author | haftmann |
Thu, 19 Jun 2025 17:15:40 +0200 | |
changeset 82734 | 89347c0cc6a3 |
parent 79585 | dafb3d343cd6 |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Parity.thy |
2 |
Author: Jeremy Avigad |
|
3 |
Author: Jacques D. Fleuriot |
|
21256 | 4 |
*) |
5 |
||
60758 | 6 |
section \<open>Parity in rings and semirings\<close> |
21256 | 7 |
|
8 |
theory Parity |
|
77061
5de3772609ea
generalized theory name: euclidean division denotes one particular division definition on integers
haftmann
parents:
76387
diff
changeset
|
9 |
imports Euclidean_Rings |
21256 | 10 |
begin |
11 |
||
61799 | 12 |
subsection \<open>Ring structures with parity and \<open>even\<close>/\<open>odd\<close> predicates\<close> |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
13 |
|
70341
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
14 |
class semiring_parity = comm_semiring_1 + semiring_modulo + |
79118 | 15 |
assumes mod_2_eq_odd: \<open>a mod 2 = of_bool (\<not> 2 dvd a)\<close> |
16 |
and odd_one [simp]: \<open>\<not> 2 dvd 1\<close> |
|
79555 | 17 |
and even_half_succ_eq [simp]: \<open>2 dvd a \<Longrightarrow> (1 + a) div 2 = a div 2\<close> |
66839 | 18 |
begin |
19 |
||
58740 | 20 |
abbreviation even :: "'a \<Rightarrow> bool" |
79118 | 21 |
where \<open>even a \<equiv> 2 dvd a\<close> |
54228 | 22 |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
23 |
abbreviation odd :: "'a \<Rightarrow> bool" |
79118 | 24 |
where \<open>odd a \<equiv> \<not> 2 dvd a\<close> |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
25 |
|
76387 | 26 |
end |
27 |
||
28 |
class ring_parity = ring + semiring_parity |
|
29 |
begin |
|
30 |
||
31 |
subclass comm_ring_1 .. |
|
32 |
||
33 |
end |
|
34 |
||
35 |
instance nat :: semiring_parity |
|
79555 | 36 |
by standard (auto simp add: dvd_eq_mod_eq_0) |
76387 | 37 |
|
38 |
instance int :: ring_parity |
|
39 |
by standard (auto simp add: dvd_eq_mod_eq_0) |
|
40 |
||
41 |
context semiring_parity |
|
42 |
begin |
|
43 |
||
58690 | 44 |
lemma evenE [elim?]: |
79118 | 45 |
assumes \<open>even a\<close> |
46 |
obtains b where \<open>a = 2 * b\<close> |
|
58740 | 47 |
using assms by (rule dvdE) |
58690 | 48 |
|
58681 | 49 |
lemma oddE [elim?]: |
79118 | 50 |
assumes \<open>odd a\<close> |
51 |
obtains b where \<open>a = 2 * b + 1\<close> |
|
58787 | 52 |
proof - |
79118 | 53 |
have \<open>a = 2 * (a div 2) + a mod 2\<close> |
66815 | 54 |
by (simp add: mult_div_mod_eq) |
79118 | 55 |
with assms have \<open>a = 2 * (a div 2) + 1\<close> |
56 |
by (simp add: mod_2_eq_odd) |
|
57 |
then show thesis .. |
|
66815 | 58 |
qed |
59 |
||
67816 | 60 |
lemma of_bool_odd_eq_mod_2: |
79117 | 61 |
\<open>of_bool (odd a) = a mod 2\<close> |
62 |
by (simp add: mod_2_eq_odd) |
|
63 |
||
64 |
lemma odd_of_bool_self [simp]: |
|
65 |
\<open>odd (of_bool p) \<longleftrightarrow> p\<close> |
|
66 |
by (cases p) simp_all |
|
67 |
||
68 |
lemma not_mod_2_eq_0_eq_1 [simp]: |
|
69 |
\<open>a mod 2 \<noteq> 0 \<longleftrightarrow> a mod 2 = 1\<close> |
|
70 |
by (simp add: mod_2_eq_odd) |
|
71 |
||
72 |
lemma not_mod_2_eq_1_eq_0 [simp]: |
|
73 |
\<open>a mod 2 \<noteq> 1 \<longleftrightarrow> a mod 2 = 0\<close> |
|
67816 | 74 |
by (simp add: mod_2_eq_odd) |
75 |
||
79118 | 76 |
lemma even_iff_mod_2_eq_zero: |
77 |
\<open>2 dvd a \<longleftrightarrow> a mod 2 = 0\<close> |
|
78 |
by (simp add: mod_2_eq_odd) |
|
79 |
||
80 |
lemma odd_iff_mod_2_eq_one: |
|
81 |
\<open>\<not> 2 dvd a \<longleftrightarrow> a mod 2 = 1\<close> |
|
82 |
by (simp add: mod_2_eq_odd) |
|
83 |
||
71426 | 84 |
lemma even_mod_2_iff [simp]: |
85 |
\<open>even (a mod 2) \<longleftrightarrow> even a\<close> |
|
86 |
by (simp add: mod_2_eq_odd) |
|
87 |
||
88 |
lemma mod2_eq_if: |
|
89 |
"a mod 2 = (if even a then 0 else 1)" |
|
90 |
by (simp add: mod_2_eq_odd) |
|
91 |
||
79117 | 92 |
lemma zero_mod_two_eq_zero [simp]: |
93 |
\<open>0 mod 2 = 0\<close> |
|
94 |
by (simp add: mod_2_eq_odd) |
|
95 |
||
96 |
lemma one_mod_two_eq_one [simp]: |
|
97 |
\<open>1 mod 2 = 1\<close> |
|
98 |
by (simp add: mod_2_eq_odd) |
|
99 |
||
100 |
lemma parity_cases [case_names even odd]: |
|
101 |
assumes \<open>even a \<Longrightarrow> a mod 2 = 0 \<Longrightarrow> P\<close> |
|
102 |
assumes \<open>odd a \<Longrightarrow> a mod 2 = 1 \<Longrightarrow> P\<close> |
|
103 |
shows P |
|
104 |
using assms by (auto simp add: mod_2_eq_odd) |
|
105 |
||
66815 | 106 |
lemma even_zero [simp]: |
79117 | 107 |
\<open>even 0\<close> |
66815 | 108 |
by (fact dvd_0_right) |
109 |
||
110 |
lemma odd_even_add: |
|
111 |
"even (a + b)" if "odd a" and "odd b" |
|
112 |
proof - |
|
113 |
from that obtain c d where "a = 2 * c + 1" and "b = 2 * d + 1" |
|
114 |
by (blast elim: oddE) |
|
115 |
then have "a + b = 2 * c + 2 * d + (1 + 1)" |
|
116 |
by (simp only: ac_simps) |
|
117 |
also have "\<dots> = 2 * (c + d + 1)" |
|
118 |
by (simp add: algebra_simps) |
|
119 |
finally show ?thesis .. |
|
120 |
qed |
|
121 |
||
122 |
lemma even_add [simp]: |
|
123 |
"even (a + b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)" |
|
124 |
by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add) |
|
125 |
||
126 |
lemma odd_add [simp]: |
|
127 |
"odd (a + b) \<longleftrightarrow> \<not> (odd a \<longleftrightarrow> odd b)" |
|
128 |
by simp |
|
129 |
||
130 |
lemma even_plus_one_iff [simp]: |
|
131 |
"even (a + 1) \<longleftrightarrow> odd a" |
|
132 |
by (auto simp add: dvd_add_right_iff intro: odd_even_add) |
|
133 |
||
134 |
lemma even_mult_iff [simp]: |
|
135 |
"even (a * b) \<longleftrightarrow> even a \<or> even b" (is "?P \<longleftrightarrow> ?Q") |
|
136 |
proof |
|
137 |
assume ?Q |
|
138 |
then show ?P |
|
139 |
by auto |
|
140 |
next |
|
141 |
assume ?P |
|
142 |
show ?Q |
|
143 |
proof (rule ccontr) |
|
144 |
assume "\<not> (even a \<or> even b)" |
|
145 |
then have "odd a" and "odd b" |
|
146 |
by auto |
|
147 |
then obtain r s where "a = 2 * r + 1" and "b = 2 * s + 1" |
|
148 |
by (blast elim: oddE) |
|
149 |
then have "a * b = (2 * r + 1) * (2 * s + 1)" |
|
150 |
by simp |
|
151 |
also have "\<dots> = 2 * (2 * r * s + r + s) + 1" |
|
152 |
by (simp add: algebra_simps) |
|
153 |
finally have "odd (a * b)" |
|
154 |
by simp |
|
155 |
with \<open>?P\<close> show False |
|
156 |
by auto |
|
157 |
qed |
|
158 |
qed |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
159 |
|
63654 | 160 |
lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
161 |
proof - |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
162 |
have "even (2 * numeral n)" |
66815 | 163 |
unfolding even_mult_iff by simp |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
164 |
then have "even (numeral n + numeral n)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
165 |
unfolding mult_2 . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
166 |
then show ?thesis |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
167 |
unfolding numeral.simps . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
168 |
qed |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
169 |
|
63654 | 170 |
lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
171 |
proof |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
172 |
assume "even (numeral (num.Bit1 n))" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
173 |
then have "even (numeral n + numeral n + 1)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
174 |
unfolding numeral.simps . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
175 |
then have "even (2 * numeral n + 1)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
176 |
unfolding mult_2 . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
177 |
then have "2 dvd numeral n * 2 + 1" |
58740 | 178 |
by (simp add: ac_simps) |
63654 | 179 |
then have "2 dvd 1" |
180 |
using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
181 |
then show False by simp |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
182 |
qed |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
183 |
|
71755 | 184 |
lemma odd_numeral_BitM [simp]: |
185 |
\<open>odd (numeral (Num.BitM w))\<close> |
|
186 |
by (cases w) simp_all |
|
187 |
||
63654 | 188 |
lemma even_power [simp]: "even (a ^ n) \<longleftrightarrow> even a \<and> n > 0" |
58680 | 189 |
by (induct n) auto |
190 |
||
76387 | 191 |
lemma even_prod_iff: |
192 |
\<open>even (prod f A) \<longleftrightarrow> (\<exists>a\<in>A. even (f a))\<close> if \<open>finite A\<close> |
|
193 |
using that by (induction A) simp_all |
|
194 |
||
79585 | 195 |
lemma even_half_maybe_succ_eq [simp]: |
196 |
\<open>even a \<Longrightarrow> (of_bool b + a) div 2 = a div 2\<close> |
|
197 |
by simp |
|
198 |
||
199 |
lemma even_half_maybe_succ'_eq [simp]: |
|
200 |
