author | wenzelm |
Mon, 21 Jul 2025 16:21:37 +0200 | |
changeset 82892 | 45107da819fc |
parent 76219 | cf7db6353322 |
permissions | -rw-r--r-- |
12776 | 1 |
(* Title: ZF/AC/AC15_WO6.thy |
2 |
Author: Krzysztof Grabczewski |
|
3 |
||
4 |
The proofs needed to state that AC10, ..., AC15 are equivalent to the rest. |
|
5 |
We need the following: |
|
6 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
7 |
WO1 \<Longrightarrow> AC10(n) \<Longrightarrow> AC11 \<Longrightarrow> AC12 \<Longrightarrow> AC15 \<Longrightarrow> WO6 |
12776 | 8 |
|
9 |
In order to add the formulations AC13 and AC14 we need: |
|
10 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
11 |
AC10(succ(n)) \<Longrightarrow> AC13(n) \<Longrightarrow> AC14 \<Longrightarrow> AC15 |
12776 | 12 |
|
13 |
or |
|
14 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
15 |
AC1 \<Longrightarrow> AC13(1); AC13(m) \<Longrightarrow> AC13(n) \<Longrightarrow> AC14 \<Longrightarrow> AC15 (m\<le>n) |
12776 | 16 |
|
17 |
So we don't have to prove all implications of both cases. |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
18 |
Moreover we don't need to prove AC13(1) \<Longrightarrow> AC1 and AC11 \<Longrightarrow> AC14 as |
76219 | 19 |
Rubin & Rubin do. |
12776 | 20 |
*) |
21 |
||
27678 | 22 |
theory AC15_WO6 |
23 |
imports HH Cardinal_aux |
|
24 |
begin |
|
12776 | 25 |
|
26 |
||
27 |
(* ********************************************************************** *) |
|
28 |
(* Lemmas used in the proofs in which the conclusion is AC13, AC14 *) |
|
29 |
(* or AC15 *) |
|
30 |
(* - cons_times_nat_not_Finite *) |
|
31 |
(* - ex_fun_AC13_AC15 *) |
|
32 |
(* ********************************************************************** *) |
|
33 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
34 |
lemma lepoll_Sigma: "A\<noteq>0 \<Longrightarrow> B \<lesssim> A*B" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
35 |
unfolding lepoll_def |
12776 | 36 |
apply (erule not_emptyE) |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
37 |
apply (rule_tac x = "\<lambda>z \<in> B. \<langle>x,z\<rangle>" in exI) |
12776 | 38 |
apply (fast intro!: snd_conv lam_injective) |
39 |
done |
|
40 |
||
41 |
lemma cons_times_nat_not_Finite: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
42 |
"0\<notin>A \<Longrightarrow> \<forall>B \<in> {cons(0,x*nat). x \<in> A}. \<not>Finite(B)" |
12776 | 43 |
apply clarify |
44 |
apply (rule nat_not_Finite [THEN notE] ) |
|
46822
95f1e700b712
mathematical symbols for Isabelle/ZF example theories
paulson
parents:
32960
diff
changeset
|
45 |
apply (subgoal_tac "x \<noteq> 0") |
13245 | 46 |
apply (blast intro: lepoll_Sigma [THEN lepoll_Finite])+ |
12776 | 47 |
done |
48 |
||
76214 | 49 |
lemma lemma1: "\<lbrakk>\<Union>(C)=A; a \<in> A\<rbrakk> \<Longrightarrow> \<exists>B \<in> C. a \<in> B \<and> B \<subseteq> A" |
12776 | 50 |
by fast |
51 |
||
52 |
lemma lemma2: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
53 |
"\<lbrakk>pairwise_disjoint(A); B \<in> A; C \<in> A; a \<in> B; a \<in> C\<rbrakk> \<Longrightarrow> B=C" |
12776 | 54 |
by (unfold pairwise_disjoint_def, blast) |
55 |
||
56 |
lemma lemma3: |
|
76214 | 57 |
"\<forall>B \<in> {cons(0, x*nat). x \<in> A}. pairwise_disjoint(f`B) \<and> |
58 |
sets_of_size_between(f`B, 2, n) \<and> \<Union>(f`B)=B |
|
59 |
