem_global_outside:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2376
    assumes "open S" "f holomorphic_on S" "valid_path \<gamma>"  "pathfinish \<gamma> = pathstart \<gamma>" "path_image \<gamma> \<subseteq> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2377
            "\<And>w. w \<notin> S \<Longrightarrow> w \<in> outside(path_image \<gamma>)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2378
      shows "(f has_contour_integral 0) \<gamma>"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2379
by (metis Cauchy_theorem_global assms winding_number_zero_in_outside valid_path_imp_path)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2380
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2381
lemma simply_connected_imp_winding_number_zero:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2382
  assumes "simply_connected S" "path g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2383
           "path_image g \<subseteq> S" "pathfinish g = pathstart g" "z \<notin> S"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2384
    shows "winding_number g z = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2385
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2386
  have hom: "homotopic_loops S g (linepath (pathstart g) (pathstart g))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2387
    by (meson assms homotopic_paths_imp_homotopic_loops pathfinish_linepath simply_connected_eq_contractible_path)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2388
  then have "homotopic_paths (- {z}) g (linepath (pathstart g) (pathstart g))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2389
    by (meson \<open>z \<notin> S\<close> homotopic_loops_imp_homotopic_paths_null homotopic_paths_subset subset_Compl_singleton)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2390
  then have "winding_number g z = winding_number(linepath (pathstart g) (pathstart g)) z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2391
    by (rule winding_number_homotopic_paths)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2392
  also have "\<dots> = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2393
    using assms by (force intro: winding_number_trivial)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2394
  finally show ?thesis .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2395
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2396
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2397
lemma Cauchy_theorem_simply_connected:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2398
  assumes "open S" "simply_connected S" "f holomorphic_on S" "valid_path g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2399
           "path_image g \<subseteq> S" "pathfinish g = pathstart g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2400
    shows "(f has_contour_integral 0) g"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2401
  by (meson assms Cauchy_theorem_global simply_connected_imp_winding_number_zero valid_path_imp_path)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2402
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2403
proposition\<^marker>\<open>tag unimportant\<close> holomorphic_logarithm_exists:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2404
  assumes A: "convex A" "open A"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2405
      and f: "f holomorphic_on A" "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2406
      and z0: "z0 \<in> A"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2407
    obtains g where "g holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> exp (g x) = f x"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2408
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2409
  note f' = holomorphic_derivI [OF f(1) A(2)]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2410
  obtain g where g: "\<And>x. x \<in> A \<Longrightarrow> (g has_field_derivative deriv f x / f x) (at x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2411
  proof (rule holomorphic_convex_primitive' [OF A])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2412
    show "(\<lambda>x. deriv f x / f x) holomorphic_on A"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2413
      by (intro holomorphic_intros f A)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2414
  qed (auto simp: A at_within_open[of _ A])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2415
  define h where "h = (\<lambda>x. -g z0 + ln (f z0) + g x)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2416
  from g and A have g_holo: "g holomorphic_on A"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2417
    by (auto simp: holomorphic_on_def at_within_open[of _ A] field_differentiable_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2418
  hence h_holo: "h holomorphic_on A"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2419
    by (auto simp: h_def intro!: holomorphic_intros)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2420
    note [simp] = at_within_open[OF _ \<open>open A\<close>]
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2421
    have "\<exists>c. \<forall>x\<in>A. f x / exp (h x) - 1 = c"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2422
      using \<open>convex A\<close> z0 f 
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2423
      by (force simp: h_def exp_diff field_simps intro!: has_field_derivative_zero_constant derivative_eq_intros g f')
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2424
  then obtain c where c: "\<And>x. x \<in> A \<Longrightarrow> f x / exp (h x) - 1 = c"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2425
    by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2426
  from c[OF z0] and z0 and f have "c = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2427
    by (simp add: h_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2428
  with c have "\<And>x. x \<in> A \<Longrightarrow> exp (h x) = f x" by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2429
  from that[OF h_holo this] show ?thesis .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2430
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2431
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2432
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2433
(* FIXME mv to Cauchy_Integral_Theorem.thy *)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2434
subsection\<open>Cauchy's inequality and more versions of Liouville\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2435
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2436
lemma Cauchy_higher_deriv_bound:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2437
    assumes holf: "f holomorphic_on (ball z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2438
        and contf: "continuous_on (cball z r) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2439
        and fin : "\<And>w. w \<in> ball z r \<Longrightarrow> f w \<in> ball y B0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2440