\<open>even a \<Longrightarrow> (b mod 2 + a) div 2 = a div 2\<close> |
|
201 |
by (simp add: mod2_eq_if) |
|
202 |
||
71412 | 203 |
lemma mask_eq_sum_exp: |
204 |
\<open>2 ^ n - 1 = (\<Sum>m\<in>{q. q < n}. 2 ^ m)\<close> |
|
205 |
proof - |
|
206 |
have *: \<open>{q. q < Suc m} = insert m {q. q < m}\<close> for m |
|
207 |
by auto |
|
208 |
have \<open>2 ^ n = (\<Sum>m\<in>{q. q < n}. 2 ^ m) + 1\<close> |
|
209 |
by (induction n) (simp_all add: ac_simps mult_2 *) |
|
210 |
then have \<open>2 ^ n - 1 = (\<Sum>m\<in>{q. q < n}. 2 ^ m) + 1 - 1\<close> |
|
211 |
by simp |
|
212 |
then show ?thesis |
|
213 |
by simp |
|
214 |
qed |
|
215 |
||
76387 | 216 |
lemma (in -) mask_eq_sum_exp_nat: |
217 |
\<open>2 ^ n - Suc 0 = (\<Sum>m\<in>{q. q < n}. 2 ^ m)\<close> |
|
218 |
using mask_eq_sum_exp [where ?'a = nat] by simp |
|
219 |
||
70341
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
220 |
end |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
221 |
|
76387 | 222 |
context ring_parity |
70341
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
223 |
begin |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
224 |
|
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
225 |
lemma even_minus: |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
226 |
"even (- a) \<longleftrightarrow> even a" |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
227 |
by (fact dvd_minus_iff) |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
228 |
|
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
229 |
lemma even_diff [simp]: |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
230 |
"even (a - b) \<longleftrightarrow> even (a + b)" |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
231 |
using even_add [of a "- b"] by simp |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
232 |
|
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
233 |
end |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
234 |
|
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
235 |
|
69593 | 236 |
subsection \<open>Instance for \<^typ>\<open>nat\<close>\<close> |
66808
1907167b6038
elementary definition of division on natural numbers
haftmann
parents:
66582
diff
changeset
|
237 |
|
66815 | 238 |
lemma even_Suc_Suc_iff [simp]: |
239 |
"even (Suc (Suc n)) \<longleftrightarrow> even n" |
|
58787 | 240 |
using dvd_add_triv_right_iff [of 2 n] by simp |
58687 | 241 |
|
66815 | 242 |
lemma even_Suc [simp]: "even (Suc n) \<longleftrightarrow> odd n" |
243 |
using even_plus_one_iff [of n] by simp |
|
58787 | 244 |
|
66815 | 245 |
lemma even_diff_nat [simp]: |
246 |
"even (m - n) \<longleftrightarrow> m < n \<or> even (m + n)" for m n :: nat |
|
58787 | 247 |
proof (cases "n \<le> m") |
248 |
case True |
|
249 |
then have "m - n + n * 2 = m + n" by (simp add: mult_2_right) |
|
66815 | 250 |
moreover have "even (m - n) \<longleftrightarrow> even (m - n + n * 2)" by simp |
251 |
ultimately have "even (m - n) \<longleftrightarrow> even (m + n)" by (simp only:) |
|
58787 | 252 |
then show ?thesis by auto |
253 |
next |
|
254 |
case False |
|
255 |
then show ?thesis by simp |
|
63654 | 256 |
qed |
257 |
||
66815 | 258 |
lemma odd_pos: |
259 |
"odd n \<Longrightarrow> 0 < n" for n :: nat |
|
58690 | 260 |
by (auto elim: oddE) |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
261 |
|
66815 | 262 |
lemma Suc_double_not_eq_double: |
263 |
"Suc (2 * m) \<noteq> 2 * n" |
|
62597 | 264 |
proof |
265 |
assume "Suc (2 * m) = 2 * n" |
|
266 |
moreover have "odd (Suc (2 * m))" and "even (2 * n)" |
|
267 |
by simp_all |
|
268 |
ultimately show False by simp |
|
269 |
qed |
|
270 |
||
66815 | 271 |
lemma double_not_eq_Suc_double: |
272 |
"2 * m \<noteq> Suc (2 * n)" |
|
62597 | 273 |
using Suc_double_not_eq_double [of n m] by simp |
274 |
||
66815 | 275 |
lemma odd_Suc_minus_one [simp]: "odd n \<Longrightarrow> Suc (n - Suc 0) = n" |
276 |
by (auto elim: oddE) |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
277 |
|
66815 | 278 |
lemma even_Suc_div_two [simp]: |
279 |
"even n \<Longrightarrow> Suc n div 2 = n div 2" |
|
76387 | 280 |
by auto |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
281 |
|
66815 | 282 |
lemma odd_Suc_div_two [simp]: |
283 |
"odd n \<Longrightarrow> Suc n div 2 = Suc (n div 2)" |
|
76387 | 284 |
by (auto elim: oddE) |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
285 |
|
66815 | 286 |
lemma odd_two_times_div_two_nat [simp]: |
287 |
assumes "odd n" |
|
288 |
shows "2 * (n div 2) = n - (1 :: nat)" |
|
289 |
proof - |
|
290 |
from assms have "2 * (n div 2) + 1 = n" |
|
76387 | 291 |
by (auto elim: oddE) |
66815 | 292 |
then have "Suc (2 * (n div 2)) - 1 = n - 1" |
58787 | 293 |
by simp |
66815 | 294 |
then show ?thesis |
295 |
by simp |
|
58787 | 296 |
qed |
58680 | 297 |
|
70341
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
298 |
lemma not_mod2_eq_Suc_0_eq_0 [simp]: |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
299 |
"n mod 2 \<noteq> Suc 0 \<longleftrightarrow> n mod 2 = 0" |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
300 |
using not_mod_2_eq_1_eq_0 [of n] by simp |
972c0c744e7c
generalized type classes for parity to cover word types also, which contain zero divisors
haftmann
parents:
70340
diff
changeset
|
301 |
|
69502 | 302 |
lemma odd_card_imp_not_empty: |
303 |
\<open>A \<noteq> {}\<close> if \<open>odd (card A)\<close> |
|
304 |
using that by auto |
|
305 |
||
70365
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
306 |
lemma nat_induct2 [case_names 0 1 step]: |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
307 |
assumes "P 0" "P 1" and step: "\<And>n::nat. P n \<Longrightarrow> P (n + 2)" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
308 |
shows "P n" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
309 |
proof (induct n rule: less_induct) |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
310 |
case (less n) |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
311 |
show ?case |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
312 |
proof (cases "n < Suc (Suc 0)") |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
313 |
case True |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
314 |
then show ?thesis |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
315 |
using assms by (auto simp: less_Suc_eq) |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
316 |
next |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
317 |
case False |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
318 |
then obtain k where k: "n = Suc (Suc k)" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
319 |
by (force simp: not_less nat_le_iff_add) |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
320 |
then have "k<n" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
321 |
by simp |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
322 |
with less assms have "P (k+2)" |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
323 |
by blast |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
324 |
then show ?thesis |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
325 |
by (simp add: k) |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
326 |
qed |
4df0628e8545
a few new lemmas and a bit of tidying
paulson <lp15@cam.ac.uk>
parents:
70353
diff
changeset
|
327 |
qed |
58687 | 328 |
|
78668 | 329 |
lemma mod_double_nat: |
330 |
\<open>n mod (2 * m) = n mod m \<or> n mod (2 * m) = n mod m + m\<close> |
|
331 |
for m n :: nat |
|
332 |
by (cases \<open>even (n div m)\<close>) |
|
333 |
(simp_all add: mod_mult2_eq ac_simps even_iff_mod_2_eq_zero) |
|
334 |
||
71412 | 335 |
context semiring_parity |
336 |
begin |
|
337 |
||
338 |
lemma even_sum_iff: |
|
339 |
\<open>even (sum f A) \<longleftrightarrow> even (card {a\<in>A. odd (f a)})\<close> if \<open>finite A\<close> |
|
340 |
using that proof (induction A) |
|
341 |
case empty |
|
342 |
then show ?case |
|
343 |
by simp |
|
344 |
next |
|
345 |
case (insert a A) |
|
346 |
moreover have \<open>{b \<in> insert a A. odd (f b)} = (if odd (f a) then {a} else {}) \<union> {b \<in> A. odd (f b)}\<close> |
|
347 |
by auto |
|
348 |
ultimately show ?case |
|
349 |
by simp |
|
350 |
qed |
|
351 |
||
352 |
lemma even_mask_iff [simp]: |
|
353 |
\<open>even (2 ^ n - 1) \<longleftrightarrow> n = 0\<close> |
|
354 |
proof (cases \<open>n = 0\<close>) |
|
355 |
case True |
|
356 |
then show ?thesis |
|
357 |
by simp |
|
358 |
next |
|
359 |
case False |
|
360 |
then have \<open>{a. a = 0 \<and> a < n} = {0}\<close> |
|
361 |
by auto |
|
362 |
then show ?thesis |
|
363 |
by (auto simp add: mask_eq_sum_exp even_sum_iff) |
|
364 |
qed |
|
365 |
||
76387 | 366 |
lemma even_of_nat_iff [simp]: |
367 |