\<Longrightarrow> \<forall>B \<in> A. \<exists>! u. u \<in> f`cons(0, B*nat) \<and> u \<subseteq> cons(0, B*nat) \<and> |
|
60 |
0 \<in> u \<and> 2 \<lesssim> u \<and> u \<lesssim> n" |
|
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
61 |
unfolding sets_of_size_between_def |
12776 | 62 |
apply (rule ballI) |
12788 | 63 |
apply (erule_tac x="cons(0, B*nat)" in ballE) |
12820 | 64 |
apply (blast dest: lemma1 intro!: lemma2, blast) |
12776 | 65 |
done |
66 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
67 |
lemma lemma4: "\<lbrakk>A \<lesssim> i; Ord(i)\<rbrakk> \<Longrightarrow> {P(a). a \<in> A} \<lesssim> i" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
68 |
unfolding lepoll_def |
12776 | 69 |
apply (erule exE) |
76214 | 70 |
apply (rule_tac x = "\<lambda>x \<in> RepFun(A,P). \<mu> j. \<exists>a\<in>A. x=P(a) \<and> f`a=j" |
12776 | 71 |
in exI) |
76215
a642599ffdea
More syntactic cleanup. LaTeX markup working
paulson <lp15@cam.ac.uk>
parents:
76214
diff
changeset
|
72 |
apply (rule_tac d = "\<lambda>y. P (converse (f) `y) " in lam_injective) |
12776 | 73 |
apply (erule RepFunE) |
74 |
apply (frule inj_is_fun [THEN apply_type], assumption) |
|
75 |
apply (fast intro: LeastI2 elim!: Ord_in_Ord inj_is_fun [THEN apply_type]) |
|
76 |
apply (erule RepFunE) |
|
77 |
apply (rule LeastI2) |
|
78 |
apply fast |
|
79 |
apply (fast elim!: Ord_in_Ord inj_is_fun [THEN apply_type]) |
|
80 |
apply (fast elim: sym left_inverse [THEN ssubst]) |
|
81 |
done |
|
82 |
||
83 |
lemma lemma5_1: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
84 |
"\<lbrakk>B \<in> A; 2 \<lesssim> u(B)\<rbrakk> \<Longrightarrow> (\<lambda>x \<in> A. {fst(x). x \<in> u(x)-{0}})`B \<noteq> 0" |
12776 | 85 |
apply simp |
86 |
apply (fast dest: lepoll_Diff_sing |
|
87 |
elim: lepoll_trans [THEN succ_lepoll_natE] ssubst |
|
88 |
intro!: lepoll_refl) |
|
89 |
done |
|
90 |
||
91 |
lemma lemma5_2: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
92 |
"\<lbrakk>B \<in> A; u(B) \<subseteq> cons(0, B*nat)\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
93 |
\<Longrightarrow> (\<lambda>x \<in> A. {fst(x). x \<in> u(x)-{0}})`B \<subseteq> B" |
12776 | 94 |
apply auto |
95 |
done |
|
96 |
||
97 |
lemma lemma5_3: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
98 |
"\<lbrakk>n \<in> nat; B \<in> A; 0 \<in> u(B); u(B) \<lesssim> succ(n)\<rbrakk> |
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
99 |
\<Longrightarrow> (\<lambda>x \<in> A. {fst(x). x \<in> u(x)-{0}})`B \<lesssim> n" |
12776 | 100 |
apply simp |
101 |
apply (fast elim!: Diff_lepoll [THEN lemma4 [OF _ nat_into_Ord]]) |
|
102 |
done |
|
103 |
||
104 |
lemma ex_fun_AC13_AC15: |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
105 |
"\<lbrakk>\<forall>B \<in> {cons(0, x*nat). x \<in> A}. |
76214 | 106 |
pairwise_disjoint(f`B) \<and> |
107 |
sets_of_size_between(f`B, 2, succ(n)) \<and> \<Union>(f`B)=B; |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
108 |
n \<in> nat\<rbrakk> |
76214 | 109 |
\<Longrightarrow> \<exists>f. \<forall>B \<in> A. f`B \<noteq> 0 \<and> f`B \<subseteq> B \<and> f`B \<lesssim> n" |
12776 | 110 |
by (fast del: subsetI notI |
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27678
diff
changeset
|
111 |
dest!: lemma3 theI intro!: lemma5_1 lemma5_2 lemma5_3) |
12776 | 112 |
|
113 |
||
114 |
