| author | wenzelm | 
| Sat, 14 May 2011 12:40:11 +0200 | |
| changeset 42800 | df2dc9406287 | 
| parent 42238 | d53dccb38dd1 | 
| child 42903 | ec9eb1fbfcb8 | 
| permissions | -rw-r--r-- | 
| 1475 | 1 | (* Title: HOL/Fun.thy | 
| 2 | Author: Tobias Nipkow, Cambridge University Computer Laboratory | |
| 923 | 3 | Copyright 1994 University of Cambridge | 
| 18154 | 4 | *) | 
| 923 | 5 | |
| 18154 | 6 | header {* Notions about functions *}
 | 
| 923 | 7 | |
| 15510 | 8 | theory Fun | 
| 32139 | 9 | imports Complete_Lattice | 
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41229diff
changeset | 10 | uses ("Tools/enriched_type.ML")
 | 
| 15131 | 11 | begin | 
| 2912 | 12 | |
| 26147 | 13 | text{*As a simplification rule, it replaces all function equalities by
 | 
| 14 | first-order equalities.*} | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 15 | lemma fun_eq_iff: "f = g \<longleftrightarrow> (\<forall>x. f x = g x)" | 
| 26147 | 16 | apply (rule iffI) | 
| 17 | apply (simp (no_asm_simp)) | |
| 18 | apply (rule ext) | |
| 19 | apply (simp (no_asm_simp)) | |
| 20 | done | |
| 5305 | 21 | |
| 26147 | 22 | lemma apply_inverse: | 
| 26357 | 23 | "f x = u \<Longrightarrow> (\<And>x. P x \<Longrightarrow> g (f x) = x) \<Longrightarrow> P x \<Longrightarrow> x = g u" | 
| 26147 | 24 | by auto | 
| 2912 | 25 | |
| 12258 | 26 | |
| 26147 | 27 | subsection {* The Identity Function @{text id} *}
 | 
| 6171 | 28 | |
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 29 | definition | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 30 | id :: "'a \<Rightarrow> 'a" | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 31 | where | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 32 | "id = (\<lambda>x. x)" | 
| 13910 | 33 | |
| 26147 | 34 | lemma id_apply [simp]: "id x = x" | 
| 35 | by (simp add: id_def) | |
| 36 | ||
| 37 | lemma image_ident [simp]: "(%x. x) ` Y = Y" | |
| 38 | by blast | |
| 39 | ||
| 40 | lemma image_id [simp]: "id ` Y = Y" | |
| 41 | by (simp add: id_def) | |
| 42 | ||
| 43 | lemma vimage_ident [simp]: "(%x. x) -` Y = Y" | |
| 44 | by blast | |
| 45 | ||
| 46 | lemma vimage_id [simp]: "id -` A = A" | |
| 47 | by (simp add: id_def) | |
| 48 | ||
| 49 | ||
| 50 | subsection {* The Composition Operator @{text "f \<circ> g"} *}
 | |
| 51 | ||
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 52 | definition | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 53 |   comp :: "('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "o" 55)
 | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 54 | where | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 55 | "f o g = (\<lambda>x. f (g x))" | 
| 11123 | 56 | |
| 21210 | 57 | notation (xsymbols) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 58 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 59 | |
| 21210 | 60 | notation (HTML output) | 
| 19656 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 61 | comp (infixl "\<circ>" 55) | 
| 
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
 wenzelm parents: 
19536diff
changeset | 62 | |
| 13585 | 63 | text{*compatibility*}
 | 
| 64 | lemmas o_def = comp_def | |
| 2912 | 65 | |
| 13585 | 66 | lemma o_apply [simp]: "(f o g) x = f (g x)" | 
| 67 | by (simp add: comp_def) | |
| 68 | ||
| 69 | lemma o_assoc: "f o (g o h) = f o g o h" | |
| 70 | by (simp add: comp_def) | |
| 71 | ||
| 72 | lemma id_o [simp]: "id o g = g" | |
| 73 | by (simp add: comp_def) | |
| 74 | ||
| 75 | lemma o_id [simp]: "f o id = f" | |
| 76 | by (simp add: comp_def) | |
| 77 | ||
| 34150 | 78 | lemma o_eq_dest: | 
| 79 | "a o b = c o d \<Longrightarrow> a (b v) = c (d v)" | |
| 80 | by (simp only: o_def) (fact fun_cong) | |
| 81 | ||
| 82 | lemma o_eq_elim: | |
| 83 | "a o b = c o d \<Longrightarrow> ((\<And>v. a (b v) = c (d v)) \<Longrightarrow> R) \<Longrightarrow> R" | |
| 84 | by (erule meta_mp) (fact o_eq_dest) | |
| 85 | ||
| 13585 | 86 | lemma image_compose: "(f o g) ` r = f`(g`r)" | 
| 87 | by (simp add: comp_def, blast) | |
| 88 | ||
| 33044 | 89 | lemma vimage_compose: "(g \<circ> f) -` x = f -` (g -` x)" | 
| 90 | by auto | |
| 91 | ||
| 13585 | 92 | lemma UN_o: "UNION A (g o f) = UNION (f`A) g" | 
| 93 | by (unfold comp_def, blast) | |
| 94 | ||
| 95 | ||
| 26588 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 96 | subsection {* The Forward Composition Operator @{text fcomp} *}
 | 
| 26357 | 97 | |
| 98 | definition | |
| 37751 | 99 |   fcomp :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" (infixl "\<circ>>" 60)
 | 
| 26357 | 100 | where | 
| 37751 | 101 | "f \<circ>> g = (\<lambda>x. g (f x))" | 
| 26357 | 102 | |
| 37751 | 103 | lemma fcomp_apply [simp]: "(f \<circ>> g) x = g (f x)" | 
| 26357 | 104 | by (simp add: fcomp_def) | 
| 105 | ||
| 37751 | 106 | lemma fcomp_assoc: "(f \<circ>> g) \<circ>> h = f \<circ>> (g \<circ>> h)" | 
| 26357 | 107 | by (simp add: fcomp_def) | 
| 108 | ||
| 37751 | 109 | lemma id_fcomp [simp]: "id \<circ>> g = g" | 
| 26357 | 110 | by (simp add: fcomp_def) | 
| 111 | ||
| 37751 | 112 | lemma fcomp_id [simp]: "f \<circ>> id = f" | 
| 26357 | 113 | by (simp add: fcomp_def) | 
| 114 | ||
| 31202 
52d332f8f909
pretty printing of functional combinators for evaluation code
 haftmann parents: 
31080diff
changeset | 115 | code_const fcomp | 
| 
52d332f8f909
pretty printing of functional combinators for evaluation code
 haftmann parents: 
31080diff
changeset | 116 | (Eval infixl 1 "#>") | 
| 
52d332f8f909
pretty printing of functional combinators for evaluation code
 haftmann parents: 
31080diff
changeset | 117 | |
| 37751 | 118 | no_notation fcomp (infixl "\<circ>>" 60) | 
| 26588 
d83271bfaba5
removed syntax from monad combinators; renamed mbind to scomp
 haftmann parents: 
26357diff
changeset | 119 | |
| 26357 | 120 | |
| 40602 | 121 | subsection {* Mapping functions *}
 | 
| 122 | ||
| 123 | definition map_fun :: "('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd" where
 | |
| 124 | "map_fun f g h = g \<circ> h \<circ> f" | |
| 125 | ||
| 126 | lemma map_fun_apply [simp]: | |
| 127 | "map_fun f g h x = g (h (f x))" | |
| 128 | by (simp add: map_fun_def) | |
| 129 | ||
| 130 | ||
| 40702 | 131 | subsection {* Injectivity and Bijectivity *}
 | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 132 | |
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 133 | definition inj_on :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> bool" where -- "injective"
 | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 134 | "inj_on f A \<longleftrightarrow> (\<forall>x\<in>A. \<forall>y\<in>A. f x = f y \<longrightarrow> x = y)" | 