"even (of_nat n) \<longleftrightarrow> even n" |
|
368 |
by (induction n) simp_all |
|
369 |
||
71412 | 370 |
end |
371 |
||
71138 | 372 |
|
60758 | 373 |
subsection \<open>Parity and powers\<close> |
58689 | 374 |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
60867
diff
changeset
|
375 |
context ring_1 |
58689 | 376 |
begin |
377 |
||
63654 | 378 |
lemma power_minus_even [simp]: "even n \<Longrightarrow> (- a) ^ n = a ^ n" |
58690 | 379 |
by (auto elim: evenE) |
58689 | 380 |
|
63654 | 381 |
lemma power_minus_odd [simp]: "odd n \<Longrightarrow> (- a) ^ n = - (a ^ n)" |
58690 | 382 |
by (auto elim: oddE) |
383 |
||
66815 | 384 |
lemma uminus_power_if: |
385 |
"(- a) ^ n = (if even n then a ^ n else - (a ^ n))" |
|
386 |
by auto |
|
387 |
||
63654 | 388 |
lemma neg_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1" |
58690 | 389 |
by simp |
58689 | 390 |
|
63654 | 391 |
lemma neg_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1" |
58690 | 392 |
by simp |
58689 | 393 |
|
66582 | 394 |
lemma neg_one_power_add_eq_neg_one_power_diff: "k \<le> n \<Longrightarrow> (- 1) ^ (n + k) = (- 1) ^ (n - k)" |
395 |
by (cases "even (n + k)") auto |
|
396 |
||
67371
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67083
diff
changeset
|
397 |
lemma minus_one_power_iff: "(- 1) ^ n = (if even n then 1 else - 1)" |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67083
diff
changeset
|
398 |
by (induct n) auto |
2d9cf74943e1
moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents:
67083
diff
changeset
|
399 |
|
63654 | 400 |
end |
58689 | 401 |
|
402 |
context linordered_idom |
|
403 |
begin |
|
404 |
||
63654 | 405 |
lemma zero_le_even_power: "even n \<Longrightarrow> 0 \<le> a ^ n" |
58690 | 406 |
by (auto elim: evenE) |
58689 | 407 |
|
63654 | 408 |
lemma zero_le_odd_power: "odd n \<Longrightarrow> 0 \<le> a ^ n \<longleftrightarrow> 0 \<le> a" |
58689 | 409 |
by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE) |
410 |
||
63654 | 411 |
lemma zero_le_power_eq: "0 \<le> a ^ n \<longleftrightarrow> even n \<or> odd n \<and> 0 \<le> a" |
58787 | 412 |
by (auto simp add: zero_le_even_power zero_le_odd_power) |
63654 | 413 |
|
414 |
lemma zero_less_power_eq: "0 < a ^ n \<longleftrightarrow> n = 0 \<or> even n \<and> a \<noteq> 0 \<or> odd n \<and> 0 < a" |
|
58689 | 415 |
proof - |
416 |
have [simp]: "0 = a ^ n \<longleftrightarrow> a = 0 \<and> n > 0" |
|
58787 | 417 |
unfolding power_eq_0_iff [of a n, symmetric] by blast |
58689 | 418 |
show ?thesis |
63654 | 419 |
unfolding less_le zero_le_power_eq by auto |
58689 | 420 |
qed |
421 |
||
63654 | 422 |
lemma power_less_zero_eq [simp]: "a ^ n < 0 \<longleftrightarrow> odd n \<and> a < 0" |
58689 | 423 |
unfolding not_le [symmetric] zero_le_power_eq by auto |
424 |
||
63654 | 425 |
lemma power_le_zero_eq: "a ^ n \<le> 0 \<longleftrightarrow> n > 0 \<and> (odd n \<and> a \<le> 0 \<or> even n \<and> a = 0)" |
426 |
unfolding not_less [symmetric] zero_less_power_eq by auto |
|
427 |
||
428 |
lemma power_even_abs: "even n \<Longrightarrow> \<bar>a\<bar> ^ n = a ^ n" |
|
58689 | 429 |
using power_abs [of a n] by (simp add: zero_le_even_power) |
430 |
||
431 |
lemma power_mono_even: |
|
432 |
assumes "even n" and "\<bar>a\<bar> \<le> \<bar>b\<bar>" |
|
433 |
shows "a ^ n \<le> b ^ n" |
|
434 |
proof - |
|
435 |
have "0 \<le> \<bar>a\<bar>" by auto |
|
63654 | 436 |
with \<open>\<bar>a\<bar> \<le> \<bar>b\<bar>\<close> have "\<bar>a\<bar> ^ n \<le> \<bar>b\<bar> ^ n" |
437 |
by (rule power_mono) |
|
438 |
with \<open>even n\<close> show ?thesis |
|
439 |
by (simp add: power_even_abs) |
|
58689 | 440 |
qed |
441 |
||
442 |
lemma power_mono_odd: |
|
443 |
assumes "odd n" and "a \<le> b" |
|
444 |
shows "a ^ n \<le> b ^ n" |
|
445 |
proof (cases "b < 0") |
|
63654 | 446 |
case True |
447 |
with \<open>a \<le> b\<close> have "- b \<le> - a" and "0 \<le> - b" by auto |
|
448 |
then have "(- b) ^ n \<le> (- a) ^ n" by (rule power_mono) |
|
60758 | 449 |
with \<open>odd n\<close> show ?thesis by simp |
58689 | 450 |
next |
63654 | 451 |
case False |
452 |
then have "0 \<le> b" by auto |
|
58689 | 453 |
show ?thesis |
454 |
proof (cases "a < 0") |
|
63654 | 455 |
case True |
456 |
then have "n \<noteq> 0" and "a \<le> 0" using \<open>odd n\<close> [THEN odd_pos] by auto |
|
60758 | 457 |
then have "a ^ n \<le> 0" unfolding power_le_zero_eq using \<open>odd n\<close> by auto |
63654 | 458 |
moreover from \<open>0 \<le> b\<close> have "0 \<le> b ^ n" by auto |
58689 | 459 |
ultimately show ?thesis by auto |
460 |
next |
|
63654 | 461 |
case False |
462 |
then have "0 \<le> a" by auto |
|
463 |
with \<open>a \<le> b\<close> show ?thesis |
|
464 |
using power_mono by auto |
|
58689 | 465 |
qed |
466 |
qed |
|
62083 | 467 |
|
60758 | 468 |
text \<open>Simplify, when the exponent is a numeral\<close> |
58689 | 469 |
|
470 |
lemma zero_le_power_eq_numeral [simp]: |
|
471 |
"0 \<le> a ^ numeral w \<longleftrightarrow> even (numeral w :: nat) \<or> odd (numeral w :: nat) \<and> 0 \<le> a" |
|
472 |
by (fact zero_le_power_eq) |
|
473 |
||
474 |
lemma zero_less_power_eq_numeral [simp]: |
|
63654 | 475 |
"0 < a ^ numeral w \<longleftrightarrow> |
476 |
numeral w = (0 :: nat) \<or> |
|
477 |
even (numeral w :: nat) \<and> a \<noteq> 0 \<or> |
|
478 |
odd (numeral w :: nat) \<and> 0 < a" |
|
58689 | 479 |
by (fact zero_less_power_eq) |
480 |
||
481 |
lemma power_le_zero_eq_numeral [simp]: |
|
63654 | 482 |
"a ^ numeral w \<le> 0 \<longleftrightarrow> |
483 |
(0 :: nat) < numeral w \<and> |
|
484 |
(odd (numeral w :: nat) \<and> a \<le> 0 \<or> even (numeral w :: nat) \<and> a = 0)" |
|
58689 | 485 |
by (fact power_le_zero_eq) |
486 |
||
487 |
lemma power_less_zero_eq_numeral [simp]: |
|
488 |
"a ^ numeral w < 0 \<longleftrightarrow> odd (numeral w :: nat) \<and> a < 0" |
|
489 |
by (fact power_less_zero_eq) |
|
490 |
||
491 |
lemma power_even_abs_numeral [simp]: |
|
492 |
"even (numeral w :: nat) \<Longrightarrow> \<bar>a\<bar> ^ numeral w = a ^ numeral w" |
|
493 |
by (fact power_even_abs) |
|
494 |
||
495 |
end |
|
496 |
||
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
497 |
|
69593 | 498 |
subsection \<open>Instance for \<^typ>\<open>int\<close>\<close> |
76387 | 499 |
|
67816 | 500 |
lemma even_diff_iff: |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
501 |
"even (k - l) \<longleftrightarrow> even (k + l)" for k l :: int |
67816 | 502 |
by (fact even_diff) |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
503 |
|
67816 | 504 |
lemma even_abs_add_iff: |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
505 |
"even (\<bar>k\<bar> + l) \<longleftrightarrow> even (k + l)" for k l :: int |
67816 | 506 |
by simp |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
507 |
|
67816 | 508 |
lemma even_add_abs_iff: |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
509 |
"even (k + \<bar>l\<bar>) \<longleftrightarrow> even (k + l)" for k l :: int |
67816 | 510 |
by simp |
66816
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
511 |
|
212a3334e7da
more fundamental definition of div and mod on int
haftmann
parents:
66815
diff
changeset
|
512 |
lemma even_nat_iff: "0 \<le> k \<Longrightarrow> even (nat k) \<longleftrightarrow> even k" |
74592 | 513 |
by (simp add: even_of_nat_iff [of "nat k", where ?'a = int, symmetric]) |
71138 | 514 |
|
71837
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
515 |
context |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
516 |
assumes "SORT_CONSTRAINT('a::division_ring)" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
517 |
begin |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
518 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
519 |
lemma power_int_minus_left: |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
520 |
"power_int (-a :: 'a) n = (if even n then power_int a n else -power_int a n)" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
521 |
by (auto simp: power_int_def minus_one_power_iff even_nat_iff) |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
522 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
523 |
lemma power_int_minus_left_even [simp]: "even n \<Longrightarrow> power_int (-a :: 'a) n = power_int a n" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
524 |
by (simp add: power_int_minus_left) |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
525 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
526 |
lemma power_int_minus_left_odd [simp]: "odd n \<Longrightarrow> power_int (-a :: 'a) n = -power_int a n" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
527 |
by (simp add: power_int_minus_left) |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