(* ********************************************************************** *) |
|
115 |
(* The target proofs *) |
|
116 |
(* ********************************************************************** *) |
|
117 |
||
118 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
119 |
(* AC10(n) \<Longrightarrow> AC11 *) |
12776 | 120 |
(* ********************************************************************** *) |
121 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
122 |
theorem AC10_AC11: "\<lbrakk>n \<in> nat; 1\<le>n; AC10(n)\<rbrakk> \<Longrightarrow> AC11" |
12776 | 123 |
by (unfold AC10_def AC11_def, blast) |
124 |
||
125 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
126 |
(* AC11 \<Longrightarrow> AC12 *) |
12776 | 127 |
(* ********************************************************************** *) |
128 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
129 |
theorem AC11_AC12: "AC11 \<Longrightarrow> AC12" |
12776 | 130 |
by (unfold AC10_def AC11_def AC11_def AC12_def, blast) |
131 |
||
132 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
133 |
(* AC12 \<Longrightarrow> AC15 *) |
12776 | 134 |
(* ********************************************************************** *) |
135 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
136 |
theorem AC12_AC15: "AC12 \<Longrightarrow> AC15" |
76217 | 137 |
unfolding AC12_def AC15_def |
12776 | 138 |
apply (blast del: ballI |
139 |
intro!: cons_times_nat_not_Finite ex_fun_AC13_AC15) |
|
140 |
done |
|
1123 | 141 |
|
12776 | 142 |
(* ********************************************************************** *) |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
143 |
(* AC15 \<Longrightarrow> WO6 *) |
12776 | 144 |
(* ********************************************************************** *) |
145 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
146 |
lemma OUN_eq_UN: "Ord(x) \<Longrightarrow> (\<Union>a<x. F(a)) = (\<Union>a \<in> x. F(a))" |
12776 | 147 |
by (fast intro!: ltI dest!: ltD) |
148 |
||
13535 | 149 |
lemma AC15_WO6_aux1: |
76214 | 150 |
"\<forall>x \<in> Pow(A)-{0}. f`x\<noteq>0 \<and> f`x \<subseteq> x \<and> f`x \<lesssim> m |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
151 |
\<Longrightarrow> (\<Union>i<\<mu> x. HH(f,A,x)={A}. HH(f,A,i)) = A" |
12776 | 152 |
apply (simp add: Ord_Least [THEN OUN_eq_UN]) |
153 |
apply (rule equalityI) |
|
154 |
apply (fast dest!: less_Least_subset_x) |
|
155 |
apply (blast del: subsetI |
|
156 |
intro!: f_subsets_imp_UN_HH_eq_x [THEN Diff_eq_0_iff [THEN iffD1]]) |
|
157 |
done |
|
158 |
||
13535 | 159 |
lemma AC15_WO6_aux2: |
76214 | 160 |
"\<forall>x \<in> Pow(A)-{0}. f`x\<noteq>0 \<and> f`x \<subseteq> x \<and> f`x \<lesssim> m |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
161 |
\<Longrightarrow> \<forall>x < (\<mu> x. HH(f,A,x)={A}). HH(f,A,x) \<lesssim> m" |
12776 | 162 |
apply (rule oallI) |
163 |
apply (drule ltD [THEN less_Least_subset_x]) |
|
164 |
apply (frule HH_subset_imp_eq) |
|
165 |
apply (erule ssubst) |
|
166 |
apply (blast dest!: HH_subset_x_imp_subset_Diff_UN [THEN not_emptyI2]) |
|
32960
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
27678
diff
changeset
|
167 |
(*but can't use del: DiffE despite the obvious conflict*) |
12776 | 168 |
done |
169 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
170 |
theorem AC15_WO6: "AC15 \<Longrightarrow> WO6" |