| 26147 | 135 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 136 | definition bij_betw :: "('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'b set \<Rightarrow> bool" where -- "bijective"
 | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 137 | "bij_betw f A B \<longleftrightarrow> inj_on f A \<and> f ` A = B" | 
| 26147 | 138 | |
| 40702 | 139 | text{*A common special case: functions injective, surjective or bijective over
 | 
| 140 | the entire domain type.*} | |
| 26147 | 141 | |
| 142 | abbreviation | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 143 | "inj f \<equiv> inj_on f UNIV" | 
| 26147 | 144 | |
| 40702 | 145 | abbreviation surj :: "('a \<Rightarrow> 'b) \<Rightarrow> bool" where -- "surjective"
 | 
| 146 | "surj f \<equiv> (range f = UNIV)" | |
| 13585 | 147 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 148 | abbreviation | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 149 | "bij f \<equiv> bij_betw f UNIV UNIV" | 
| 26147 | 150 | |
| 151 | lemma injI: | |
| 152 | assumes "\<And>x y. f x = f y \<Longrightarrow> x = y" | |
| 153 | shows "inj f" | |
| 154 | using assms unfolding inj_on_def by auto | |
| 13585 | 155 | |
| 13637 | 156 | theorem range_ex1_eq: "inj f \<Longrightarrow> b : range f = (EX! x. b = f x)" | 
| 157 | by (unfold inj_on_def, blast) | |
| 158 | ||
| 13585 | 159 | lemma injD: "[| inj(f); f(x) = f(y) |] ==> x=y" | 
| 160 | by (simp add: inj_on_def) | |
| 161 | ||
| 32988 | 162 | lemma inj_on_eq_iff: "inj_on f A ==> x:A ==> y:A ==> (f(x) = f(y)) = (x=y)" | 
| 13585 | 163 | by (force simp add: inj_on_def) | 
| 164 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 165 | lemma inj_on_cong: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 166 | "(\<And> a. a : A \<Longrightarrow> f a = g a) \<Longrightarrow> inj_on f A = inj_on g A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 167 | unfolding inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 168 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 169 | lemma inj_on_strict_subset: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 170 | "\<lbrakk> inj_on f B; A < B \<rbrakk> \<Longrightarrow> f`A < f`B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 171 | unfolding inj_on_def unfolding image_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 172 | |
| 38620 | 173 | lemma inj_comp: | 
| 174 | "inj f \<Longrightarrow> inj g \<Longrightarrow> inj (f \<circ> g)" | |
| 175 | by (simp add: inj_on_def) | |
| 176 | ||
| 177 | lemma inj_fun: "inj f \<Longrightarrow> inj (\<lambda>x y. f x)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 178 | by (simp add: inj_on_def fun_eq_iff) | 
| 38620 | 179 | |
| 32988 | 180 | lemma inj_eq: "inj f ==> (f(x) = f(y)) = (x=y)" | 
| 181 | by (simp add: inj_on_eq_iff) | |
| 182 | ||
| 26147 | 183 | lemma inj_on_id[simp]: "inj_on id A" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 184 | by (simp add: inj_on_def) | 
| 13585 | 185 | |
| 26147 | 186 | lemma inj_on_id2[simp]: "inj_on (%x. x) A" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 187 | by (simp add: inj_on_def) | 
| 26147 | 188 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 189 | lemma inj_on_Int: "\<lbrakk>inj_on f A; inj_on f B\<rbrakk> \<Longrightarrow> inj_on f (A \<inter> B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 190 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 191 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 192 | lemma inj_on_INTER: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 193 |   "\<lbrakk>I \<noteq> {}; \<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)\<rbrakk> \<Longrightarrow> inj_on f (\<Inter> i \<in> I. A i)"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 194 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 195 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 196 | lemma inj_on_Inter: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 197 |   "\<lbrakk>S \<noteq> {}; \<And> A. A \<in> S \<Longrightarrow> inj_on f A\<rbrakk> \<Longrightarrow> inj_on f (Inter S)"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 198 | unfolding inj_on_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 199 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 200 | lemma inj_on_UNION_chain: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 201 | assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 202 | INJ: "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 203 | shows "inj_on f (\<Union> i \<in> I. A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 204 | proof(unfold inj_on_def UNION_def, auto) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 205 | fix i j x y | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 206 | assume *: "i \<in> I" "j \<in> I" and **: "x \<in> A i" "y \<in> A j" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 207 | and ***: "f x = f y" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 208 | show "x = y" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 209 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 210 |     {assume "A i \<le> A j"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 211 | with ** have "x \<in> A j" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 212 | with INJ * ** *** have ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 213 | by(auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 214 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 215 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 216 |     {assume "A j \<le> A i"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 217 | with ** have "y \<in> A i" by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 218 | with INJ * ** *** have ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 219 | by(auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 220 | } | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 221 | ultimately show ?thesis using CH * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 222 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 223 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 224 | |
| 40702 | 225 | lemma surj_id: "surj id" | 
| 226 | by simp | |
| 26147 | 227 | |
| 39101 
606432dd1896
Revert bij_betw changes to simp set (Problem in afp/Ordinals_and_Cardinals)
 hoelzl parents: 
39076diff
changeset | 228 | lemma bij_id[simp]: "bij id" | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 229 | by (simp add: bij_betw_def) | 
| 13585 | 230 | |
| 231 | lemma inj_onI: | |
| 232 | "(!! x y. [| x:A; y:A; f(x) = f(y) |] ==> x=y) ==> inj_on f A" | |
| 233 | by (simp add: inj_on_def) | |
| 234 | ||
| 235 | lemma inj_on_inverseI: "(!!x. x:A ==> g(f(x)) = x) ==> inj_on f A" | |