528 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
529 |
lemma power_int_minus_left_distrib: |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
530 |
"NO_MATCH (-1) x \<Longrightarrow> power_int (-a :: 'a) n = power_int (-1) n * power_int a n" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
531 |
by (simp add: power_int_minus_left) |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
532 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
533 |
lemma power_int_minus_one_minus: "power_int (-1 :: 'a) (-n) = power_int (-1) n" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
534 |
by (simp add: power_int_minus_left) |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
535 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
536 |
lemma power_int_minus_one_diff_commute: "power_int (-1 :: 'a) (a - b) = power_int (-1) (b - a)" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
537 |
by (subst power_int_minus_one_minus [symmetric]) auto |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
538 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
539 |
lemma power_int_minus_one_mult_self [simp]: |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
540 |
"power_int (-1 :: 'a) m * power_int (-1) m = 1" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
541 |
by (simp add: power_int_minus_left) |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
542 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
543 |
lemma power_int_minus_one_mult_self' [simp]: |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
544 |
"power_int (-1 :: 'a) m * (power_int (-1) m * b) = b" |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
545 |
by (simp add: power_int_minus_left) |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
546 |
|
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
547 |
end |
dca11678c495
new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents:
71822
diff
changeset
|
548 |
|
75937 | 549 |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
550 |
subsection \<open>Special case: euclidean rings structurally containing the natural numbers\<close> |
76387 | 551 |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
552 |
class linordered_euclidean_semiring = discrete_linordered_semidom + unique_euclidean_semiring + |
76387 | 553 |
assumes of_nat_div: "of_nat (m div n) = of_nat m div of_nat n" |
554 |
and division_segment_of_nat [simp]: "division_segment (of_nat n) = 1" |
|
555 |
and division_segment_euclidean_size [simp]: "division_segment a * of_nat (euclidean_size a) = a" |
|
556 |
begin |
|
557 |
||
558 |
lemma division_segment_eq_iff: |
|
559 |
"a = b" if "division_segment a = division_segment b" |
|
560 |
and "euclidean_size a = euclidean_size b" |
|
561 |
using that division_segment_euclidean_size [of a] by simp |
|
562 |
||
563 |
lemma euclidean_size_of_nat [simp]: |
|
564 |
"euclidean_size (of_nat n) = n" |
|
565 |
proof - |
|
566 |
have "division_segment (of_nat n) * of_nat (euclidean_size (of_nat n)) = of_nat n" |
|
567 |
by (fact division_segment_euclidean_size) |
|
568 |
then show ?thesis by simp |
|
569 |
qed |
|
570 |
||
571 |
lemma of_nat_euclidean_size: |
|
572 |
"of_nat (euclidean_size a) = a div division_segment a" |
|
573 |
proof - |
|
574 |
have "of_nat (euclidean_size a) = division_segment a * of_nat (euclidean_size a) div division_segment a" |
|
575 |
by (subst nonzero_mult_div_cancel_left) simp_all |
|
576 |
also have "\<dots> = a div division_segment a" |
|
577 |
by simp |
|
578 |
finally show ?thesis . |
|
579 |
qed |
|
580 |
||
581 |
lemma division_segment_1 [simp]: |
|
582 |
"division_segment 1 = 1" |
|
583 |
using division_segment_of_nat [of 1] by simp |
|
584 |
||
585 |
lemma division_segment_numeral [simp]: |
|
586 |
"division_segment (numeral k) = 1" |
|
587 |
using division_segment_of_nat [of "numeral k"] by simp |
|
588 |
||
589 |
lemma euclidean_size_1 [simp]: |
|
590 |
"euclidean_size 1 = 1" |
|
591 |
using euclidean_size_of_nat [of 1] by simp |
|
592 |
||
593 |
lemma euclidean_size_numeral [simp]: |
|
594 |
"euclidean_size (numeral k) = numeral k" |
|
595 |
using euclidean_size_of_nat [of "numeral k"] by simp |
|
596 |
||
597 |
lemma of_nat_dvd_iff: |
|
598 |
"of_nat m dvd of_nat n \<longleftrightarrow> m dvd n" (is "?P \<longleftrightarrow> ?Q") |
|
599 |
proof (cases "m = 0") |
|
600 |
case True |
|
601 |
then show ?thesis |
|
602 |
by simp |
|
603 |
next |
|
604 |
case False |
|
605 |
show ?thesis |
|
606 |
proof |
|
607 |
assume ?Q |
|
608 |
then show ?P |
|
609 |
by auto |
|
610 |
next |
|
611 |
assume ?P |
|
612 |
with False have "of_nat n = of_nat n div of_nat m * of_nat m" |
|
613 |
by simp |
|
614 |
then have "of_nat n = of_nat (n div m * m)" |
|
615 |
by (simp add: of_nat_div) |
|
616 |
then have "n = n div m * m" |
|
617 |
by (simp only: of_nat_eq_iff) |
|
618 |
then have "n = m * (n div m)" |
|
619 |
by (simp add: ac_simps) |
|
620 |
then show ?Q .. |
|
621 |
qed |
|
622 |
qed |
|
623 |
||
624 |
lemma of_nat_mod: |
|
625 |
"of_nat (m mod n) = of_nat m mod of_nat n" |
|
626 |
proof - |
|
627 |
have "of_nat m div of_nat n * of_nat n + of_nat m mod of_nat n = of_nat m" |
|
628 |
by (simp add: div_mult_mod_eq) |
|
629 |
also have "of_nat m = of_nat (m div n * n + m mod n)" |
|
630 |
by simp |
|
631 |
finally show ?thesis |
|
632 |
by (simp only: of_nat_div of_nat_mult of_nat_add) simp |
|
633 |
qed |
|
634 |
||
635 |
lemma one_div_two_eq_zero [simp]: |
|
636 |
"1 div 2 = 0" |
|
637 |
proof - |
|
638 |
from of_nat_div [symmetric] have "of_nat 1 div of_nat 2 = of_nat 0" |
|
639 |
by (simp only:) simp |
|
640 |
then show ?thesis |
|
641 |
by simp |
|
642 |
qed |
|
643 |
||
644 |
lemma one_mod_2_pow_eq [simp]: |
|
645 |
"1 mod (2 ^ n) = of_bool (n > 0)" |
|
646 |
proof - |
|
647 |
have "1 mod (2 ^ n) = of_nat (1 mod (2 ^ n))" |
|
648 |
using of_nat_mod [of 1 "2 ^ n"] by simp |
|
649 |
also have "\<dots> = of_bool (n > 0)" |
|
650 |
by simp |
|
651 |
finally show ?thesis . |
|
652 |
qed |
|
653 |
||
654 |
lemma one_div_2_pow_eq [simp]: |
|
655 |
"1 div (2 ^ n) = of_bool (n = 0)" |
|
656 |
using div_mult_mod_eq [of 1 "2 ^ n"] by auto |
|
657 |
||
658 |
lemma div_mult2_eq': |
|
659 |
\<open>a div (of_nat m * of_nat n) = a div of_nat m div of_nat n\<close> |
|
660 |
proof (cases \<open>m = 0 \<or> n = 0\<close>) |
|
661 |
case True |
|
662 |
then show ?thesis |
|
663 |
by auto |
|
664 |
next |
|
665 |
case False |
|
666 |
then have \<open>m > 0\<close> \<open>n > 0\<close> |
|
667 |
by simp_all |
|
668 |
show ?thesis |
|
669 |
proof (cases \<open>of_nat m * of_nat n dvd a\<close>) |
|
670 |
case True |
|
671 |
then obtain b where \<open>a = (of_nat m * of_nat n) * b\<close> .. |
|
672 |
then have \<open>a = of_nat m * (of_nat n * b)\<close> |
|
673 |
by (simp add: ac_simps) |
|
674 |
then show ?thesis |
|
675 |
by simp |
|
676 |
next |
|
677 |
case False |
|
678 |
define q where \<open>q = a div (of_nat m * of_nat n)\<close> |
|
679 |
define r where \<open>r = a mod (of_nat m * of_nat n)\<close> |
|
680 |
from \<open>m > 0\<close> \<open>n > 0\<close> \<open>\<not> of_nat m * of_nat n dvd a\<close> r_def have "division_segment r = 1" |
|
681 |
using division_segment_of_nat [of "m * n"] by (simp add: division_segment_mod) |
|
682 |
with division_segment_euclidean_size [of r] |
|
683 |
have "of_nat (euclidean_size r) = r" |
|
684 |
by simp |
|
685 |
have "a mod (of_nat m * of_nat n) div (of_nat m * of_nat n) = 0" |
|
686 |
by simp |
|
687 |
with \<open>m > 0\<close> \<open>n > 0\<close> r_def have "r div (of_nat m * of_nat n) = 0" |
|
688 |
by simp |
|
689 |
with \<open>of_nat (euclidean_size r) = r\<close> |
|
690 |
have "of_nat (euclidean_size r) div (of_nat m * of_nat n) = 0" |
|
691 |
by simp |
|
692 |
then have "of_nat (euclidean_size r div (m * n)) = 0" |
|
693 |
by (simp add: of_nat_div) |
|
694 |
then have "of_nat (euclidean_size r div m div n) = 0" |
|
695 |
by (simp add: div_mult2_eq) |
|
696 |
with \<open>of_nat (euclidean_size r) = r\<close> have "r div of_nat m div of_nat n = 0" |
|
697 |
by (simp add: of_nat_div) |
|
698 |
with \<open>m > 0\<close> \<open>n > 0\<close> q_def |
|
699 |
have "q = (r div of_nat m + q * of_nat n * of_nat m div of_nat m) div of_nat n" |
|
700 |
by simp |
|
701 |
moreover have \<open>a = q * (of_nat m * of_nat n) + r\<close> |
|
702 |
by (simp add: q_def r_def div_mult_mod_eq) |
|
703 |
ultimately show \<open>a div (of_nat m * of_nat n) = a div of_nat m div of_nat n\<close> |
|
704 |
using q_def [symmetric] div_plus_div_distrib_dvd_right [of \<open>of_nat m\<close> \<open>q * (of_nat m * of_nat n)\<close> r] |
|
705 |
by (simp add: ac_simps) |
|
706 |
qed |
|
707 |
qed |
|
708 |
||
709 |