76217 | 171 |
unfolding AC15_def WO6_def |
12776 | 172 |
apply (rule allI) |
173 |
apply (erule_tac x = "Pow (A) -{0}" in allE) |
|
174 |
apply (erule impE, fast) |
|
175 |
apply (elim bexE conjE exE) |
|
176 |
apply (rule bexI) |
|
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
12820
diff
changeset
|
177 |
apply (rule conjI, assumption) |
61394 | 178 |
apply (rule_tac x = "\<mu> i. HH (f,A,i) ={A}" in exI) |
179 |
apply (rule_tac x = "\<lambda>j \<in> (\<mu> i. HH (f,A,i) ={A}) . HH (f,A,j) " in exI) |
|
13175
81082cfa5618
new definition of "apply" and new simprule "beta_if"
paulson
parents:
12820
diff
changeset
|
180 |
apply (simp_all add: ltD) |
12776 | 181 |
apply (fast intro!: Ord_Least lam_type [THEN domain_of_fun] |
13535 | 182 |
elim!: less_Least_subset_x AC15_WO6_aux1 AC15_WO6_aux2) |
12776 | 183 |
done |
184 |
||
185 |
||
186 |
(* ********************************************************************** *) |
|
187 |
(* The proof needed in the first case, not in the second *) |
|
188 |
(* ********************************************************************** *) |
|
189 |
||
190 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
191 |
(* AC10(n) \<Longrightarrow> AC13(n-1) if 2\<le>n *) |
12776 | 192 |
(* *) |
193 |
(* Because of the change to the formal definition of AC10(n) we prove *) |
|
194 |
(* the following obviously equivalent theorem \<in> *) |
|
195 |
(* AC10(n) implies AC13(n) for (1\<le>n) *) |
|
196 |
(* ********************************************************************** *) |
|
197 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
198 |
theorem AC10_AC13: "\<lbrakk>n \<in> nat; 1\<le>n; AC10(n)\<rbrakk> \<Longrightarrow> AC13(n)" |
12776 | 199 |
apply (unfold AC10_def AC13_def, safe) |
200 |
apply (erule allE) |
|
12820 | 201 |
apply (erule impE [OF _ cons_times_nat_not_Finite], assumption) |
12776 | 202 |
apply (fast elim!: impE [OF _ cons_times_nat_not_Finite] |
203 |
dest!: ex_fun_AC13_AC15) |
|
204 |
done |
|
205 |
||
206 |
(* ********************************************************************** *) |
|
207 |
(* The proofs needed in the second case, not in the first *) |
|
208 |
(* ********************************************************************** *) |
|
209 |
||
210 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
211 |
(* AC1 \<Longrightarrow> AC13(1) *) |
12776 | 212 |
(* ********************************************************************** *) |
213 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
214 |
lemma AC1_AC13: "AC1 \<Longrightarrow> AC13(1)" |
76217 | 215 |
unfolding AC1_def AC13_def |
12776 | 216 |
apply (rule allI) |
217 |
apply (erule allE) |
|
218 |
apply (rule impI) |
|
219 |
apply (drule mp, assumption) |
|
220 |
apply (elim exE) |
|
221 |
apply (rule_tac x = "\<lambda>x \<in> A. {f`x}" in exI) |
|
222 |
apply (simp add: singleton_eqpoll_1 [THEN eqpoll_imp_lepoll]) |
|
223 |
done |
|
224 |
||
225 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
226 |
(* AC13(m) \<Longrightarrow> AC13(n) for m \<subseteq> n *) |
12776 | 227 |
(* ********************************************************************** *) |
228 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
229 |
lemma AC13_mono: "\<lbrakk>m\<le>n; AC13(m)\<rbrakk> \<Longrightarrow> AC13(n)" |
76216
9fc34f76b4e8
getting rid of apply (unfold ...)