        and "0 < r" and "0 < n"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2441
      shows "cmod ((deriv ^^ n) f z) \<le> (fact n) * B0 / r^n"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2442
proof -
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2443
  have "0 < B0" 
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2444
    using \<open>0 < r\<close> fin [of z] by (metis ball_eq_empty ex_in_conv fin not_less)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2445
  have le_B0: "cmod (f w - y) \<le> B0" if "cmod (w-z) \<le> r" for w
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2446
  proof (rule continuous_on_closure_norm_le [of "ball z r" "\<lambda>w. f w - y"], use \<open>0 < r\<close> in simp_all)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2447
    show "continuous_on (cball z r) (\<lambda>w. f w - y)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2448
      by (intro continuous_intros contf)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2449
    show "dist z w \<le> r"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2450
      by (simp add: dist_commute dist_norm that)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2451
    qed (use fin in \<open>auto simp: dist_norm less_eq_real_def norm_minus_commute\<close>)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2452
  have "(deriv ^^ n) f z = (deriv ^^ n) (\<lambda>w. f w) z - (deriv ^^ n) (\<lambda>w. y) z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2453
    using \<open>0 < n\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2454
  also have "... = (deriv ^^ n) (\<lambda>w. f w - y) z"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2455
    using \<open>0 < r\<close> higher_deriv_diff holf by auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2456
  finally have "(deriv ^^ n) f z = (deriv ^^ n) (\<lambda>w. f w - y) z" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2457
  have contf': "continuous_on (cball z r) (\<lambda>u. f u - y)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2458
    by (rule contf continuous_intros)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2459
  have holf': "(\<lambda>u. (f u - y)) holomorphic_on (ball z r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2460
    by (simp add: holf holomorphic_on_diff)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2461
  define a where "a = (2 * pi)/(fact n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2462
  have "0 < a"  by (simp add: a_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2463
  have "B0/r^(Suc n)*2 * pi * r = a*((fact n)*B0/r^n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2464
    using \<open>0 < r\<close> by (simp add: a_def field_split_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2465
  have der_dif: "(deriv ^^ n) (\<lambda>w. f w - y) z = (deriv ^^ n) f z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2466
    using \<open>0 < r\<close> \<open>0 < n\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2467
    by (auto simp: higher_deriv_diff [OF holf holomorphic_on_const])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2468
  have "norm ((2 * of_real pi * \<i>)/(fact n) * (deriv ^^ n) (\<lambda>w. f w - y) z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2469
        \<le> (B0/r^(Suc n)) * (2 * pi * r)"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2470
    apply (rule has_contour_integral_bound_circlepath [of "(\<lambda>u. (f u - y)/(u-z)^(Suc n))" _ z])
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2471
    using Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf' holf']
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2472
    using \<open>0 < B0\<close> \<open>0 < r\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2473
    apply (auto simp: norm_divide norm_mult norm_power divide_simps le_B0)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2474
    done
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2475
  then show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2476
    using \<open>0 < r\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2477
    by (auto simp: norm_divide norm_mult norm_power field_simps der_dif le_B0)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2478
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2479
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2480
lemma Cauchy_inequality:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2481
    assumes holf: "f holomorphic_on (ball \<xi> r)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2482
        and contf: "continuous_on (cball \<xi> r) f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2483
        and "0 < r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2484
        and nof: "\<And>x. norm(\<xi>-x) = r \<Longrightarrow> norm(f x) \<le> B"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2485
      shows "norm ((deriv ^^ n) f \<xi>) \<le> (fact n) * B / r^n"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2486
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2487
  obtain x where "norm (\<xi>-x) = r"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2488
    by (metis \<open>0 < r\<close> dist_norm order_less_imp_le vector_choose_dist)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2489
  then have "0 \<le> B"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2490
    by (metis nof norm_not_less_zero not_le order_trans)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2491
  have "\<xi> \<in> ball \<xi> r"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2492
    using \<open>0 < r\<close> by simp
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2493
  then have  "((\<lambda>u. f u / (u-\<xi>) ^ Suc n) has_contour_integral (2 * pi) * \<i> / fact n * (deriv ^^ n) f \<xi>)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2494
         (circlepath \<xi> r)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2495
    by (rule Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf holf])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2496
  have "norm ((2 * pi * \<i>)/(fact n) * (deriv ^^ n) f \<xi>) \<le> (B / r^(Suc n)) * (2 * pi * r)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2497
  proof (rule has_contour_integral_bound_circlepath)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2498
    have "\<xi> \<in> ball \<xi> r"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2499
      using \<open>0 < r\<close> by simp
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2500
    then show  "((\<lambda>u. f u / (u-\<xi>) ^ Suc n) has_contour_integral (2 * pi) * \<i> / fact n * (deriv ^^ n) f \<xi>)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2501
         (circlepath \<xi> r)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2502
      by (rule Cauchy_has_contour_integral_higher_derivative_circlepath [OF contf holf])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2503