lemma mod_mult2_eq': |
|
710 |
"a mod (of_nat m * of_nat n) = of_nat m * (a div of_nat m mod of_nat n) + a mod of_nat m" |
|
711 |
proof - |
|
712 |
have "a div (of_nat m * of_nat n) * (of_nat m * of_nat n) + a mod (of_nat m * of_nat n) = a div of_nat m div of_nat n * of_nat n * of_nat m + (a div of_nat m mod of_nat n * of_nat m + a mod of_nat m)" |
|
713 |
by (simp add: combine_common_factor div_mult_mod_eq) |
|
714 |
moreover have "a div of_nat m div of_nat n * of_nat n * of_nat m = of_nat n * of_nat m * (a div of_nat m div of_nat n)" |
|
715 |
by (simp add: ac_simps) |
|
716 |
ultimately show ?thesis |
|
717 |
by (simp add: div_mult2_eq' mult_commute) |
|
718 |
qed |
|
719 |
||
720 |
lemma div_mult2_numeral_eq: |
|
721 |
"a div numeral k div numeral l = a div numeral (k * l)" (is "?A = ?B") |
|
722 |
proof - |
|
723 |
have "?A = a div of_nat (numeral k) div of_nat (numeral l)" |
|
724 |
by simp |
|
725 |
also have "\<dots> = a div (of_nat (numeral k) * of_nat (numeral l))" |
|
726 |
by (fact div_mult2_eq' [symmetric]) |
|
727 |
also have "\<dots> = ?B" |
|
728 |
by simp |
|
729 |
finally show ?thesis . |
|
730 |
qed |
|
731 |
||
732 |
lemma numeral_Bit0_div_2: |
|
733 |
"numeral (num.Bit0 n) div 2 = numeral n" |
|
734 |
proof - |
|
735 |
have "numeral (num.Bit0 n) = numeral n + numeral n" |
|
736 |
by (simp only: numeral.simps) |
|
737 |
also have "\<dots> = numeral n * 2" |
|
738 |
by (simp add: mult_2_right) |
|
739 |
finally have "numeral (num.Bit0 n) div 2 = numeral n * 2 div 2" |
|
740 |
by simp |
|
741 |
also have "\<dots> = numeral n" |
|
742 |
by (rule nonzero_mult_div_cancel_right) simp |
|
743 |
finally show ?thesis . |
|
744 |
qed |
|
745 |
||
746 |
lemma numeral_Bit1_div_2: |
|
747 |
"numeral (num.Bit1 n) div 2 = numeral n" |
|
748 |
proof - |
|
749 |
have "numeral (num.Bit1 n) = numeral n + numeral n + 1" |
|
750 |
by (simp only: numeral.simps) |
|
751 |
also have "\<dots> = numeral n * 2 + 1" |
|
752 |
by (simp add: mult_2_right) |
|
753 |
finally have "numeral (num.Bit1 n) div 2 = (numeral n * 2 + 1) div 2" |
|
754 |
by simp |
|
755 |
also have "\<dots> = numeral n * 2 div 2 + 1 div 2" |
|
756 |
using dvd_triv_right by (rule div_plus_div_distrib_dvd_left) |
|
757 |
also have "\<dots> = numeral n * 2 div 2" |
|
758 |
by simp |
|
759 |
also have "\<dots> = numeral n" |
|
760 |
by (rule nonzero_mult_div_cancel_right) simp |
|
761 |
finally show ?thesis . |
|
762 |
qed |
|
763 |
||
764 |
lemma exp_mod_exp: |
|
765 |
\<open>2 ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m\<close> |
|
766 |
proof - |
|
767 |
have \<open>(2::nat) ^ m mod 2 ^ n = of_bool (m < n) * 2 ^ m\<close> (is \<open>?lhs = ?rhs\<close>) |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
768 |
by (auto simp add: linorder_class.not_less monoid_mult_class.power_add dest!: le_Suc_ex) |
76387 | 769 |
then have \<open>of_nat ?lhs = of_nat ?rhs\<close> |
770 |
by simp |
|
771 |
then show ?thesis |
|
772 |
by (simp add: of_nat_mod) |
|
773 |
qed |
|
774 |
||
775 |
lemma mask_mod_exp: |
|
776 |
\<open>(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - 1\<close> |
|
777 |
proof - |
|
778 |
have \<open>(2 ^ n - 1) mod 2 ^ m = 2 ^ min m n - (1::nat)\<close> (is \<open>?lhs = ?rhs\<close>) |
|
779 |
proof (cases \<open>n \<le> m\<close>) |
|
780 |
case True |
|
781 |
then show ?thesis |
|
782 |
by (simp add: Suc_le_lessD) |
|
783 |
next |
|
784 |
case False |
|
785 |
then have \<open>m < n\<close> |
|
786 |
by simp |
|
787 |
then obtain q where n: \<open>n = Suc q + m\<close> |
|
788 |
by (auto dest: less_imp_Suc_add) |
|
789 |
then have \<open>min m n = m\<close> |
|
790 |
by simp |
|
791 |
moreover have \<open>(2::nat) ^ m \<le> 2 * 2 ^ q * 2 ^ m\<close> |
|
792 |
using mult_le_mono1 [of 1 \<open>2 * 2 ^ q\<close> \<open>2 ^ m\<close>] by simp |
|
793 |
with n have \<open>2 ^ n - 1 = (2 ^ Suc q - 1) * 2 ^ m + (2 ^ m - (1::nat))\<close> |
|
794 |
by (simp add: monoid_mult_class.power_add algebra_simps) |
|
795 |
ultimately show ?thesis |
|
796 |
by (simp only: euclidean_semiring_cancel_class.mod_mult_self3) simp |
|
797 |
qed |
|
798 |
then have \<open>of_nat ?lhs = of_nat ?rhs\<close> |
|
799 |
by simp |
|
800 |
then show ?thesis |
|
801 |
by (simp add: of_nat_mod of_nat_diff) |
|
802 |
qed |
|
803 |
||
804 |
lemma of_bool_half_eq_0 [simp]: |
|
805 |
\<open>of_bool b div 2 = 0\<close> |
|
806 |
by simp |
|
807 |
||
78668 | 808 |
lemma of_nat_mod_double: |
809 |
\<open>of_nat n mod (2 * of_nat m) = of_nat n mod of_nat m \<or> of_nat n mod (2 * of_nat m) = of_nat n mod of_nat m + of_nat m\<close> |
|
810 |
by (simp add: mod_double_nat flip: of_nat_mod of_nat_add of_nat_mult of_nat_numeral) |
|
811 |
||
76387 | 812 |
end |
813 |
||
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
814 |
instance nat :: linordered_euclidean_semiring |
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
815 |
by standard simp_all |
76387 | 816 |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
817 |
instance int :: linordered_euclidean_semiring |
76387 | 818 |
by standard (auto simp add: divide_int_def division_segment_int_def elim: contrapos_np) |
819 |
||
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
820 |
context linordered_euclidean_semiring |
76387 | 821 |
begin |
822 |
||
823 |
subclass semiring_parity |
|
824 |
proof |
|
79118 | 825 |
show \<open>a mod 2 = of_bool (\<not> 2 dvd a)\<close> for a |
826 |
proof (cases \<open>2 dvd a\<close>) |
|
827 |
case True |
|
828 |
then show ?thesis |
|
829 |
by (simp add: dvd_eq_mod_eq_0) |
|
76387 | 830 |
next |
79118 | 831 |
case False |
76387 | 832 |
have eucl: "euclidean_size (a mod 2) = 1" |
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
833 |
proof (rule Orderings.order_antisym) |
76387 | 834 |
show "euclidean_size (a mod 2) \<le> 1" |
835 |
using mod_size_less [of 2 a] by simp |
|
836 |
show "1 \<le> euclidean_size (a mod 2)" |
|
837 |
using \<open>\<not> 2 dvd a\<close> by (simp add: Suc_le_eq dvd_eq_mod_eq_0) |
|
838 |
qed |
|
839 |
from \<open>\<not> 2 dvd a\<close> have "\<not> of_nat 2 dvd division_segment a * of_nat (euclidean_size a)" |
|
840 |
by simp |
|
841 |
then have "\<not> of_nat 2 dvd of_nat (euclidean_size a)" |
|
842 |
by (auto simp only: dvd_mult_unit_iff' is_unit_division_segment) |
|
843 |
then have "\<not> 2 dvd euclidean_size a" |
|
844 |
using of_nat_dvd_iff [of 2] by simp |
|
845 |
then have "euclidean_size a mod 2 = 1" |
|
846 |
by (simp add: semidom_modulo_class.dvd_eq_mod_eq_0) |
|
847 |
then have "of_nat (euclidean_size a mod 2) = of_nat 1" |
|
848 |
by simp |
|
849 |
then have "of_nat (euclidean_size a) mod 2 = 1" |
|
850 |
by (simp add: of_nat_mod) |
|
851 |
from \<open>\<not> 2 dvd a\<close> eucl |
|
79118 | 852 |
have "a mod 2 = 1" |
76387 | 853 |
by (auto intro: division_segment_eq_iff simp add: division_segment_mod) |
79118 | 854 |
with \<open>\<not> 2 dvd a\<close> show ?thesis |
855 |
by simp |
|
76387 | 856 |
qed |
79118 | 857 |
show \<open>\<not> is_unit 2\<close> |
858 |
proof |
|
859 |
assume \<open>is_unit 2\<close> |
|
860 |
then have \<open>of_nat 2 dvd of_nat 1\<close> |
|
76387 | 861 |
by simp |
79118 | 862 |
then have \<open>is_unit (2::nat)\<close> |
76387 | 863 |
by (simp only: of_nat_dvd_iff) |
864 |
then show False |
|
865 |
by simp |
|
866 |
qed |
|
79555 | 867 |
show \<open>(1 + a) div 2 = a div 2\<close> if \<open>2 dvd a\<close> for a |
868 |
using that by auto |
|
76387 | 869 |
qed |
870 |
||
871 |
lemma even_succ_div_two [simp]: |
|
872 |
"even a \<Longrightarrow> (a + 1) div 2 = a div 2" |
|
873 |
by (cases "a = 0") (auto elim!: evenE dest: mult_not_zero) |
|
874 |
||
875 |
lemma odd_succ_div_two [simp]: |
|
876 |
"odd a \<Longrightarrow> (a + 1) div 2 = a div 2 + 1" |
|
877 |
by (auto elim!: oddE simp add: add.assoc) |
|
878 |
||
879 |
lemma even_two_times_div_two: |
|
880 |
"even a \<Longrightarrow> 2 * (a div 2) = a" |
|
881 |
by (fact dvd_mult_div_cancel) |
|
882 |
||
883 |
lemma odd_two_times_div_two_succ [simp]: |
|
884 |
"odd a \<Longrightarrow> 2 * (a div 2) + 1 = a" |
|
885 |
using mult_div_mod_eq [of 2 a] |
|
886 |
by (simp add: even_iff_mod_2_eq_zero) |
|
887 |
||
888 |
lemma coprime_left_2_iff_odd [simp]: |
|
889 |
"coprime 2 a \<longleftrightarrow> odd a" |
|
890 |
proof |
|
891 |
assume "odd a" |
|
892 |
show "coprime 2 a" |
|
893 |
proof (rule coprimeI) |
|
894 |
fix b |
|
895 |
assume "b dvd 2" "b dvd a" |
|
896 |
then have "b dvd a mod 2" |
|
897 |
by (auto intro: dvd_mod) |
|
898 |
with \<open>odd a\<close> show "is_unit b" |
|
899 |
by (simp add: mod_2_eq_odd) |
|
900 |
qed |
|
901 |
next |
|
902 |
assume "coprime 2 a" |
|
903 |
show "odd a" |
|
904 |
proof (rule notI) |
|
905 |
assume "even a" |
|
906 |