| 236 | by (auto dest: arg_cong [of concl: g] simp add: inj_on_def) | |
| 237 | ||
| 238 | lemma inj_onD: "[| inj_on f A; f(x)=f(y); x:A; y:A |] ==> x=y" | |
| 239 | by (unfold inj_on_def, blast) | |
| 240 | ||
| 241 | lemma inj_on_iff: "[| inj_on f A; x:A; y:A |] ==> (f(x)=f(y)) = (x=y)" | |
| 242 | by (blast dest!: inj_onD) | |
| 243 | ||
| 244 | lemma comp_inj_on: | |
| 245 | "[| inj_on f A; inj_on g (f`A) |] ==> inj_on (g o f) A" | |
| 246 | by (simp add: comp_def inj_on_def) | |
| 247 | ||
| 15303 | 248 | lemma inj_on_imageI: "inj_on (g o f) A \<Longrightarrow> inj_on g (f ` A)" | 
| 249 | apply(simp add:inj_on_def image_def) | |
| 250 | apply blast | |
| 251 | done | |
| 252 | ||
| 15439 | 253 | lemma inj_on_image_iff: "\<lbrakk> ALL x:A. ALL y:A. (g(f x) = g(f y)) = (g x = g y); | 
| 254 | inj_on f A \<rbrakk> \<Longrightarrow> inj_on g (f ` A) = inj_on g A" | |
| 255 | apply(unfold inj_on_def) | |
| 256 | apply blast | |
| 257 | done | |
| 258 | ||
| 13585 | 259 | lemma inj_on_contraD: "[| inj_on f A; ~x=y; x:A; y:A |] ==> ~ f(x)=f(y)" | 
| 260 | by (unfold inj_on_def, blast) | |
| 12258 | 261 | |
| 13585 | 262 | lemma inj_singleton: "inj (%s. {s})"
 | 
| 263 | by (simp add: inj_on_def) | |
| 264 | ||
| 15111 | 265 | lemma inj_on_empty[iff]: "inj_on f {}"
 | 
| 266 | by(simp add: inj_on_def) | |
| 267 | ||
| 15303 | 268 | lemma subset_inj_on: "[| inj_on f B; A <= B |] ==> inj_on f A" | 
| 13585 | 269 | by (unfold inj_on_def, blast) | 
| 270 | ||
| 15111 | 271 | lemma inj_on_Un: | 
| 272 | "inj_on f (A Un B) = | |
| 273 |   (inj_on f A & inj_on f B & f`(A-B) Int f`(B-A) = {})"
 | |
| 274 | apply(unfold inj_on_def) | |
| 275 | apply (blast intro:sym) | |
| 276 | done | |
| 277 | ||
| 278 | lemma inj_on_insert[iff]: | |
| 279 |   "inj_on f (insert a A) = (inj_on f A & f a ~: f`(A-{a}))"
 | |
| 280 | apply(unfold inj_on_def) | |
| 281 | apply (blast intro:sym) | |
| 282 | done | |
| 283 | ||
| 284 | lemma inj_on_diff: "inj_on f A ==> inj_on f (A-B)" | |
| 285 | apply(unfold inj_on_def) | |
| 286 | apply (blast) | |
| 287 | done | |
| 288 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 289 | lemma comp_inj_on_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 290 | "inj_on f A \<Longrightarrow> inj_on f' (f ` A) \<longleftrightarrow> inj_on (f' o f) A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 291 | by(auto simp add: comp_inj_on inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 292 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 293 | lemma inj_on_imageI2: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 294 | "inj_on (f' o f) A \<Longrightarrow> inj_on f A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 295 | by(auto simp add: comp_inj_on inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 296 | |
| 40702 | 297 | lemma surj_def: "surj f \<longleftrightarrow> (\<forall>y. \<exists>x. y = f x)" | 
| 298 | by auto | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 299 | |
| 40702 | 300 | lemma surjI: assumes *: "\<And> x. g (f x) = x" shows "surj g" | 
| 301 | using *[symmetric] by auto | |
| 13585 | 302 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 303 | lemma surjD: "surj f \<Longrightarrow> \<exists>x. y = f x" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 304 | by (simp add: surj_def) | 
| 13585 | 305 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 306 | lemma surjE: "surj f \<Longrightarrow> (\<And>x. y = f x \<Longrightarrow> C) \<Longrightarrow> C" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 307 | by (simp add: surj_def, blast) | 
| 13585 | 308 | |
| 309 | lemma comp_surj: "[| surj f; surj g |] ==> surj (g o f)" | |
| 310 | apply (simp add: comp_def surj_def, clarify) | |
| 311 | apply (drule_tac x = y in spec, clarify) | |
| 312 | apply (drule_tac x = x in spec, blast) | |
| 313 | done | |
| 314 | ||
| 39074 | 315 | lemma bij_betw_imp_surj: "bij_betw f A UNIV \<Longrightarrow> surj f" | 
| 40702 | 316 | unfolding bij_betw_def by auto | 
| 39074 | 317 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 318 | lemma bij_betw_empty1: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 319 |   assumes "bij_betw f {} A"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 320 |   shows "A = {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 321 | using assms unfolding bij_betw_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 322 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 323 | lemma bij_betw_empty2: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 324 |   assumes "bij_betw f A {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 325 |   shows "A = {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 326 | using assms unfolding bij_betw_def by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 327 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 328 | lemma inj_on_imp_bij_betw: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 329 | "inj_on f A \<Longrightarrow> bij_betw f A (f ` A)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 330 | unfolding bij_betw_def by simp | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 331 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 332 | lemma bij_def: "bij f \<longleftrightarrow> inj f \<and> surj f" | 
| 40702 | 333 | unfolding bij_betw_def .. | 
| 39074 | 334 | |
| 13585 | 335 | lemma bijI: "[| inj f; surj f |] ==> bij f" | 
| 336 | by (simp add: bij_def) | |
| 337 | ||
| 338 | lemma bij_is_inj: "bij f ==> inj f" | |
| 339 | by (simp add: bij_def) | |
| 340 | ||
| 341 | lemma bij_is_surj: "bij f ==> surj f" | |
| 342 | by (simp add: bij_def) | |
| 343 | ||
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 344 | lemma bij_betw_imp_inj_on: "bij_betw f A B \<Longrightarrow> inj_on f A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 345 | by (simp add: bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 346 | |
| 31438 | 347 | lemma bij_betw_trans: | 
| 348 | "bij_betw f A B \<Longrightarrow> bij_betw g B C \<Longrightarrow> bij_betw (g o f) A C" | |
| 349 | by(auto simp add:bij_betw_def comp_inj_on) | |
| 350 | ||
| 40702 | 351 | lemma bij_comp: "bij f \<Longrightarrow> bij g \<Longrightarrow> bij (g o f)" | 
| 352 | by (rule bij_betw_trans) | |