    show "\<And>x. cmod (x-\<xi>) = r \<Longrightarrow> cmod (f x / (x-\<xi>) ^ Suc n) \<le> B / r ^ Suc n"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2504
      using \<open>0 \<le> B\<close> \<open>0 < r\<close>
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2505
      by (simp add: norm_divide norm_power nof frac_le norm_minus_commute del: power_Suc)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2506
  qed (use \<open>0 \<le> B\<close> \<open>0 < r\<close> in auto)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2507
  then show ?thesis using \<open>0 < r\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2508
    by (simp add: norm_divide norm_mult field_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2509
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2510
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2511
lemma Liouville_polynomial:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2512
    assumes holf: "f holomorphic_on UNIV"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2513
        and nof: "\<And>z. A \<le> norm z \<Longrightarrow> norm(f z) \<le> B * norm z ^ n"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2514
      shows "f \<xi> = (\<Sum>k\<le>n. (deriv^^k) f 0 / fact k * \<xi> ^ k)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2515
proof (cases rule: le_less_linear [THEN disjE])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2516
  assume "B \<le> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2517
  then have "\<And>z. A \<le> norm z \<Longrightarrow> norm(f z) = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2518
    by (metis nof less_le_trans zero_less_mult_iff neqE norm_not_less_zero norm_power not_le)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2519
  then have f0: "(f \<longlongrightarrow> 0) at_infinity"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2520
    using Lim_at_infinity by force
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2521
  then have [simp]: "f = (\<lambda>w. 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2522
    using Liouville_weak [OF holf, of 0]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2523
    by (simp add: eventually_at_infinity f0) meson
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2524
  show ?thesis by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2525
next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2526
  assume "0 < B"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2527
  have "((\<lambda>k. (deriv ^^ k) f 0 / (fact k) * (\<xi> - 0)^k) sums f \<xi>)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2528
  proof (rule holomorphic_power_series [where r = "norm \<xi> + 1"])
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2529
    show "f holomorphic_on ball 0 (cmod \<xi> + 1)" "\<xi> \<in> ball 0 (cmod \<xi> + 1)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2530
      using holf holomorphic_on_subset by auto
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2531
  qed
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2532
  then have sumsf: "((\<lambda>k. (deriv ^^ k) f 0 / (fact k) * \<xi>^k) sums f \<xi>)" by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2533
  have "(deriv ^^ k) f 0 / fact k * \<xi> ^ k = 0" if "k>n" for k
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2534
  proof (cases "(deriv ^^ k) f 0 = 0")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2535
    case True then show ?thesis by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2536
  next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2537
    case False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2538
    define w where "w = complex_of_real (fact k * B / cmod ((deriv ^^ k) f 0) + (\<bar>A\<bar> + 1))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2539
    have "1 \<le> abs (fact k * B / cmod ((deriv ^^ k) f 0) + (\<bar>A\<bar> + 1))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2540
      using \<open>0 < B\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2541
    then have wge1: "1 \<le> norm w"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2542
      by (metis norm_of_real w_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2543
    then have "w \<noteq> 0" by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2544
    have kB: "0 < fact k * B"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2545
      using \<open>0 < B\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2546
    then have "0 \<le> fact k * B / cmod ((deriv ^^ k) f 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2547
      by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2548
    then have wgeA: "A \<le> cmod w"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2549
      by (simp only: w_def norm_of_real)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2550
    have "fact k * B / cmod ((deriv ^^ k) f 0) < abs (fact k * B / cmod ((deriv ^^ k) f 0) + (\<bar>A\<bar> + 1))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2551
      using \<open>0 < B\<close> by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2552
    then have wge: "fact k * B / cmod ((deriv ^^ k) f 0) < norm w"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2553
      by (metis norm_of_real w_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2554
    then have "fact k * B / norm w < cmod ((deriv ^^ k) f 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2555
      using False by (simp add: field_split_simps mult.commute split: if_split_asm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2556
    also have "... \<le> fact k * (B * norm w ^ n) / norm w ^ k"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2557
    proof (rule Cauchy_inequality)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2558
      show "f holomorphic_on ball 0 (cmod w)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2559
        using holf holomorphic_on_subset by force
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2560
      show "continuous_on (cball 0 (cmod w)) f"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2561
        using holf holomorphic_on_imp_continuous_on holomorphic_on_subset by blast
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2562
      show "\<And>x. cmod (0-x) = cmod w \<Longrightarrow> cmod (f x) \<le> B * cmod w ^ n"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2563
        by (metis nof wgeA dist_0_norm dist_norm)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2564
    qed (use \<open>w \<noteq> 0\<close> in auto)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2565
    also have "... = fact k * B / cmod w ^ (k-n)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2566
      using \<open>k>n\<close> by (simp add: divide_simps flip: power_add)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2567
    finally have "fact k * B / cmod w < fact k * B / cmod w ^ (k-n)" .