paulson <lp15@cam.ac.uk>
parents:
76215
diff
changeset
|
230 |
unfolding AC13_def |
12776 | 231 |
apply (drule le_imp_lepoll) |
232 |
apply (fast elim!: lepoll_trans) |
|
233 |
done |
|
234 |
||
235 |
(* ********************************************************************** *) |
|
236 |
(* The proofs necessary for both cases *) |
|
237 |
(* ********************************************************************** *) |
|
238 |
||
239 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
240 |
(* AC13(n) \<Longrightarrow> AC14 if 1 \<subseteq> n *) |
12776 | 241 |
(* ********************************************************************** *) |
242 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
243 |
theorem AC13_AC14: "\<lbrakk>n \<in> nat; 1\<le>n; AC13(n)\<rbrakk> \<Longrightarrow> AC14" |
12776 | 244 |
by (unfold AC13_def AC14_def, auto) |
245 |
||
246 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
247 |
(* AC14 \<Longrightarrow> AC15 *) |
12776 | 248 |
(* ********************************************************************** *) |
249 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
250 |
theorem AC14_AC15: "AC14 \<Longrightarrow> AC15" |
12776 | 251 |
by (unfold AC13_def AC14_def AC15_def, fast) |
252 |
||
253 |
(* ********************************************************************** *) |
|
76219 | 254 |
(* The redundant proofs; however cited by Rubin & Rubin *) |
12776 | 255 |
(* ********************************************************************** *) |
256 |
||
257 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
258 |
(* AC13(1) \<Longrightarrow> AC1 *) |
12776 | 259 |
(* ********************************************************************** *) |
260 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
261 |
lemma lemma_aux: "\<lbrakk>A\<noteq>0; A \<lesssim> 1\<rbrakk> \<Longrightarrow> \<exists>a. A={a}" |
12776 | 262 |
by (fast elim!: not_emptyE lepoll_1_is_sing) |
263 |
||
264 |
lemma AC13_AC1_lemma: |
|
76214 | 265 |
"\<forall>B \<in> A. f(B)\<noteq>0 \<and> f(B)<=B \<and> f(B) \<lesssim> 1 |
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
266 |
\<Longrightarrow> (\<lambda>x \<in> A. THE y. f(x)={y}) \<in> (\<Prod>X \<in> A. X)" |
12776 | 267 |
apply (rule lam_type) |
268 |
apply (drule bspec, assumption) |
|
269 |
apply (elim conjE) |
|
270 |
apply (erule lemma_aux [THEN exE], assumption) |
|
12814 | 271 |
apply (simp add: the_equality) |
12776 | 272 |
done |
273 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
274 |
theorem AC13_AC1: "AC13(1) \<Longrightarrow> AC1" |
76217 | 275 |
unfolding AC13_def AC1_def |
12776 | 276 |
apply (fast elim!: AC13_AC1_lemma) |
277 |
done |
|
278 |
||
279 |
(* ********************************************************************** *) |
|
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
280 |
(* AC11 \<Longrightarrow> AC14 *) |
12776 | 281 |
(* ********************************************************************** *) |
282 |
||
76213
e44d86131648
Removal of obsolete ASCII syntax
paulson <lp15@cam.ac.uk>
parents:
61980
diff
changeset
|
283 |
theorem AC11_AC14: "AC11 \<Longrightarrow> AC14" |
76217 | 284 |
unfolding AC11_def AC14_def |
12776 | 285 |
apply (fast intro!: AC10_AC13) |
286 |
done |
|
287 |
||
288 |
end |
|
289 |