then obtain b where "a = 2 * b" .. |
|
907 |
with \<open>coprime 2 a\<close> have "coprime 2 (2 * b)" |
|
908 |
by simp |
|
909 |
moreover have "\<not> coprime 2 (2 * b)" |
|
910 |
by (rule not_coprimeI [of 2]) simp_all |
|
911 |
ultimately show False |
|
912 |
by blast |
|
913 |
qed |
|
914 |
qed |
|
915 |
||
916 |
lemma coprime_right_2_iff_odd [simp]: |
|
917 |
"coprime a 2 \<longleftrightarrow> odd a" |
|
918 |
using coprime_left_2_iff_odd [of a] by (simp add: ac_simps) |
|
919 |
||
920 |
end |
|
921 |
||
922 |
lemma minus_1_mod_2_eq [simp]: |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
923 |
\<open>- 1 mod 2 = (1::int)\<close> |
76387 | 924 |
by (simp add: mod_2_eq_odd) |
925 |
||
926 |
lemma minus_1_div_2_eq [simp]: |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
927 |
"- 1 div 2 = - (1::int)" |
76387 | 928 |
proof - |
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
929 |
from div_mult_mod_eq [of "- 1 :: int" 2] |
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
930 |
have "- 1 div 2 * 2 = - 1 * (2 :: int)" |
76387 | 931 |
using add_implies_diff by fastforce |
932 |
then show ?thesis |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
933 |
using mult_right_cancel [of 2 "- 1 div 2" "- (1 :: int)"] by simp |
76387 | 934 |
qed |
935 |
||
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
936 |
context linordered_euclidean_semiring |
76387 | 937 |
begin |
938 |
||
79531
22a137a6de44
rearranged and reformulated abstract classes for bit structures and operations
haftmann
parents:
79118
diff
changeset
|
939 |
lemma even_decr_exp_div_exp_iff': |
76387 | 940 |
\<open>even ((2 ^ m - 1) div 2 ^ n) \<longleftrightarrow> m \<le> n\<close> |
941 |
proof - |
|
942 |
have \<open>even ((2 ^ m - 1) div 2 ^ n) \<longleftrightarrow> even (of_nat ((2 ^ m - Suc 0) div 2 ^ n))\<close> |
|
943 |
by (simp only: of_nat_div) (simp add: of_nat_diff) |
|
944 |
also have \<open>\<dots> \<longleftrightarrow> even ((2 ^ m - Suc 0) div 2 ^ n)\<close> |
|
945 |
by simp |
|
946 |
also have \<open>\<dots> \<longleftrightarrow> m \<le> n\<close> |
|
947 |
proof (cases \<open>m \<le> n\<close>) |
|
948 |
case True |
|
949 |
then show ?thesis |
|
950 |
by (simp add: Suc_le_lessD) |
|
951 |
next |
|
952 |
case False |
|
953 |
then obtain r where r: \<open>m = n + Suc r\<close> |
|
954 |
using less_imp_Suc_add by fastforce |
|
955 |
from r have \<open>{q. q < m} \<inter> {q. 2 ^ n dvd (2::nat) ^ q} = {q. n \<le> q \<and> q < m}\<close> |
|
956 |
by (auto simp add: dvd_power_iff_le) |
|
957 |
moreover from r have \<open>{q. q < m} \<inter> {q. \<not> 2 ^ n dvd (2::nat) ^ q} = {q. q < n}\<close> |
|
958 |
by (auto simp add: dvd_power_iff_le) |
|
959 |
moreover from False have \<open>{q. n \<le> q \<and> q < m \<and> q \<le> n} = {n}\<close> |
|
960 |
by auto |
|
961 |
then have \<open>odd ((\<Sum>a\<in>{q. n \<le> q \<and> q < m}. 2 ^ a div (2::nat) ^ n) + sum ((^) 2) {q. q < n} div 2 ^ n)\<close> |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
962 |
by (simp_all add: euclidean_semiring_cancel_class.power_diff_power_eq semiring_parity_class.even_sum_iff |
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
963 |
linorder_class.not_less mask_eq_sum_exp_nat [symmetric]) |
76387 | 964 |
ultimately have \<open>odd (sum ((^) (2::nat)) {q. q < m} div 2 ^ n)\<close> |
965 |
by (subst euclidean_semiring_cancel_class.sum_div_partition) simp_all |
|
966 |
with False show ?thesis |
|
967 |
by (simp add: mask_eq_sum_exp_nat) |
|
968 |
qed |
|
969 |
finally show ?thesis . |
|
970 |
qed |
|
971 |
||
972 |
end |
|
973 |
||
974 |
||
975 |
subsection \<open>Generic symbolic computations\<close> |
|
976 |
||
977 |
text \<open> |
|
978 |
The following type class contains everything necessary to formulate |
|
979 |
a division algorithm in ring structures with numerals, restricted |
|
980 |
to its positive segments. |
|
981 |
\<close> |
|
982 |
||
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
983 |
class linordered_euclidean_semiring_division = linordered_euclidean_semiring + |
76387 | 984 |
fixes divmod :: \<open>num \<Rightarrow> num \<Rightarrow> 'a \<times> 'a\<close> |
985 |
and divmod_step :: \<open>'a \<Rightarrow> 'a \<times> 'a \<Rightarrow> 'a \<times> 'a\<close> \<comment> \<open> |
|
986 |
These are conceptually definitions but force generated code |
|
987 |
to be monomorphic wrt. particular instances of this class which |
|
988 |
yields a significant speedup.\<close> |
|
989 |
assumes divmod_def: \<open>divmod m n = (numeral m div numeral n, numeral m mod numeral n)\<close> |
|
990 |
and divmod_step_def [simp]: \<open>divmod_step l (q, r) = |
|
991 |
(if euclidean_size l \<le> euclidean_size r then (2 * q + 1, r - l) |
|
992 |
else (2 * q, r))\<close> \<comment> \<open> |
|
993 |
This is a formulation of one step (referring to one digit position) |
|
994 |
in school-method division: compare the dividend at the current |
|
995 |
digit position with the remainder from previous division steps |
|
996 |
and evaluate accordingly.\<close> |
|
997 |
begin |
|
998 |
||
999 |
lemma fst_divmod: |
|
1000 |
\<open>fst (divmod m n) = numeral m div numeral n\<close> |
|
1001 |
by (simp add: divmod_def) |
|
1002 |
||
1003 |
lemma snd_divmod: |
|
1004 |
\<open>snd (divmod m n) = numeral m mod numeral n\<close> |
|
1005 |
by (simp add: divmod_def) |
|
1006 |
||
1007 |
text \<open> |
|
1008 |
Following a formulation of school-method division. |
|
1009 |
If the divisor is smaller than the dividend, terminate. |
|
1010 |
If not, shift the dividend to the right until termination |
|
1011 |
occurs and then reiterate single division steps in the |
|
1012 |
opposite direction. |
|
1013 |
\<close> |
|
1014 |
||
1015 |
lemma divmod_divmod_step: |
|
1016 |
\<open>divmod m n = (if m < n then (0, numeral m) |
|
1017 |
else divmod_step (numeral n) (divmod m (Num.Bit0 n)))\<close> |
|
1018 |
proof (cases \<open>m < n\<close>) |
|
1019 |
case True |
|
1020 |
then show ?thesis |
|
1021 |
by (simp add: prod_eq_iff fst_divmod snd_divmod flip: of_nat_numeral of_nat_div of_nat_mod) |
|
1022 |
next |
|
1023 |
case False |
|
1024 |
define r s t where \<open>r = (numeral m :: nat)\<close> \<open>s = (numeral n :: nat)\<close> \<open>t = 2 * s\<close> |
|
1025 |
then have *: \<open>numeral m = of_nat r\<close> \<open>numeral n = of_nat s\<close> \<open>numeral (num.Bit0 n) = of_nat t\<close> |
|
1026 |
and \<open>\<not> s \<le> r mod s\<close> |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1027 |
by (simp_all add: linorder_class.not_le) |
76387 | 1028 |
have t: \<open>2 * (r div t) = r div s - r div s mod 2\<close> |
1029 |
\<open>r mod t = s * (r div s mod 2) + r mod s\<close> |
|
77061
5de3772609ea
generalized theory name: euclidean division denotes one particular division definition on integers
haftmann
parents:
76387
diff
changeset
|
1030 |
by (simp add: Rings.minus_mod_eq_mult_div Groups.mult.commute [of 2] Euclidean_Rings.div_mult2_eq \<open>t = 2 * s\<close>) |
76387 | 1031 |
(use mod_mult2_eq [of r s 2] in \<open>simp add: ac_simps \<open>t = 2 * s\<close>\<close>) |
1032 |
have rs: \<open>r div s mod 2 = 0 \<or> r div s mod 2 = Suc 0\<close> |
|
1033 |
by auto |
|
1034 |
from \<open>\<not> s \<le> r mod s\<close> have \<open>s \<le> r mod t \<Longrightarrow> |
|
1035 |
r div s = Suc (2 * (r div t)) \<and> |
|
1036 |
r mod s = r mod t - s\<close> |
|
1037 |
using rs |
|
1038 |
by (auto simp add: t) |
|
1039 |
moreover have \<open>r mod t < s \<Longrightarrow> |
|
1040 |
r div s = 2 * (r div t) \<and> |
|
1041 |
r mod s = r mod t\<close> |
|
1042 |
using rs |
|
1043 |
by (auto simp add: t) |
|
1044 |
ultimately show ?thesis |
|
1045 |
by (simp add: divmod_def prod_eq_iff split_def Let_def |
|
1046 |
not_less mod_eq_0_iff_dvd Rings.mod_eq_0_iff_dvd False not_le *) |
|
1047 |
(simp add: flip: of_nat_numeral of_nat_mult add.commute [of 1] of_nat_div of_nat_mod of_nat_Suc of_nat_diff) |
|
1048 |
qed |
|
1049 |
||
1050 |
text \<open>The division rewrite proper -- first, trivial results involving \<open>1\<close>\<close> |
|
1051 |
||
1052 |
lemma divmod_trivial [simp]: |
|
1053 |
"divmod m Num.One = (numeral m, 0)" |
|
1054 |
"divmod num.One (num.Bit0 n) = (0, Numeral1)" |
|
1055 |
"divmod num.One (num.Bit1 n) = (0, Numeral1)" |
|
1056 |
using divmod_divmod_step [of "Num.One"] by (simp_all add: divmod_def) |
|
1057 |
||
1058 |
text \<open>Division by an even number is a right-shift\<close> |
|
1059 |
||
1060 |
lemma divmod_cancel [simp]: |
|
1061 |
\<open>divmod (Num.Bit0 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r))\<close> (is ?P) |
|
1062 |
\<open>divmod (Num.Bit1 m) (Num.Bit0 n) = (case divmod m n of (q, r) \<Rightarrow> (q, 2 * r + 1))\<close> (is ?Q) |