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2568
    then have "1 / cmod w < 1 / cmod w ^ (k-n)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2569
      by (metis kB divide_inverse inverse_eq_divide mult_less_cancel_left_pos)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2570
    then have "cmod w ^ (k-n) < cmod w"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2571
      by (smt (verit, best) \<open>w \<noteq> 0\<close> frac_le zero_less_norm_iff)
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2572
    with self_le_power [OF wge1] show ?thesis
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2573
      by (meson diff_is_0_eq not_gr0 not_le that)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2574
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2575
  then have "(deriv ^^ (k + Suc n)) f 0 / fact (k + Suc n) * \<xi> ^ (k + Suc n) = 0" for k
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2576
    using not_less_eq by blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2577
  then have "(\<lambda>i. (deriv ^^ (i + Suc n)) f 0 / fact (i + Suc n) * \<xi> ^ (i + Suc n)) sums 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2578
    by (rule sums_0)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2579
  with sums_split_initial_segment [OF sumsf, where n = "Suc n"]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2580
  show ?thesis
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2581
    using atLeast0AtMost lessThan_Suc_atMost sums_unique2 by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2582
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2583
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2584
text\<open>Every bounded entire function is a constant function.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2585
theorem Liouville_theorem:
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2586
  assumes holf: "f holomorphic_on UNIV"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2587
    and bf: "bounded (range f)"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2588
  shows "f constant_on UNIV"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2589
  using Liouville_polynomial [OF holf, of 0 _ 0, simplified]
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2590
  by (metis bf bounded_iff constant_on_def rangeI)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2591
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2592
text\<open>A holomorphic function f has only isolated zeros unless f is 0.\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2593
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2594
lemma powser_0_nonzero:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2595
  fixes a :: "nat \<Rightarrow> 'a::{real_normed_field,banach}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2596
  assumes r: "0 < r"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2597
      and sm: "\<And>x. norm (x-\<xi>) < r \<Longrightarrow> (\<lambda>n. a n * (x-\<xi>) ^ n) sums (f x)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2598
      and [simp]: "f \<xi> = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2599
      and m0: "a m \<noteq> 0" and "m>0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2600
  obtains s where "0 < s" and "\<And>z. z \<in> cball \<xi> s - {\<xi>} \<Longrightarrow> f z \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2601
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2602
  have "r \<le> conv_radius a"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2603
    using sm sums_summable by (auto simp: le_conv_radius_iff [where \<xi>=\<xi>])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2604
  obtain m where am: "a m \<noteq> 0" and az [simp]: "(\<And>n. n<m \<Longrightarrow> a n = 0)"
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2605
  proof
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2606
    show "a (LEAST n. a n \<noteq> 0) \<noteq> 0"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2607
      by (metis (mono_tags, lifting) m0 LeastI)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2608
  qed (fastforce dest!: not_less_Least)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2609
  define b where "b i = a (i+m) / a m" for i
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2610
  define g where "g x = suminf (\<lambda>i. b i * (x-\<xi>) ^ i)" for x
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2611
  have [simp]: "b 0 = 1"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2612
    by (simp add: am b_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2613
  { fix x::'a
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2614
    assume "norm (x-\<xi>) < r"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2615
    then have "(\<lambda>n. (a m * (x-\<xi>)^m) * (b n * (x-\<xi>)^n)) sums (f x)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2616
      using am az sm sums_zero_iff_shift [of m "(\<lambda>n. a n * (x-\<xi>) ^ n)" "f x"]
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2617
      by (simp add: b_def monoid_mult_class.power_add algebra_simps)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2618
    then have "x \<noteq> \<xi> \<Longrightarrow> (\<lambda>n. b n * (x-\<xi>)^n) sums (f x / (a m * (x-\<xi>)^m))"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2619
      using am by (simp add: sums_mult_D)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2620
  } note bsums = this
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2621
  then have  "norm (x-\<xi>) < r \<Longrightarrow> summable (\<lambda>n. b n * (x-\<xi>)^n)" for x
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2622
    using sums_summable by (cases "x=\<xi>") auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2623
  then have "r \<le> conv_radius b"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2624
    by (simp add: le_conv_radius_iff [where \<xi>=\<xi>])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2625
  then have "r/2 < conv_radius b"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2626
    using not_le order_trans r by fastforce
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2627
  then have "continuous_on (cball \<xi> (r/2)) g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2628
    using powser_continuous_suminf [of "r/2" b \<xi>] by (simp add: g_def)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2629
  then obtain s where "s>0"  "\<And>x. \<lbrakk>norm (x-\<xi>) \<le> s; norm (x-\<xi>) \<le> r/2\<rbrakk> \<Longrightarrow> dist (g x) (g \<xi>) < 1/2"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2630
  proof (rule continuous_onE)
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2631
    show "\<xi> \<in> cball \<xi> (r / 2)" "1/2 > (0::real)"
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2632
      using r by auto
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2633
  qed (auto simp: dist_commute dist_norm)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2634
  moreover have "g \<xi> = 1"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2635
    by (simp add: g_def)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2636
  ultimately have gnz: "\<And>x. \<lbrakk>norm (x-\<xi>) \<le> s; norm (x-\<xi>) \<le> r/2\<rbrakk> \<Longrightarrow> (g x) \<noteq> 0"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2637
    by fastforce
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2638
  show ?thesis
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2639
  proof
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2640
    have *: "f x \<noteq> 0" if "x \<noteq> \<xi>" "norm (x-\<xi>) \<le> s" "norm (x-\<xi>) \<le> r/2" for x
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2641
      using bsums [of x] that gnz [of x] r sums_iff unfolding g_def by fastforce
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2642
    show "\<And>z. z \<in> cball \<xi> (min s (r / 2)) - {\<xi>} \<Longrightarrow> f z \<noteq> 0"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2643
      by (simp add: "*" dist_norm norm_minus_commute)
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2644
  qed (use \<open>0 < r\<close> \<open>0 < s\<close> in auto)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2645
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2646
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2647
subsection \<open>Complex functions and power series\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2648
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2649
text \<open>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2650
  The following defines the power series expansion of a complex function at a given point
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2651
  (assuming that it is analytic at that point).