| 353 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 354 | lemma bij_betw_comp_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 355 | "bij_betw f A A' \<Longrightarrow> bij_betw f' A' A'' \<longleftrightarrow> bij_betw (f' o f) A A''" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 356 | by(auto simp add: bij_betw_def inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 357 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 358 | lemma bij_betw_comp_iff2: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 359 | assumes BIJ: "bij_betw f' A' A''" and IM: "f ` A \<le> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 360 | shows "bij_betw f A A' \<longleftrightarrow> bij_betw (f' o f) A A''" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 361 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 362 | proof(auto simp add: bij_betw_comp_iff) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 363 | assume *: "bij_betw (f' \<circ> f) A A''" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 364 | thus "bij_betw f A A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 365 | using IM | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 366 | proof(auto simp add: bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 367 | assume "inj_on (f' \<circ> f) A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 368 | thus "inj_on f A" using inj_on_imageI2 by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 369 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 370 | fix a' assume **: "a' \<in> A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 371 | hence "f' a' \<in> A''" using BIJ unfolding bij_betw_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 372 | then obtain a where 1: "a \<in> A \<and> f'(f a) = f' a'" using * | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 373 | unfolding bij_betw_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 374 | hence "f a \<in> A'" using IM by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 375 | hence "f a = a'" using BIJ ** 1 unfolding bij_betw_def inj_on_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 376 | thus "a' \<in> f ` A" using 1 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 377 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 378 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 379 | |
| 26105 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 380 | lemma bij_betw_inv: assumes "bij_betw f A B" shows "EX g. bij_betw g B A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 381 | proof - | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 382 | have i: "inj_on f A" and s: "f ` A = B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 383 | using assms by(auto simp:bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 384 | let ?P = "%b a. a:A \<and> f a = b" let ?g = "%b. The (?P b)" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 385 |   { fix a b assume P: "?P b a"
 | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 386 | hence ex1: "\<exists>a. ?P b a" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 387 | hence uex1: "\<exists>!a. ?P b a" by(blast dest:inj_onD[OF i]) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 388 | hence " ?g b = a" using the1_equality[OF uex1, OF P] P by simp | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 389 | } note g = this | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 390 | have "inj_on ?g B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 391 | proof(rule inj_onI) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 392 | fix x y assume "x:B" "y:B" "?g x = ?g y" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 393 | from s `x:B` obtain a1 where a1: "?P x a1" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 394 | from s `y:B` obtain a2 where a2: "?P y a2" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 395 | from g[OF a1] a1 g[OF a2] a2 `?g x = ?g y` show "x=y" by simp | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 396 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 397 | moreover have "?g ` B = A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 398 | proof(auto simp:image_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 399 | fix b assume "b:B" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 400 | with s obtain a where P: "?P b a" unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 401 | thus "?g b \<in> A" using g[OF P] by auto | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 402 | next | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 403 | fix a assume "a:A" | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 404 | then obtain b where P: "?P b a" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 405 | then have "b:B" using s unfolding image_def by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 406 | with g[OF P] show "\<exists>b\<in>B. a = ?g b" by blast | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 407 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 408 | ultimately show ?thesis by(auto simp:bij_betw_def) | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 409 | qed | 
| 
ae06618225ec
moved bij_betw from Library/FuncSet to Fun, redistributed some lemmas, and
 nipkow parents: 
25886diff
changeset | 410 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 411 | lemma bij_betw_cong: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 412 | "(\<And> a. a \<in> A \<Longrightarrow> f a = g a) \<Longrightarrow> bij_betw f A A' = bij_betw g A A'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 413 | unfolding bij_betw_def inj_on_def by force | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 414 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 415 | lemma bij_betw_id[intro, simp]: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 416 | "bij_betw id A A" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 417 | unfolding bij_betw_def id_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 418 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 419 | lemma bij_betw_id_iff: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 420 | "bij_betw id A B \<longleftrightarrow> A = B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 421 | by(auto simp add: bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 422 | |
| 39075 | 423 | lemma bij_betw_combine: | 
| 424 |   assumes "bij_betw f A B" "bij_betw f C D" "B \<inter> D = {}"
 | |
| 425 | shows "bij_betw f (A \<union> C) (B \<union> D)" | |
| 426 | using assms unfolding bij_betw_def inj_on_Un image_Un by auto | |
| 427 | ||