|
1063 |
proof - |
|
1064 |
define r s where \<open>r = (numeral m :: nat)\<close> \<open>s = (numeral n :: nat)\<close> |
|
1065 |
then have *: \<open>numeral m = of_nat r\<close> \<open>numeral n = of_nat s\<close> |
|
1066 |
\<open>numeral (num.Bit0 m) = of_nat (2 * r)\<close> \<open>numeral (num.Bit0 n) = of_nat (2 * s)\<close> |
|
1067 |
\<open>numeral (num.Bit1 m) = of_nat (Suc (2 * r))\<close> |
|
1068 |
by simp_all |
|
1069 |
have **: \<open>Suc (2 * r) div 2 = r\<close> |
|
1070 |
by simp |
|
1071 |
show ?P and ?Q |
|
1072 |
by (simp_all add: divmod_def *) |
|
1073 |
(simp_all flip: of_nat_numeral of_nat_div of_nat_mod of_nat_mult add.commute [of 1] of_nat_Suc |
|
77061
5de3772609ea
generalized theory name: euclidean division denotes one particular division definition on integers
haftmann
parents:
76387
diff
changeset
|
1074 |
add: Euclidean_Rings.mod_mult_mult1 div_mult2_eq [of _ 2] mod_mult2_eq [of _ 2] **) |
76387 | 1075 |
qed |
1076 |
||
1077 |
text \<open>The really hard work\<close> |
|
1078 |
||
1079 |
lemma divmod_steps [simp]: |
|
1080 |
"divmod (num.Bit0 m) (num.Bit1 n) = |
|
1081 |
(if m \<le> n then (0, numeral (num.Bit0 m)) |
|
1082 |
else divmod_step (numeral (num.Bit1 n)) |
|
1083 |
(divmod (num.Bit0 m) |
|
1084 |
(num.Bit0 (num.Bit1 n))))" |
|
1085 |
"divmod (num.Bit1 m) (num.Bit1 n) = |
|
1086 |
(if m < n then (0, numeral (num.Bit1 m)) |
|
1087 |
else divmod_step (numeral (num.Bit1 n)) |
|
1088 |
(divmod (num.Bit1 m) |
|
1089 |
(num.Bit0 (num.Bit1 n))))" |
|
1090 |
by (simp_all add: divmod_divmod_step) |
|
1091 |
||
1092 |
lemmas divmod_algorithm_code = divmod_trivial divmod_cancel divmod_steps |
|
1093 |
||
1094 |
text \<open>Special case: divisibility\<close> |
|
1095 |
||
1096 |
definition divides_aux :: "'a \<times> 'a \<Rightarrow> bool" |
|
1097 |
where |
|
1098 |
"divides_aux qr \<longleftrightarrow> snd qr = 0" |
|
1099 |
||
1100 |
lemma divides_aux_eq [simp]: |
|
1101 |
"divides_aux (q, r) \<longleftrightarrow> r = 0" |
|
1102 |
by (simp add: divides_aux_def) |
|
1103 |
||
1104 |
lemma dvd_numeral_simp [simp]: |
|
1105 |
"numeral m dvd numeral n \<longleftrightarrow> divides_aux (divmod n m)" |
|
1106 |
by (simp add: divmod_def mod_eq_0_iff_dvd) |
|
1107 |
||
1108 |
text \<open>Generic computation of quotient and remainder\<close> |
|
1109 |
||
1110 |
lemma numeral_div_numeral [simp]: |
|
1111 |
"numeral k div numeral l = fst (divmod k l)" |
|
1112 |
by (simp add: fst_divmod) |
|
1113 |
||
1114 |
lemma numeral_mod_numeral [simp]: |
|
1115 |
"numeral k mod numeral l = snd (divmod k l)" |
|
1116 |
by (simp add: snd_divmod) |
|
1117 |
||
1118 |
lemma one_div_numeral [simp]: |
|
1119 |
"1 div numeral n = fst (divmod num.One n)" |
|
1120 |
by (simp add: fst_divmod) |
|
1121 |
||
1122 |
lemma one_mod_numeral [simp]: |
|
1123 |
"1 mod numeral n = snd (divmod num.One n)" |
|
1124 |
by (simp add: snd_divmod) |
|
1125 |
||
1126 |
end |
|
1127 |
||
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1128 |
instantiation nat :: linordered_euclidean_semiring_division |
76387 | 1129 |
begin |
1130 |
||
1131 |
definition divmod_nat :: "num \<Rightarrow> num \<Rightarrow> nat \<times> nat" |
|
1132 |
where |
|
1133 |
divmod'_nat_def: "divmod_nat m n = (numeral m div numeral n, numeral m mod numeral n)" |
|
1134 |
||
1135 |
definition divmod_step_nat :: "nat \<Rightarrow> nat \<times> nat \<Rightarrow> nat \<times> nat" |
|
1136 |
where |
|
1137 |
"divmod_step_nat l qr = (let (q, r) = qr |
|
1138 |
in if r \<ge> l then (2 * q + 1, r - l) |
|
1139 |
else (2 * q, r))" |
|
1140 |
||
1141 |
instance |
|
1142 |
by standard (simp_all add: divmod'_nat_def divmod_step_nat_def) |
|
1143 |
||
1144 |
end |
|
1145 |
||
1146 |
declare divmod_algorithm_code [where ?'a = nat, code] |
|
1147 |
||
1148 |
lemma Suc_0_div_numeral [simp]: |
|
1149 |
\<open>Suc 0 div numeral Num.One = 1\<close> |
|
1150 |
\<open>Suc 0 div numeral (Num.Bit0 n) = 0\<close> |
|
1151 |
\<open>Suc 0 div numeral (Num.Bit1 n) = 0\<close> |
|
1152 |
by simp_all |
|
1153 |
||
1154 |
lemma Suc_0_mod_numeral [simp]: |
|
1155 |
\<open>Suc 0 mod numeral Num.One = 0\<close> |
|
1156 |
\<open>Suc 0 mod numeral (Num.Bit0 n) = 1\<close> |
|
1157 |
\<open>Suc 0 mod numeral (Num.Bit1 n) = 1\<close> |
|
1158 |
by simp_all |
|
1159 |
||
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1160 |
instantiation int :: linordered_euclidean_semiring_division |
76387 | 1161 |
begin |
1162 |
||
1163 |
definition divmod_int :: "num \<Rightarrow> num \<Rightarrow> int \<times> int" |
|
1164 |
where |
|
1165 |
"divmod_int m n = (numeral m div numeral n, numeral m mod numeral n)" |
|
1166 |
||
1167 |
definition divmod_step_int :: "int \<Rightarrow> int \<times> int \<Rightarrow> int \<times> int" |
|
1168 |
where |
|
1169 |
"divmod_step_int l qr = (let (q, r) = qr |
|
1170 |
in if \<bar>l\<bar> \<le> \<bar>r\<bar> then (2 * q + 1, r - l) |
|
1171 |
else (2 * q, r))" |
|
1172 |
||
1173 |
instance |
|
1174 |
by standard (auto simp add: divmod_int_def divmod_step_int_def) |
|
1175 |
||
1176 |
end |
|
1177 |
||
1178 |
declare divmod_algorithm_code [where ?'a = int, code] |
|
1179 |
||
1180 |
context |
|
1181 |
begin |
|
1182 |
||
1183 |
qualified definition adjust_div :: "int \<times> int \<Rightarrow> int" |
|
1184 |
where |
|
1185 |
"adjust_div qr = (let (q, r) = qr in q + of_bool (r \<noteq> 0))" |
|
1186 |
||
1187 |
qualified lemma adjust_div_eq [simp, code]: |
|
1188 |
"adjust_div (q, r) = q + of_bool (r \<noteq> 0)" |
|
1189 |
by (simp add: adjust_div_def) |
|
1190 |
||
1191 |
qualified definition adjust_mod :: "num \<Rightarrow> int \<Rightarrow> int" |
|
1192 |
where |
|
1193 |
[simp]: "adjust_mod l r = (if r = 0 then 0 else numeral l - r)" |
|
1194 |
||
1195 |
lemma minus_numeral_div_numeral [simp]: |
|
1196 |
"- numeral m div numeral n = - (adjust_div (divmod m n) :: int)" |
|
1197 |
proof - |
|
1198 |
have "int (fst (divmod m n)) = fst (divmod m n)" |
|
1199 |
by (simp only: fst_divmod divide_int_def) auto |
|
1200 |
then show ?thesis |
|
1201 |
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def) |
|
1202 |
qed |
|
1203 |
||
1204 |
lemma minus_numeral_mod_numeral [simp]: |
|
1205 |
"- numeral m mod numeral n = adjust_mod n (snd (divmod m n) :: int)" |
|
1206 |
proof (cases "snd (divmod m n) = (0::int)") |
|
1207 |
case True |
|
1208 |
then show ?thesis |
|
1209 |
by (simp add: mod_eq_0_iff_dvd divides_aux_def) |
|
1210 |
next |
|
1211 |
case False |
|
1212 |
then have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \<noteq> (0::int)" |
|
1213 |
by (simp only: snd_divmod modulo_int_def) auto |
|
1214 |
then show ?thesis |
|
1215 |
by (simp add: divides_aux_def adjust_div_def) |
|
1216 |
(simp add: divides_aux_def modulo_int_def) |
|
1217 |
qed |
|
1218 |
||
1219 |
lemma numeral_div_minus_numeral [simp]: |
|
1220 |
"numeral m div - numeral n = - (adjust_div (divmod m n) :: int)" |
|
1221 |
proof - |
|
1222 |
have "int (fst (divmod m n)) = fst (divmod m n)" |
|
1223 |
by (simp only: fst_divmod divide_int_def) auto |
|
1224 |
then show ?thesis |
|
1225 |
by (auto simp add: split_def Let_def adjust_div_def divides_aux_def divide_int_def) |
|
1226 |
qed |
|
1227 |
||
1228 |
lemma numeral_mod_minus_numeral [simp]: |
|
1229 |
"numeral m mod - numeral n = - adjust_mod n (snd (divmod m n) :: int)" |
|
1230 |
proof (cases "snd (divmod m n) = (0::int)") |
|
1231 |
case True |
|
1232 |
then show ?thesis |
|
1233 |
by (simp add: mod_eq_0_iff_dvd divides_aux_def) |
|
1234 |
next |
|
1235 |
case False |
|
1236 |
then have "int (snd (divmod m n)) = snd (divmod m n)" if "snd (divmod m n) \<noteq> (0::int)" |
|
1237 |
by (simp only: snd_divmod modulo_int_def) auto |
|
1238 |
then show ?thesis |
|
1239 |
by (simp add: divides_aux_def adjust_div_def) |
|
1240 |
(simp add: divides_aux_def modulo_int_def) |
|
1241 |
qed |
|
1242 |
||
1243 |
lemma minus_one_div_numeral [simp]: |
|
1244 |
"- 1 div numeral n = - (adjust_div (divmod Num.One n) :: int)" |
|
1245 |
using minus_numeral_div_numeral [of Num.One n] by simp |
|
1246 |
||
1247 |
lemma minus_one_mod_numeral [simp]: |
|
1248 |
"- 1 mod numeral n = adjust_mod n (snd (divmod Num.One n) :: int)" |
|
1249 |
using minus_numeral_mod_numeral [of Num.One n] by simp |
|
1250 |
||
1251 |
lemma one_div_minus_numeral [simp]: |
|
1252 |
"1 div - numeral n = - (adjust_div (divmod Num.One n) :: int)" |
|
1253 |
using numeral_div_minus_numeral [of Num.One n] by simp |
|
1254 |
||
1255 |
lemma one_mod_minus_numeral [simp]: |
|
1256 |
"1 mod - numeral n = - adjust_mod n (snd (divmod Num.One n) :: int)" |
|
1257 |
using numeral_mod_minus_numeral [of Num.One n] by simp |
|
1258 |
||
1259 |
lemma [code]: |
|