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2652
\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2653
definition\<^marker>\<open>tag important\<close> fps_expansion :: "(complex \<Rightarrow> complex) \<Rightarrow> complex \<Rightarrow> complex fps" where
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2654
  "fps_expansion f z0 = Abs_fps (\<lambda>n. (deriv ^^ n) f z0 / fact n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2655
77228
8c093a4b8ccf Even more new material from Eberl and Li
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  2656
lemma fps_expansion_cong:
8c093a4b8ccf Even more new material from Eberl and Li
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  2657
  assumes "\<forall>\<^sub>F w in nhds x. f w =g w"
8c093a4b8ccf Even more new material from Eberl and Li
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  2658
  shows "fps_expansion f x = fps_expansion g x"
8c093a4b8ccf Even more new material from Eberl and Li
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  2659
  unfolding fps_expansion_def using assms higher_deriv_cong_ev by fastforce 
8c093a4b8ccf Even more new material from Eberl and Li
paulson <lp15@cam.ac.uk>
parents: 73933
diff changeset
  2660
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2661
lemma
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2662
  fixes r :: ereal
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2663
  assumes "f holomorphic_on eball z0 r"
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2664
  shows conv_radius_fps_expansion: "fps_conv_radius (fps_expansion f z0) \<ge> r"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2665
    and eval_fps_expansion:  "\<And>z. z \<in> eball z0 r \<Longrightarrow> eval_fps (fps_expansion f z0) (z - z0) = f z"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2666
    and eval_fps_expansion': "\<And>z. norm z < r \<Longrightarrow> eval_fps (fps_expansion f z0) z = f (z0 + z)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2667
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2668
  have "(\<lambda>n. fps_nth (fps_expansion f z0) n * (z - z0) ^ n) sums f z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2669
    if "z \<in> ball z0 r'" "ereal r' < r" for z r'
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2670
  proof -
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2671
    have "f holomorphic_on ball z0 r'"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2672
      using holomorphic_on_subset[OF _ ball_eball_mono] assms that by force
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2673
    then show ?thesis
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2674
      using fps_expansion_def holomorphic_power_series that by auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2675
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2676
  hence *: "(\<lambda>n. fps_nth (fps_expansion f z0) n * (z - z0) ^ n) sums f z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2677
    if "z \<in> eball z0 r" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2678
    using that by (subst (asm) eball_conv_UNION_balls) blast
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2679
  show "fps_conv_radius (fps_expansion f z0) \<ge> r" unfolding fps_conv_radius_def
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2680
  proof (rule conv_radius_geI_ex)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2681
    fix r' :: real assume r': "r' > 0" "ereal r' < r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2682
    thus "\<exists>z. norm z = r' \<and> summable (\<lambda>n. fps_nth (fps_expansion f z0) n * z ^ n)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2683
      using *[of "z0 + of_real r'"]
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2684
      by (intro exI[of _ "of_real r'"]) (auto simp: summable_def dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2685
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2686
  show "eval_fps (fps_expansion f z0) (z - z0) = f z" if "z \<in> eball z0 r" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2687
    using *[OF that] by (simp add: eval_fps_def sums_iff)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2688
  show "eval_fps (fps_expansion f z0) z = f (z0 + z)" if "ereal (norm z) < r" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2689
    using *[of "z0 + z"] and that by (simp add: eval_fps_def sums_iff dist_norm)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2690
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2691
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2692
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2693
text \<open>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2694
  We can now show several more facts about power series expansions (at least in the complex case)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2695
  with relative ease that would have been trickier without complex analysis.