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 428 | lemma bij_betw_UNION_chain: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 429 | assumes CH: "\<And> i j. \<lbrakk>i \<in> I; j \<in> I\<rbrakk> \<Longrightarrow> A i \<le> A j \<or> A j \<le> A i" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 430 | BIJ: "\<And> i. i \<in> I \<Longrightarrow> bij_betw f (A i) (A' i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 431 | shows "bij_betw f (\<Union> i \<in> I. A i) (\<Union> i \<in> I. A' i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 432 | proof(unfold bij_betw_def, auto simp add: image_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 433 | have "\<And> i. i \<in> I \<Longrightarrow> inj_on f (A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 434 | using BIJ bij_betw_def[of f] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 435 | thus "inj_on f (\<Union> i \<in> I. A i)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 436 | using CH inj_on_UNION_chain[of I A f] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 437 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 438 | fix i x | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 439 | assume *: "i \<in> I" "x \<in> A i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 440 | hence "f x \<in> A' i" using BIJ bij_betw_def[of f] by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 441 | thus "\<exists>j \<in> I. f x \<in> A' j" using * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 442 | next | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 443 | fix i x' | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 444 | assume *: "i \<in> I" "x' \<in> A' i" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 445 | hence "\<exists>x \<in> A i. x' = f x" using BIJ bij_betw_def[of f] by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 446 | thus "\<exists>j \<in> I. \<exists>x \<in> A j. x' = f x" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 447 | using * by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 448 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 449 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 450 | lemma bij_betw_Disj_Un: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 451 |   assumes DISJ: "A \<inter> B = {}" and DISJ': "A' \<inter> B' = {}" and
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 452 | B1: "bij_betw f A A'" and B2: "bij_betw f B B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 453 | shows "bij_betw f (A \<union> B) (A' \<union> B')" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 454 | proof- | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 455 | have 1: "inj_on f A \<and> inj_on f B" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 456 | using B1 B2 by (auto simp add: bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 457 | have 2: "f`A = A' \<and> f`B = B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 458 | using B1 B2 by (auto simp add: bij_betw_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 459 |   hence "f`(A - B) \<inter> f`(B - A) = {}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 460 | using DISJ DISJ' by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 461 | hence "inj_on f (A \<union> B)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 462 | using 1 by (auto simp add: inj_on_Un) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 463 | (* *) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 464 | moreover | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 465 | have "f`(A \<union> B) = A' \<union> B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 466 | using 2 by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 467 | ultimately show ?thesis | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 468 | unfolding bij_betw_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 469 | qed | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 470 | |
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 471 | lemma bij_betw_subset: | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 472 | assumes BIJ: "bij_betw f A A'" and | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 473 | SUB: "B \<le> A" and IM: "f ` B = B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 474 | shows "bij_betw f B B'" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 475 | using assms | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 476 | by(unfold bij_betw_def inj_on_def, auto simp add: inj_on_def) | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 477 | |
| 13585 | 478 | lemma surj_image_vimage_eq: "surj f ==> f ` (f -` A) = A" | 
| 40702 | 479 | by simp | 
| 13585 | 480 | |
| 481 | lemma inj_vimage_image_eq: "inj f ==> f -` (f ` A) = A" | |
| 482 | by (simp add: inj_on_def, blast) | |
| 483 | ||
| 484 | lemma vimage_subsetD: "surj f ==> f -` B <= A ==> B <= f ` A" | |
| 40702 | 485 | by (blast intro: sym) | 
| 13585 | 486 | |
| 487 | lemma vimage_subsetI: "inj f ==> B <= f ` A ==> f -` B <= A" | |
| 488 | by (unfold inj_on_def, blast) | |
| 489 | ||
| 490 | lemma vimage_subset_eq: "bij f ==> (f -` B <= A) = (B <= f ` A)" | |
| 491 | apply (unfold bij_def) | |
| 492 | apply (blast del: subsetI intro: vimage_subsetI vimage_subsetD) | |
| 493 | done | |
| 494 | ||
| 31438 | 495 | lemma inj_on_Un_image_eq_iff: "inj_on f (A \<union> B) \<Longrightarrow> f ` A = f ` B \<longleftrightarrow> A = B" | 
| 496 | by(blast dest: inj_onD) | |
| 497 | ||
| 13585 | 498 | lemma inj_on_image_Int: | 
| 499 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A Int B) = f`A Int f`B" | |
| 500 | apply (simp add: inj_on_def, blast) | |
| 501 | done | |
| 502 | ||
| 503 | lemma inj_on_image_set_diff: | |
| 504 | "[| inj_on f C; A<=C; B<=C |] ==> f`(A-B) = f`A - f`B" | |
| 505 | apply (simp add: inj_on_def, blast) | |
| 506 | done | |
| 507 | ||
| 508 | lemma image_Int: "inj f ==> f`(A Int B) = f`A Int f`B" | |
| 509 | by (simp add: inj_on_def, blast) | |
| 510 | ||
| 511 | lemma image_set_diff: "inj f ==> f`(A-B) = f`A - f`B" | |
| 512 | by (simp add: inj_on_def, blast) | |
| 513 | ||
| 514 | lemma inj_image_mem_iff: "inj f ==> (f a : f`A) = (a : A)" | |
| 515 | by (blast dest: injD) | |
| 516 | ||
| 517 | lemma inj_image_subset_iff: "inj f ==> (f`A <= f`B) = (A<=B)" | |
| 518 | by (simp add: inj_on_def, blast) | |
| 519 | ||
| 520 | lemma inj_image_eq_iff: "inj f ==> (f`A = f`B) = (A = B)" | |
| 521 | by (blast dest: injD) | |
| 522 | ||
| 523 | (*injectivity's required. Left-to-right inclusion holds even if A is empty*) | |
| 524 | lemma image_INT: | |
| 525 | "[| inj_on f C; ALL x:A. B x <= C; j:A |] | |
| 526 | ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 527 | apply (simp add: inj_on_def, blast) | |
| 528 | done | |
| 529 | ||
| 530 | (*Compare with image_INT: no use of inj_on, and if f is surjective then | |
| 531 | it doesn't matter whether A is empty*) | |
| 532 | lemma bij_image_INT: "bij f ==> f ` (INTER A B) = (INT x:A. f ` B x)" | |
| 533 | apply (simp add: bij_def) | |
| 534 | apply (simp add: inj_on_def surj_def, blast) | |
| 535 | done | |
| 536 | ||
| 537 | lemma surj_Compl_image_subset: "surj f ==> -(f`A) <= f`(-A)" | |