1260 |
fixes k :: int |
|
1261 |
shows |
|
1262 |
"k div 0 = 0" |
|
1263 |
"k mod 0 = k" |
|
1264 |
"0 div k = 0" |
|
1265 |
"0 mod k = 0" |
|
1266 |
"k div Int.Pos Num.One = k" |
|
1267 |
"k mod Int.Pos Num.One = 0" |
|
1268 |
"k div Int.Neg Num.One = - k" |
|
1269 |
"k mod Int.Neg Num.One = 0" |
|
1270 |
"Int.Pos m div Int.Pos n = (fst (divmod m n) :: int)" |
|
1271 |
"Int.Pos m mod Int.Pos n = (snd (divmod m n) :: int)" |
|
1272 |
"Int.Neg m div Int.Pos n = - (adjust_div (divmod m n) :: int)" |
|
1273 |
"Int.Neg m mod Int.Pos n = adjust_mod n (snd (divmod m n) :: int)" |
|
1274 |
"Int.Pos m div Int.Neg n = - (adjust_div (divmod m n) :: int)" |
|
1275 |
"Int.Pos m mod Int.Neg n = - adjust_mod n (snd (divmod m n) :: int)" |
|
1276 |
"Int.Neg m div Int.Neg n = (fst (divmod m n) :: int)" |
|
1277 |
"Int.Neg m mod Int.Neg n = - (snd (divmod m n) :: int)" |
|
1278 |
by simp_all |
|
1279 |
||
1280 |
end |
|
1281 |
||
1282 |
lemma divmod_BitM_2_eq [simp]: |
|
1283 |
\<open>divmod (Num.BitM m) (Num.Bit0 Num.One) = (numeral m - 1, (1 :: int))\<close> |
|
1284 |
by (cases m) simp_all |
|
1285 |
||
1286 |
||
1287 |
subsubsection \<open>Computation by simplification\<close> |
|
1288 |
||
1289 |
lemma euclidean_size_nat_less_eq_iff: |
|
1290 |
\<open>euclidean_size m \<le> euclidean_size n \<longleftrightarrow> m \<le> n\<close> for m n :: nat |
|
1291 |
by simp |
|
1292 |
||
1293 |
lemma euclidean_size_int_less_eq_iff: |
|
1294 |
\<open>euclidean_size k \<le> euclidean_size l \<longleftrightarrow> \<bar>k\<bar> \<le> \<bar>l\<bar>\<close> for k l :: int |
|
1295 |
by auto |
|
1296 |
||
1297 |
simproc_setup numeral_divmod |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1298 |
("0 div 0 :: 'a :: linordered_euclidean_semiring_division" | "0 mod 0 :: 'a :: linordered_euclidean_semiring_division" | |
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1299 |
"0 div 1 :: 'a :: linordered_euclidean_semiring_division" | "0 mod 1 :: 'a :: linordered_euclidean_semiring_division" | |
76387 | 1300 |
"0 div - 1 :: int" | "0 mod - 1 :: int" | |
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1301 |
"0 div numeral b :: 'a :: linordered_euclidean_semiring_division" | "0 mod numeral b :: 'a :: linordered_euclidean_semiring_division" | |
76387 | 1302 |
"0 div - numeral b :: int" | "0 mod - numeral b :: int" | |
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1303 |
"1 div 0 :: 'a :: linordered_euclidean_semiring_division" | "1 mod 0 :: 'a :: linordered_euclidean_semiring_division" | |
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1304 |
"1 div 1 :: 'a :: linordered_euclidean_semiring_division" | "1 mod 1 :: 'a :: linordered_euclidean_semiring_division" | |
76387 | 1305 |
"1 div - 1 :: int" | "1 mod - 1 :: int" | |
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1306 |
"1 div numeral b :: 'a :: linordered_euclidean_semiring_division" | "1 mod numeral b :: 'a :: linordered_euclidean_semiring_division" | |
76387 | 1307 |
"1 div - numeral b :: int" |"1 mod - numeral b :: int" | |
1308 |
"- 1 div 0 :: int" | "- 1 mod 0 :: int" | "- 1 div 1 :: int" | "- 1 mod 1 :: int" | |
|
1309 |
"- 1 div - 1 :: int" | "- 1 mod - 1 :: int" | "- 1 div numeral b :: int" | "- 1 mod numeral b :: int" | |
|
1310 |
"- 1 div - numeral b :: int" | "- 1 mod - numeral b :: int" | |
|
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1311 |
"numeral a div 0 :: 'a :: linordered_euclidean_semiring_division" | "numeral a mod 0 :: 'a :: linordered_euclidean_semiring_division" | |
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1312 |
"numeral a div 1 :: 'a :: linordered_euclidean_semiring_division" | "numeral a mod 1 :: 'a :: linordered_euclidean_semiring_division" | |
76387 | 1313 |
"numeral a div - 1 :: int" | "numeral a mod - 1 :: int" | |
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1314 |
"numeral a div numeral b :: 'a :: linordered_euclidean_semiring_division" | "numeral a mod numeral b :: 'a :: linordered_euclidean_semiring_division" | |
76387 | 1315 |
"numeral a div - numeral b :: int" | "numeral a mod - numeral b :: int" | |
1316 |
"- numeral a div 0 :: int" | "- numeral a mod 0 :: int" | |
|
1317 |
"- numeral a div 1 :: int" | "- numeral a mod 1 :: int" | |
|
1318 |
"- numeral a div - 1 :: int" | "- numeral a mod - 1 :: int" | |
|
1319 |
"- numeral a div numeral b :: int" | "- numeral a mod numeral b :: int" | |
|
1320 |
"- numeral a div - numeral b :: int" | "- numeral a mod - numeral b :: int") = \<open> |
|
1321 |
let |
|
1322 |
val if_cong = the (Code.get_case_cong \<^theory> \<^const_name>\<open>If\<close>); |
|
1323 |
fun successful_rewrite ctxt ct = |
|
1324 |
let |
|
1325 |
val thm = Simplifier.rewrite ctxt ct |
|
1326 |
in if Thm.is_reflexive thm then NONE else SOME thm end; |
|
78082 | 1327 |
val simps = @{thms div_0 mod_0 div_by_0 mod_by_0 div_by_1 mod_by_1 |
1328 |
one_div_numeral one_mod_numeral minus_one_div_numeral minus_one_mod_numeral |
|
1329 |
one_div_minus_numeral one_mod_minus_numeral |
|
1330 |
numeral_div_numeral numeral_mod_numeral minus_numeral_div_numeral minus_numeral_mod_numeral |
|
1331 |
numeral_div_minus_numeral numeral_mod_minus_numeral |
|
1332 |
div_minus_minus mod_minus_minus Parity.adjust_div_eq of_bool_eq one_neq_zero |
|
1333 |
numeral_neq_zero neg_equal_0_iff_equal arith_simps arith_special divmod_trivial |
|
1334 |
divmod_cancel divmod_steps divmod_step_def fst_conv snd_conv numeral_One |
|
1335 |
case_prod_beta rel_simps Parity.adjust_mod_def div_minus1_right mod_minus1_right |
|
1336 |
minus_minus numeral_times_numeral mult_zero_right mult_1_right |
|
1337 |
euclidean_size_nat_less_eq_iff euclidean_size_int_less_eq_iff diff_nat_numeral nat_numeral} |
|
1338 |
@ [@{lemma "0 = 0 \<longleftrightarrow> True" by simp}]; |
|
78083 | 1339 |
val simpset = |
1340 |
HOL_ss |> Simplifier.simpset_map \<^context> |
|
1341 |
(Simplifier.add_cong if_cong #> fold Simplifier.add_simp simps); |
|
1342 |
in K (fn ctxt => successful_rewrite (Simplifier.put_simpset simpset ctxt)) end |
|
76387 | 1343 |
\<close> \<comment> \<open> |
1344 |
There is space for improvement here: the calculation itself |
|
1345 |
could be carried out outside the logic, and a generic simproc |
|
1346 |
(simplifier setup) for generic calculation would be helpful. |
|
1347 |
\<close> |
|
1348 |
||
1349 |
||
75937 | 1350 |
subsection \<open>Computing congruences modulo \<open>2 ^ q\<close>\<close> |
1351 |
||
78937
5e6b195eee83
slightly less technical formulation of very specific type class
haftmann
parents:
78668
diff
changeset
|
1352 |
context linordered_euclidean_semiring_division |
75937 | 1353 |
begin |
1354 |
||
1355 |
lemma cong_exp_iff_simps: |
|
1356 |
"numeral n mod numeral Num.One = 0 |
|
1357 |
\<longleftrightarrow> True" |
|
1358 |
"numeral (Num.Bit0 n) mod numeral (Num.Bit0 q) = 0 |
|
1359 |
\<longleftrightarrow> numeral n mod numeral q = 0" |
|
1360 |
"numeral (Num.Bit1 n) mod numeral (Num.Bit0 q) = 0 |
|
1361 |
\<longleftrightarrow> False" |
|
1362 |
"numeral m mod numeral Num.One = (numeral n mod numeral Num.One) |
|
1363 |
\<longleftrightarrow> True" |
|
1364 |
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q)) |
|
1365 |
\<longleftrightarrow> True" |
|
1366 |
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q)) |
|
1367 |
\<longleftrightarrow> False" |
|
1368 |
"numeral Num.One mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q)) |
|
1369 |
\<longleftrightarrow> (numeral n mod numeral q) = 0" |
|
1370 |
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q)) |
|
1371 |
\<longleftrightarrow> False" |
|
1372 |
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q)) |
|
1373 |
\<longleftrightarrow> numeral m mod numeral q = (numeral n mod numeral q)" |
|
1374 |
"numeral (Num.Bit0 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q)) |
|
1375 |
\<longleftrightarrow> False" |
|
1376 |
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral Num.One mod numeral (Num.Bit0 q)) |
|
1377 |
\<longleftrightarrow> (numeral m mod numeral q) = 0" |
|
1378 |
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit0 n) mod numeral (Num.Bit0 q)) |
|
1379 |
\<longleftrightarrow> False" |
|
1380 |
"numeral (Num.Bit1 m) mod numeral (Num.Bit0 q) = (numeral (Num.Bit1 n) mod numeral (Num.Bit0 q)) |
|
1381 |
\<longleftrightarrow> numeral m mod numeral q = (numeral n mod numeral q)" |
|
1382 |
by (auto simp add: case_prod_beta dest: arg_cong [of _ _ even]) |
|
1383 |
||
1384 |
end |
|
1385 |
||
1386 |
||
71853 | 1387 |
code_identifier |
1388 |
code_module Parity \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith |
|
1389 |
||
74592 | 1390 |
lemmas even_of_nat = even_of_nat_iff |
1391 |
||
67816 | 1392 |
end |