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2696
\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2697
lemma
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2698
  fixes f :: "complex fps" and r :: ereal
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2699
  assumes "\<And>z. ereal (norm z) < r \<Longrightarrow> eval_fps f z \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2700
  shows   fps_conv_radius_inverse: "fps_conv_radius (inverse f) \<ge> min r (fps_conv_radius f)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2701
    and   eval_fps_inverse: "\<And>z. ereal (norm z) < fps_conv_radius f \<Longrightarrow> ereal (norm z) < r \<Longrightarrow> 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2702
                               eval_fps (inverse f) z = inverse (eval_fps f z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2703
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2704
  define R where "R = min (fps_conv_radius f) r"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2705
  have *: "fps_conv_radius (inverse f) \<ge> min r (fps_conv_radius f) \<and> 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2706
          (\<forall>z\<in>eball 0 (min (fps_conv_radius f) r). eval_fps (inverse f) z = inverse (eval_fps f z))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2707
  proof (cases "min r (fps_conv_radius f) > 0")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2708
    case True
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2709
    define f' where "f' = fps_expansion (\<lambda>z. inverse (eval_fps f z)) 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2710
    have holo: "(\<lambda>z. inverse (eval_fps f z)) holomorphic_on eball 0 (min r (fps_conv_radius f))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2711
      using assms by (intro holomorphic_intros) auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2712
    from holo have radius: "fps_conv_radius f' \<ge> min r (fps_conv_radius f)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2713
      unfolding f'_def by (rule conv_radius_fps_expansion)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2714
    have eval_f': "eval_fps f' z = inverse (eval_fps f z)" 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2715
      if "norm z < fps_conv_radius f" "norm z < r" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2716
      using that unfolding f'_def by (subst eval_fps_expansion'[OF holo]) auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2717
  
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2718
    have "f * f' = 1"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2719
    proof (rule eval_fps_eqD)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2720
      from radius and True have "0 < min (fps_conv_radius f) (fps_conv_radius f')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2721
        by (auto simp: min_def split: if_splits)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2722
      also have "\<dots> \<le> fps_conv_radius (f * f')" by (rule fps_conv_radius_mult)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2723
      finally show "\<dots> > 0" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2724
    next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2725
      from True have "R > 0" by (auto simp: R_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2726
      hence "eventually (\<lambda>z. z \<in> eball 0 R) (nhds 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2727
        by (intro eventually_nhds_in_open) (auto simp: zero_ereal_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2728
      thus "eventually (\<lambda>z. eval_fps (f * f') z = eval_fps 1 z) (nhds 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2729
      proof eventually_elim
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2730
        case (elim z)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2731
        hence "eval_fps (f * f') z = eval_fps f z * eval_fps f' z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2732
          using radius by (intro eval_fps_mult) 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2733
                          (auto simp: R_def min_def split: if_splits intro: less_trans)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2734
        also have "eval_fps f' z = inverse (eval_fps f z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2735
          using elim by (intro eval_f') (auto simp: R_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2736
        also from elim have "eval_fps f z \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2737
          by (intro assms) (auto simp: R_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2738
        hence "eval_fps f z * inverse (eval_fps f z) = eval_fps 1 z" 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2739
          by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2740
        finally show "eval_fps (f * f') z = eval_fps 1 z" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2741
      qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2742
    qed simp_all
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2743
    hence "f' = inverse f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2744
      by (intro fps_inverse_unique [symmetric]) (simp_all add: mult_ac)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2745
    with eval_f' and radius show ?thesis by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2746
  next
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2747
    case False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2748
    hence *: "eball 0 R = {}" 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2749
      by (intro eball_empty) (auto simp: R_def min_def split: if_splits)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2750
    show ?thesis
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2751
    proof 
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2752
      from False have "min r (fps_conv_radius f) \<le> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2753
        by (simp add: min_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2754
      also have "0 \<le> fps_conv_radius (inverse f)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2755
        by (simp add: fps_conv_radius_def conv_radius_nonneg)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2756
      finally show "min r (fps_conv_radius f) \<le> \<dots>" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2757
    qed (unfold * [unfolded R_def], auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2758
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2759
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2760
  show "fps_conv_radius (inverse f) \<ge> min r (fps_conv_radius f)"
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2761
    using * by blast
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2762
  show "eval_fps (inverse f) z = inverse (eval_fps f z)" 
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2763
    if "ereal (norm z) < fps_conv_radius f" "ereal (norm z) < r" for z
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2764
    using that * by auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2765
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2766
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2767
lemma
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2768
  fixes f g :: "complex fps" and r :: ereal
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2769
  defines "R \<equiv> Min {r, fps_conv_radius f, fps_conv_radius g}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2770
  assumes "fps_conv_radius f > 0" "fps_conv_radius g > 0" "r > 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2771
  assumes nz: "\<And>z. z \<in> eball 0 r \<Longrightarrow> eval_fps g z \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2772
  shows   fps_conv_radius_divide': "fps_conv_radius (f / g) \<ge> R"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2773
    and   eval_fps_divide':
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2774
            "ereal (norm z) < R \<Longrightarrow> eval_fps (f / g) z = eval_fps f z / eval_fps g z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2775