| 40702 | 538 | by auto | 
| 13585 | 539 | |
| 540 | lemma inj_image_Compl_subset: "inj f ==> f`(-A) <= -(f`A)" | |
| 541 | by (auto simp add: inj_on_def) | |
| 5852 | 542 | |
| 13585 | 543 | lemma bij_image_Compl_eq: "bij f ==> f`(-A) = -(f`A)" | 
| 544 | apply (simp add: bij_def) | |
| 545 | apply (rule equalityI) | |
| 546 | apply (simp_all (no_asm_simp) add: inj_image_Compl_subset surj_Compl_image_subset) | |
| 547 | done | |
| 548 | ||
| 41657 | 549 | lemma inj_vimage_singleton: "inj f \<Longrightarrow> f -` {a} \<subseteq> {THE x. f x = a}"
 | 
| 550 |   -- {* The inverse image of a singleton under an injective function
 | |
| 551 | is included in a singleton. *} | |
| 552 | apply (auto simp add: inj_on_def) | |
| 553 | apply (blast intro: the_equality [symmetric]) | |
| 554 | done | |
| 555 | ||
| 35584 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 556 | lemma (in ordered_ab_group_add) inj_uminus[simp, intro]: "inj_on uminus A" | 
| 35580 | 557 | by (auto intro!: inj_onI) | 
| 13585 | 558 | |
| 35584 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 559 | lemma (in linorder) strict_mono_imp_inj_on: "strict_mono f \<Longrightarrow> inj_on f A" | 
| 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 560 | by (auto intro!: inj_onI dest: strict_mono_eq) | 
| 
768f8d92b767
generalized inj_uminus; added strict_mono_imp_inj_on
 hoelzl parents: 
35580diff
changeset | 561 | |
| 41657 | 562 | |
| 13585 | 563 | subsection{*Function Updating*}
 | 
| 564 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35115diff
changeset | 565 | definition | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
35115diff
changeset | 566 |   fun_upd :: "('a => 'b) => 'a => 'b => ('a => 'b)" where
 | 
| 26147 | 567 | "fun_upd f a b == % x. if x=a then b else f x" | 
| 568 | ||
| 41229 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
40969diff
changeset | 569 | nonterminal updbinds and updbind | 
| 
d797baa3d57c
replaced command 'nonterminals' by slightly modernized version 'nonterminal';
 wenzelm parents: 
40969diff
changeset | 570 | |
| 26147 | 571 | syntax | 
| 572 |   "_updbind" :: "['a, 'a] => updbind"             ("(2_ :=/ _)")
 | |
| 573 |   ""         :: "updbind => updbinds"             ("_")
 | |
| 574 |   "_updbinds":: "[updbind, updbinds] => updbinds" ("_,/ _")
 | |
| 35115 | 575 |   "_Update"  :: "['a, updbinds] => 'a"            ("_/'((_)')" [1000, 0] 900)
 | 
| 26147 | 576 | |
| 577 | translations | |
| 35115 | 578 | "_Update f (_updbinds b bs)" == "_Update (_Update f b) bs" | 
| 579 | "f(x:=y)" == "CONST fun_upd f x y" | |
| 26147 | 580 | |
| 581 | (* Hint: to define the sum of two functions (or maps), use sum_case. | |
| 582 | A nice infix syntax could be defined (in Datatype.thy or below) by | |
| 35115 | 583 | notation | 
| 584 | sum_case (infixr "'(+')"80) | |
| 26147 | 585 | *) | 
| 586 | ||
| 13585 | 587 | lemma fun_upd_idem_iff: "(f(x:=y) = f) = (f x = y)" | 
| 588 | apply (simp add: fun_upd_def, safe) | |
| 589 | apply (erule subst) | |
| 590 | apply (rule_tac [2] ext, auto) | |
| 591 | done | |
| 592 | ||
| 593 | (* f x = y ==> f(x:=y) = f *) | |
| 594 | lemmas fun_upd_idem = fun_upd_idem_iff [THEN iffD2, standard] | |
| 595 | ||
| 596 | (* f(x := f x) = f *) | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 597 | lemmas fun_upd_triv = refl [THEN fun_upd_idem] | 
| 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 598 | declare fun_upd_triv [iff] | 
| 13585 | 599 | |
| 600 | lemma fun_upd_apply [simp]: "(f(x:=y))z = (if z=x then y else f z)" | |
| 17084 
fb0a80aef0be
classical rules must have names for ATP integration
 paulson parents: 
16973diff
changeset | 601 | by (simp add: fun_upd_def) | 
| 13585 | 602 | |
| 603 | (* fun_upd_apply supersedes these two, but they are useful | |
| 604 | if fun_upd_apply is intentionally removed from the simpset *) | |
| 605 | lemma fun_upd_same: "(f(x:=y)) x = y" | |
| 606 | by simp | |
| 607 | ||
| 608 | lemma fun_upd_other: "z~=x ==> (f(x:=y)) z = f z" | |
| 609 | by simp | |
| 610 | ||
| 611 | lemma fun_upd_upd [simp]: "f(x:=y,x:=z) = f(x:=z)" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 612 | by (simp add: fun_eq_iff) | 
| 13585 | 613 | |
| 614 | lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" | |
| 615 | by (rule ext, auto) | |
| 616 | ||
| 15303 | 617 | lemma inj_on_fun_updI: "\<lbrakk> inj_on f A; y \<notin> f`A \<rbrakk> \<Longrightarrow> inj_on (f(x:=y)) A" | 
| 34209 | 618 | by (fastsimp simp:inj_on_def image_def) | 
| 15303 | 619 | |
| 15510 | 620 | lemma fun_upd_image: | 
| 621 |      "f(x:=y) ` A = (if x \<in> A then insert y (f ` (A-{x})) else f ` A)"
 | |
| 622 | by auto | |
| 623 | ||
| 31080 | 624 | lemma fun_upd_comp: "f \<circ> (g(x := y)) = (f \<circ> g)(x := f y)" | 
| 34209 | 625 | by (auto intro: ext) | 
| 31080 | 626 | |
| 26147 | 627 | |
| 628 | subsection {* @{text override_on} *}
 | |
| 629 | ||
| 630 | definition | |
| 631 |   override_on :: "('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a set \<Rightarrow> 'a \<Rightarrow> 'b"
 | |
| 632 | where | |
| 633 | "override_on f g A = (\<lambda>a. if a \<in> A then g a else f a)" | |
| 13910 | 634 | |
| 15691 | 635 | lemma override_on_emptyset[simp]: "override_on f g {} = f"
 | 
| 636 | by(simp add:override_on_def) | |
| 13910 | 637 | |
| 15691 | 638 | lemma override_on_apply_notin[simp]: "a ~: A ==> (override_on f g A) a = f a" | 
| 639 | by(simp add:override_on_def) | |
| 13910 | 640 | |
| 15691 | 641 | lemma override_on_apply_in[simp]: "a : A ==> (override_on f g A) a = g a" | 
| 642 | by(simp add:override_on_def) | |
| 13910 | 643 | |
| 26147 | 644 | |
| 645 | subsection {* @{text swap} *}
 | |
| 15510 | 646 | |
| 22744 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 647 | definition | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 648 |   swap :: "'a \<Rightarrow> 'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> ('a \<Rightarrow> 'b)"
 | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 649 | where | 
| 
5cbe966d67a2
Isar definitions are now added explicitly to code theorem table
 haftmann parents: 
22577diff
changeset | 650 | "swap a b f = f (a := f b, b:= f a)" | 
| 15510 | 651 | |
| 34101 | 652 | lemma swap_self [simp]: "swap a a f = f" | 
| 15691 | 653 | by (simp add: swap_def) | 
| 15510 | 654 | |
| 655 | lemma swap_commute: "swap a b f = swap b a f" | |
| 656 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 657 | ||
| 658 | lemma swap_nilpotent [simp]: "swap a b (swap a b f) = f" | |
| 659 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 660 | ||
| 34145 | 661 | lemma swap_triple: | 
| 662 | assumes "a \<noteq> c" and "b \<noteq> c" | |