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2776
  from nz[of 0] and \<open>r > 0\<close> have nz': "fps_nth g 0 \<noteq> 0" 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2777
    by (auto simp: eval_fps_at_0 zero_ereal_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2778
  have "R \<le> min r (fps_conv_radius g)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2779
    by (auto simp: R_def intro: min.coboundedI2)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2780
  also have "min r (fps_conv_radius g) \<le> fps_conv_radius (inverse g)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2781
    by (intro fps_conv_radius_inverse assms) (auto simp: zero_ereal_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2782
  finally have radius: "fps_conv_radius (inverse g) \<ge> R" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2783
  have "R \<le> min (fps_conv_radius f) (fps_conv_radius (inverse g))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2784
    by (intro radius min.boundedI) (auto simp: R_def intro: min.coboundedI1 min.coboundedI2)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2785
  also have "\<dots> \<le> fps_conv_radius (f * inverse g)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2786
    by (rule fps_conv_radius_mult)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2787
  also have "f * inverse g = f / g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2788
    by (intro fps_divide_unit [symmetric] nz')
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2789
  finally show "fps_conv_radius (f / g) \<ge> R" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2790
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2791
  assume z: "ereal (norm z) < R"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2792
  have "eval_fps (f * inverse g) z = eval_fps f z * eval_fps (inverse g) z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2793
    using radius by (intro eval_fps_mult less_le_trans[OF z])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2794
                    (auto simp: R_def intro: min.coboundedI1 min.coboundedI2)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2795
  also have "eval_fps (inverse g) z = inverse (eval_fps g z)" using \<open>r > 0\<close>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2796
    by (intro eval_fps_inverse[where r = r] less_le_trans[OF z] nz)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2797
       (auto simp: R_def intro: min.coboundedI1 min.coboundedI2)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2798
  also have "f * inverse g = f / g" by fact
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2799
  finally show "eval_fps (f / g) z = eval_fps f z / eval_fps g z" 
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2800
    by (simp add: field_split_simps)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2801
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2802
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2803
lemma
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2804
  fixes f g :: "complex fps" and r :: ereal
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2805
  defines "R \<equiv> Min {r, fps_conv_radius f, fps_conv_radius g}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2806
  assumes "subdegree g \<le> subdegree f"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2807
  assumes "fps_conv_radius f > 0" "fps_conv_radius g > 0" "r > 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2808
  assumes "\<And>z. z \<in> eball 0 r \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> eval_fps g z \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2809
  shows   fps_conv_radius_divide: "fps_conv_radius (f / g) \<ge> R"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2810
    and   eval_fps_divide:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2811
            "ereal (norm z) < R \<Longrightarrow> c = fps_nth f (subdegree g) / fps_nth g (subdegree g) \<Longrightarrow>
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2812
               eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2813
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2814
  define f' g' where "f' = fps_shift (subdegree g) f" and "g' = fps_shift (subdegree g) g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2815
  have f_eq: "f = f' * fps_X ^ subdegree g" and g_eq: "g = g' * fps_X ^ subdegree g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2816
    unfolding f'_def g'_def by (rule subdegree_decompose' le_refl | fact)+
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2817
  have subdegree: "subdegree f' = subdegree f - subdegree g" "subdegree g' = 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2818
    using assms(2) by (simp_all add: f'_def g'_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2819
  have [simp]: "fps_conv_radius f' = fps_conv_radius f" "fps_conv_radius g' = fps_conv_radius g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2820
    by (simp_all add: f'_def g'_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2821
  have [simp]: "fps_nth f' 0 = fps_nth f (subdegree g)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2822
               "fps_nth g' 0 = fps_nth g (subdegree g)" by (simp_all add: f'_def g'_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2823
  have g_nz: "g \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2824
  proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2825
    define z :: complex where "z = (if r = \<infinity> then 1 else of_real (real_of_ereal r / 2))"
78517
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  2826
    have "z \<in> eball 0 r"
28c1f4f5335f Numerous minor tweaks and simplifications
paulson <lp15@cam.ac.uk>
parents: 77690
diff changeset
  2827
      using \<open>r > 0\<close> ereal_less_real_iff z_def by fastforce
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2828
    moreover have "z \<noteq> 0" using \<open>r > 0\<close> 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2829
      by (cases r) (auto simp: z_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2830
    ultimately have "eval_fps g z \<noteq> 0" by (rule assms(6))
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2831
    thus "g \<noteq> 0" by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2832
  qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2833
  have fg: "f / g = f' * inverse g'"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2834
    by (subst f_eq, subst (2) g_eq) (insert g_nz, simp add: fps_divide_unit)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2835
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2836
  have g'_nz: "eval_fps g' z \<noteq> 0" if z: "norm z < min r (fps_conv_radius g)" for z
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2837
  proof (cases "z = 0")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2838
    case False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2839
    with assms and z have "eval_fps g z \<noteq> 0" by auto
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2840
    also from z have "eval_fps g z = eval_fps g' z * z ^ subdegree g"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2841
      by (subst g_eq) (auto simp: eval_fps_mult)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2842
    finally show ?thesis by auto
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2843
  qed (use \<open>g \<noteq> 0\<close> in \<open>auto simp: g'_def eval_fps_at_0\<close>)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2844
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2845
  have "R \<le> min (min r (fps_conv_radius g)) (fps_conv_radius g')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2846
    by (auto simp: R_def min.coboundedI1 min.coboundedI2)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2847
  also have "\<dots> \<le> fps_conv_radius (inverse g')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2848
    using g'_nz by (rule fps_conv_radius_inverse)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2849
  finally have conv_radius_inv: "R \<le> fps_conv_radius (inverse g')" .