| 663 | shows "swap a b (swap b c (swap a b f)) = swap a c f" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39213diff
changeset | 664 | using assms by (simp add: fun_eq_iff swap_def) | 
| 34145 | 665 | |
| 34101 | 666 | lemma comp_swap: "f \<circ> swap a b g = swap a b (f \<circ> g)" | 
| 667 | by (rule ext, simp add: fun_upd_def swap_def) | |
| 668 | ||
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 669 | lemma swap_image_eq [simp]: | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 670 | assumes "a \<in> A" "b \<in> A" shows "swap a b f ` A = f ` A" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 671 | proof - | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 672 | have subset: "\<And>f. swap a b f ` A \<subseteq> f ` A" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 673 | using assms by (auto simp: image_iff swap_def) | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 674 | then have "swap a b (swap a b f) ` A \<subseteq> (swap a b f) ` A" . | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 675 | with subset[of f] show ?thesis by auto | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 676 | qed | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 677 | |
| 15510 | 678 | lemma inj_on_imp_inj_on_swap: | 
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 679 | "\<lbrakk>inj_on f A; a \<in> A; b \<in> A\<rbrakk> \<Longrightarrow> inj_on (swap a b f) A" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 680 | by (simp add: inj_on_def swap_def, blast) | 
| 15510 | 681 | |
| 682 | lemma inj_on_swap_iff [simp]: | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 683 | assumes A: "a \<in> A" "b \<in> A" shows "inj_on (swap a b f) A \<longleftrightarrow> inj_on f A" | 
| 39075 | 684 | proof | 
| 15510 | 685 | assume "inj_on (swap a b f) A" | 
| 39075 | 686 | with A have "inj_on (swap a b (swap a b f)) A" | 
| 687 | by (iprover intro: inj_on_imp_inj_on_swap) | |
| 688 | thus "inj_on f A" by simp | |
| 15510 | 689 | next | 
| 690 | assume "inj_on f A" | |
| 34209 | 691 | with A show "inj_on (swap a b f) A" by (iprover intro: inj_on_imp_inj_on_swap) | 
| 15510 | 692 | qed | 
| 693 | ||
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 694 | lemma surj_imp_surj_swap: "surj f \<Longrightarrow> surj (swap a b f)" | 
| 40702 | 695 | by simp | 
| 15510 | 696 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 697 | lemma surj_swap_iff [simp]: "surj (swap a b f) \<longleftrightarrow> surj f" | 
| 40702 | 698 | by simp | 
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 699 | |
| 39076 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 700 | lemma bij_betw_swap_iff [simp]: | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 701 | "\<lbrakk> x \<in> A; y \<in> A \<rbrakk> \<Longrightarrow> bij_betw (swap x y f) A B \<longleftrightarrow> bij_betw f A B" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 702 | by (auto simp: bij_betw_def) | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 703 | |
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 704 | lemma bij_swap_iff [simp]: "bij (swap a b f) \<longleftrightarrow> bij f" | 
| 
b3a9b6734663
Introduce surj_on and replace surj and bij by abbreviations.
 hoelzl parents: 
39075diff
changeset | 705 | by simp | 
| 39075 | 706 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35584diff
changeset | 707 | hide_const (open) swap | 
| 21547 
9c9fdf4c2949
moved order arities for fun and bool to Fun/Orderings
 haftmann parents: 
21327diff
changeset | 708 | |
| 31949 | 709 | subsection {* Inversion of injective functions *}
 | 
| 710 | ||
| 33057 | 711 | definition the_inv_into :: "'a set => ('a => 'b) => ('b => 'a)" where
 | 
| 712 | "the_inv_into A f == %x. THE y. y : A & f y = x" | |
| 32961 | 713 | |
| 33057 | 714 | lemma the_inv_into_f_f: | 
| 715 | "[| inj_on f A; x : A |] ==> the_inv_into A f (f x) = x" | |
| 716 | apply (simp add: the_inv_into_def inj_on_def) | |
| 34209 | 717 | apply blast | 
| 32961 | 718 | done | 
| 719 | ||
| 33057 | 720 | lemma f_the_inv_into_f: | 
| 721 | "inj_on f A ==> y : f`A ==> f (the_inv_into A f y) = y" | |
| 722 | apply (simp add: the_inv_into_def) | |
| 32961 | 723 | apply (rule the1I2) | 
| 724 | apply(blast dest: inj_onD) | |
| 725 | apply blast | |
| 726 | done | |
| 727 | ||
| 33057 | 728 | lemma the_inv_into_into: | 
| 729 | "[| inj_on f A; x : f ` A; A <= B |] ==> the_inv_into A f x : B" | |
| 730 | apply (simp add: the_inv_into_def) | |
| 32961 | 731 | apply (rule the1I2) | 
| 732 | apply(blast dest: inj_onD) | |
| 733 | apply blast | |
| 734 | done | |
| 735 | ||
| 33057 | 736 | lemma the_inv_into_onto[simp]: | 
| 737 | "inj_on f A ==> the_inv_into A f ` (f ` A) = A" | |
| 738 | by (fast intro:the_inv_into_into the_inv_into_f_f[symmetric]) | |
| 32961 | 739 | |
| 33057 | 740 | lemma the_inv_into_f_eq: | 
| 741 | "[| inj_on f A; f x = y; x : A |] ==> the_inv_into A f y = x" | |
| 32961 | 742 | apply (erule subst) | 
| 33057 | 743 | apply (erule the_inv_into_f_f, assumption) | 
| 32961 | 744 | done | 
| 745 | ||
| 33057 | 746 | lemma the_inv_into_comp: | 
| 32961 | 747 | "[| inj_on f (g ` A); inj_on g A; x : f ` g ` A |] ==> | 
| 33057 | 748 | the_inv_into A (f o g) x = (the_inv_into A g o the_inv_into (g ` A) f) x" | 
| 749 | apply (rule the_inv_into_f_eq) | |
| 32961 | 750 | apply (fast intro: comp_inj_on) | 
| 33057 | 751 | apply (simp add: f_the_inv_into_f the_inv_into_into) | 
| 752 | apply (simp add: the_inv_into_into) | |
| 32961 | 753 | done | 
| 754 | ||
| 33057 | 755 | lemma inj_on_the_inv_into: | 
| 756 | "inj_on f A \<Longrightarrow> inj_on (the_inv_into A f) (f ` A)" | |
| 757 | by (auto intro: inj_onI simp: image_def the_inv_into_f_f) | |
| 32961 | 758 | |
| 33057 | 759 | lemma bij_betw_the_inv_into: | 
| 760 | "bij_betw f A B \<Longrightarrow> bij_betw (the_inv_into A f) B A" | |
| 761 | by (auto simp add: bij_betw_def inj_on_the_inv_into the_inv_into_into) | |
| 32961 | 762 | |
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 763 | abbreviation the_inv :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a)" where
 | 
| 33057 | 764 | "the_inv f \<equiv> the_inv_into UNIV f" | 
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 765 | |
| 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 766 | lemma the_inv_f_f: | 
| 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 767 | assumes "inj f" | 
| 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 768 | shows "the_inv f (f x) = x" using assms UNIV_I | 
| 33057 | 769 | by (rule the_inv_into_f_f) | 
| 32998 
31b19fa0de0b
Renamed inv to the_inv and turned it into an abbreviation (based on the_inv_onto).
 berghofe parents: 
32988diff
changeset | 770 | |
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 771 | subsection {* Cantor's Paradox *}
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 772 | |
| 42238 | 773 | lemma Cantors_paradox [no_atp]: | 
| 40703 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 774 | "\<not>(\<exists>f. f ` A = Pow A)" | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 775 | proof clarify | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 776 | fix f assume "f ` A = Pow A" hence *: "Pow A \<le> f ` A" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 777 |   let ?X = "{a \<in> A. a \<notin> f a}"
 | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 778 | have "?X \<in> Pow A" unfolding Pow_def by auto | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 779 | with * obtain x where "x \<in> A \<and> f x = ?X" by blast | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 780 | thus False by best | 
| 
d1fc454d6735
Move some missing lemmas from Andrei Popescus 'Ordinals and Cardinals' AFP entry to the HOL-image.
 hoelzl parents: 
40702diff
changeset | 781 | qed | 
| 31949 | 782 | |
| 40969 | 783 | subsection {* Setup *} 
 | 
| 784 | ||
| 785 | subsubsection {* Proof tools *}
 | |
| 22845 | 786 | |
| 787 | text {* simplifies terms of the form
 | |
| 788 | f(...,x:=y,...,x:=z,...) to f(...,x:=z,...) *} | |
| 789 | ||
| 24017 | 790 | simproc_setup fun_upd2 ("f(v := w, x := y)") = {* fn _ =>
 | 
| 22845 | 791 | let | 
| 792 | fun gen_fun_upd NONE T _ _ = NONE | |
| 24017 | 793 |     | gen_fun_upd (SOME f) T x y = SOME (Const (@{const_name fun_upd}, T) $ f $ x $ y)
 | 
| 22845 | 794 | fun dest_fun_T1 (Type (_, T :: Ts)) = T | 
| 795 |   fun find_double (t as Const (@{const_name fun_upd},T) $ f $ x $ y) =
 | |
| 796 | let | |
| 797 |       fun find (Const (@{const_name fun_upd},T) $ g $ v $ w) =
 | |
| 798 | if v aconv x then SOME g else gen_fun_upd (find g) T v w | |
| 799 | | find t = NONE | |
| 800 | in (dest_fun_T1 T, gen_fun_upd (find f) T x y) end | |
| 24017 | 801 | |
| 802 | fun proc ss ct = | |
| 803 | let | |
| 804 | val ctxt = Simplifier.the_context ss | |
| 805 | val t = Thm.term_of ct | |
| 806 | in | |
| 807 | case find_double t of | |
| 808 | (T, NONE) => NONE | |
| 809 | | (T, SOME rhs) => | |
| 27330 | 810 | SOME (Goal.prove ctxt [] [] (Logic.mk_equals (t, rhs)) | 
| 24017 | 811 | (fn _ => | 
| 812 | rtac eq_reflection 1 THEN | |
| 813 | rtac ext 1 THEN | |
| 814 |               simp_tac (Simplifier.inherit_context ss @{simpset}) 1))
 | |
| 815 | end | |
| 816 | in proc end | |
| 22845 | 817 | *} | 
| 818 | ||
| 819 | ||
| 40969 | 820 | subsubsection {* Code generator *}
 | 
| 21870 | 821 | |
| 25886 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 822 | types_code | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 823 |   "fun"  ("(_ ->/ _)")
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 824 | attach (term_of) {*
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 825 | fun term_of_fun_type _ aT _ bT _ = Free ("<function>", aT --> bT);
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 826 | *} | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 827 | attach (test) {*
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 828 | fun gen_fun_type aF aT bG bT i = | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 829 | let | 
| 32740 | 830 | val tab = Unsynchronized.ref []; | 
| 25886 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 831 |     fun mk_upd (x, (_, y)) t = Const ("Fun.fun_upd",
 | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 832 | (aT --> bT) --> aT --> bT --> aT --> bT) $ t $ aF x $ y () | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 833 | in | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 834 | (fn x => | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 835 | case AList.lookup op = (!tab) x of | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 836 | NONE => | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 837 | let val p as (y, _) = bG i | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 838 | in (tab := (x, p) :: !tab; y) end | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 839 | | SOME (y, _) => y, | 
| 28711 | 840 |      fn () => Basics.fold mk_upd (!tab) (Const ("HOL.undefined", aT --> bT)))
 | 
| 25886 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 841 | end; | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 842 | *} | 
| 
7753e0d81b7a
Added test data generator for function type (from Pure/codegen.ML).
 berghofe parents: 
24286diff
changeset | 843 | |
| 21870 | 844 | code_const "op \<circ>" | 
| 845 | (SML infixl 5 "o") | |
| 846 | (Haskell infixr 9 ".") | |
| 847 | ||
| 21906 | 848 | code_const "id" | 
| 849 | (Haskell "id") | |
| 850 | ||
| 40969 | 851 | |
| 852 | subsubsection {* Functorial structure of types *}
 | |
| 853 | ||
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41229diff
changeset | 854 | use "Tools/enriched_type.ML" | 
| 40969 | 855 | |
| 2912 | 856 | end |