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2850
  hence "R \<le> fps_conv_radius (f' * inverse g')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2851
    by (intro order.trans[OF _ fps_conv_radius_mult])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2852
       (auto simp: R_def intro: min.coboundedI1 min.coboundedI2)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2853
  thus "fps_conv_radius (f / g) \<ge> R" by (simp add: fg)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2854
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2855
  fix z c :: complex assume z: "ereal (norm z) < R"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2856
  assume c: "c = fps_nth f (subdegree g) / fps_nth g (subdegree g)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2857
  show "eval_fps (f / g) z = (if z = 0 then c else eval_fps f z / eval_fps g z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2858
  proof (cases "z = 0")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2859
    case False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2860
    from z and conv_radius_inv have "ereal (norm z) < fps_conv_radius (inverse g')"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2861
      by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2862
    with z have "eval_fps (f / g) z = eval_fps f' z * eval_fps (inverse g') z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2863
      unfolding fg by (subst eval_fps_mult) (auto simp: R_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2864
    also have "eval_fps (inverse g') z = inverse (eval_fps g' z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2865
      using z by (intro eval_fps_inverse[of "min r (fps_conv_radius g')"] g'_nz) (auto simp: R_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2866
    also have "eval_fps f' z * \<dots> = eval_fps f z / eval_fps g z"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2867
      using z False assms(2) by (simp add: f'_def g'_def eval_fps_shift R_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2868
    finally show ?thesis using False by simp
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2869
  qed (simp_all add: eval_fps_at_0 fg field_simps c)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2870
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2871
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2872
lemma has_fps_expansion_fps_expansion [intro]:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2873
  assumes "open A" "0 \<in> A" "f holomorphic_on A"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2874
  shows   "f has_fps_expansion fps_expansion f 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2875
proof -
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2876
  from assms obtain r where "r > 0 " and r: "ball 0 r \<subseteq> A"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2877
    by (auto simp: open_contains_ball)
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2878
  with assms have holo: "f holomorphic_on eball 0 (ereal r)" 
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2879
    by auto
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2880
  have "r \<le> fps_conv_radius (fps_expansion f 0)"
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2881
    using holo by (intro conv_radius_fps_expansion) auto
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2882
  then have "\<dots> > 0"
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2883
    by (simp add: ereal_le_less \<open>r > 0\<close> zero_ereal_def) 
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2884
  moreover have "eventually (\<lambda>z. z \<in> ball 0 r) (nhds 0)"
77690
71d075d18b6e simplified a lot of messy proofs
paulson <lp15@cam.ac.uk>
parents: 77228
diff changeset
  2885
    using \<open>r > 0\<close> by (intro eventually_nhds_in_open) auto
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2886
  hence "eventually (\<lambda>z. eval_fps (fps_expansion f 0) z = f z) (nhds 0)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2887
    by eventually_elim (subst eval_fps_expansion'[OF holo], auto)
81874
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2888
  ultimately show ?thesis 
067462a6a652 simplified old proofs
paulson <lp15@cam.ac.uk>
parents: 80090
diff changeset
  2889
    using \<open>r > 0\<close> by (auto simp: has_fps_expansion_def)
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2890
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2891
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2892
lemma fps_conv_radius_tan:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2893
  fixes c :: complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2894
  assumes "c \<noteq> 0"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2895
  shows   "fps_conv_radius (fps_tan c) \<ge> pi / (2 * norm c)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2896
proof -
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2897
  have "fps_conv_radius (fps_tan c) \<ge> 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2898
          Min {pi / (2 * norm c), fps_conv_radius (fps_sin c), fps_conv_radius (fps_cos c)}"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2899
    unfolding fps_tan_def
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2900
  proof (rule fps_conv_radius_divide)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2901
    fix z :: complex assume "z \<in> eball 0 (pi / (2 * norm c))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2902
    with cos_eq_zero_imp_norm_ge[of "c*z"] assms 
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2903
      show "eval_fps (fps_cos  c) z \<noteq> 0" by (auto simp: norm_mult field_simps)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2904
  qed (insert assms, auto)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2905
  thus ?thesis by (simp add: min_def)
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2906
qed
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2907
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2908
lemma eval_fps_tan:
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2909
  fixes c :: complex
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2910
  assumes "norm z < pi / (2 * norm c)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2911
  shows   "eval_fps (fps_tan c) z = tan (c * z)"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2912
proof (cases "c = 0")
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2913
  case False
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2914
  show ?thesis unfolding fps_tan_def
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2915
  proof (subst eval_fps_divide'[where r = "pi / (2 * norm c)"])
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2916
    fix z :: complex assume "z \<in> eball 0 (pi / (2 * norm c))"
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2917
    with cos_eq_zero_imp_norm_ge[of "c*z"] assms 
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2918
    show "eval_fps (fps_cos  c) z \<noteq> 0" using False by (auto simp: norm_mult field_simps)
72379
504fe7365820 more tidying of messy proofs
paulson <lp15@cam.ac.uk>
parents: 72266
diff changeset
  2919
  qed (use False assms in \<open>auto simp: field_simps tan_def\<close>)
72266
1e02b86eb517 de-applying
paulson <lp15@cam.ac.uk>
parents: 71201
diff changeset
  2920
qed simp_all
71201
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2921
6617fb368a06 Reorganised HOL-Complex_Analysis
Manuel Eberl <eberlm@in.tum.de>
parents:
diff changeset
  2922
end