| author | wenzelm | 
| Wed, 01 Dec 2010 15:38:05 +0100 | |
| changeset 40847 | df8c7dc30214 | 
| parent 39159 | 0dec18004e75 | 
| child 42793 | 88bee9f6eec7 | 
| permissions | -rw-r--r-- | 
| 13020 | 1 | |
| 2 | header {* \section{The Multi-Mutator Case} *}
 | |
| 3 | ||
| 16417 | 4 | theory Mul_Gar_Coll imports Graph OG_Syntax begin | 
| 13020 | 5 | |
| 6 | text {*  The full theory takes aprox. 18 minutes.  *}
 | |
| 7 | ||
| 8 | record mut = | |
| 9 | Z :: bool | |
| 10 | R :: nat | |
| 11 | T :: nat | |
| 12 | ||
| 13 | text {* Declaration of variables: *}
 | |
| 14 | ||
| 15 | record mul_gar_coll_state = | |
| 16 | M :: nodes | |
| 17 | E :: edges | |
| 18 | bc :: "nat set" | |
| 19 | obc :: "nat set" | |
| 20 | Ma :: nodes | |
| 21 | ind :: nat | |
| 22 | k :: nat | |
| 23 | q :: nat | |
| 24 | l :: nat | |
| 25 | Muts :: "mut list" | |
| 26 | ||
| 27 | subsection {* The Mutators *}
 | |
| 28 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 29 | definition Mul_mut_init :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 13020 | 30 | "Mul_mut_init \<equiv> \<guillemotleft> \<lambda>n. n=length \<acute>Muts \<and> (\<forall>i<n. R (\<acute>Muts!i)<length \<acute>E | 
| 31 | \<and> T (\<acute>Muts!i)<length \<acute>M) \<guillemotright>" | |
| 32 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 33 | definition Mul_Redirect_Edge :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 34 | "Mul_Redirect_Edge j n \<equiv> | 
| 35 |   .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.
 | |
| 36 | \<langle>IF T(\<acute>Muts!j) \<in> Reach \<acute>E THEN | |
| 37 | \<acute>E:= \<acute>E[R (\<acute>Muts!j):= (fst (\<acute>E!R(\<acute>Muts!j)), T (\<acute>Muts!j))] FI,, | |
| 38 | \<acute>Muts:= \<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=False\<rparr>]\<rangle>" | |
| 39 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 40 | definition Mul_Color_Target :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 41 | "Mul_Color_Target j n \<equiv> | 
| 42 |   .{\<acute>Mul_mut_init n \<and> \<not> Z (\<acute>Muts!j)}. 
 | |
| 43 | \<langle>\<acute>M:=\<acute>M[T (\<acute>Muts!j):=Black],, \<acute>Muts:=\<acute>Muts[j:= (\<acute>Muts!j) \<lparr>Z:=True\<rparr>]\<rangle>" | |
| 44 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 45 | definition Mul_Mutator :: "nat \<Rightarrow> nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 46 | "Mul_Mutator j n \<equiv> | 
| 47 |   .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.  
 | |
| 48 | WHILE True | |
| 49 |     INV .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}.  
 | |
| 50 | DO Mul_Redirect_Edge j n ;; | |
| 51 | Mul_Color_Target j n | |
| 52 | OD" | |
| 53 | ||
| 54 | lemmas mul_mutator_defs = Mul_mut_init_def Mul_Redirect_Edge_def Mul_Color_Target_def | |
| 55 | ||
| 56 | subsubsection {* Correctness of the proof outline of one mutator *}
 | |
| 57 | ||
| 58 | lemma Mul_Redirect_Edge: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 59 | \<turnstile> Mul_Redirect_Edge j n | |
| 60 | pre(Mul_Color_Target j n)" | |
| 61 | apply (unfold mul_mutator_defs) | |
| 62 | apply annhoare | |
| 63 | apply(simp_all) | |
| 64 | apply clarify | |
| 65 | apply(simp add:nth_list_update) | |
| 66 | done | |
| 67 | ||
| 68 | lemma Mul_Color_Target: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 69 | \<turnstile> Mul_Color_Target j n | |
| 70 |     .{\<acute>Mul_mut_init n \<and> Z (\<acute>Muts!j)}."
 | |
| 71 | apply (unfold mul_mutator_defs) | |
| 72 | apply annhoare | |
| 73 | apply(simp_all) | |
| 74 | apply clarify | |
| 75 | apply(simp add:nth_list_update) | |
| 76 | done | |
| 77 | ||
| 78 | lemma Mul_Mutator: "0\<le>j \<and> j<n \<Longrightarrow> | |
| 79 |  \<turnstile> Mul_Mutator j n .{False}."
 | |
| 80 | apply(unfold Mul_Mutator_def) | |
| 81 | apply annhoare | |
| 82 | apply(simp_all add:Mul_Redirect_Edge Mul_Color_Target) | |
| 83 | apply(simp add:mul_mutator_defs Mul_Redirect_Edge_def) | |
| 84 | done | |
| 85 | ||
| 86 | subsubsection {* Interference freedom between mutators *}
 | |
| 87 | ||
| 88 | lemma Mul_interfree_Redirect_Edge_Redirect_Edge: | |
| 89 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 90 |   interfree_aux (Some (Mul_Redirect_Edge i n),{}, Some(Mul_Redirect_Edge j n))"
 | |
| 91 | apply (unfold mul_mutator_defs) | |
| 92 | apply interfree_aux | |
| 93 | apply safe | |
| 94 | apply(simp_all add: nth_list_update) | |
| 95 | done | |
| 96 | ||
| 97 | lemma Mul_interfree_Redirect_Edge_Color_Target: | |
| 98 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 99 |   interfree_aux (Some(Mul_Redirect_Edge i n),{},Some(Mul_Color_Target j n))"
 | |
| 100 | apply (unfold mul_mutator_defs) | |
| 101 | apply interfree_aux | |
| 102 | apply safe | |
| 103 | apply(simp_all add: nth_list_update) | |
| 104 | done | |
| 105 | ||
| 106 | lemma Mul_interfree_Color_Target_Redirect_Edge: | |
| 107 | "\<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 108 |   interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Redirect_Edge j n))"
 | |
| 109 | apply (unfold mul_mutator_defs) | |
| 110 | apply interfree_aux | |
| 111 | apply safe | |
| 112 | apply(simp_all add:nth_list_update) | |
| 113 | done | |
| 114 | ||
| 115 | lemma Mul_interfree_Color_Target_Color_Target: | |
| 116 | " \<lbrakk>0\<le>i; i<n; 0\<le>j; j<n; i\<noteq>j\<rbrakk> \<Longrightarrow> | |
| 117 |   interfree_aux (Some(Mul_Color_Target i n),{},Some(Mul_Color_Target j n))"
 | |
| 118 | apply (unfold mul_mutator_defs) | |
| 119 | apply interfree_aux | |
| 120 | apply safe | |
| 121 | apply(simp_all add: nth_list_update) | |
| 122 | done | |
| 123 | ||
| 124 | lemmas mul_mutator_interfree = | |
| 125 | Mul_interfree_Redirect_Edge_Redirect_Edge Mul_interfree_Redirect_Edge_Color_Target | |
| 126 | Mul_interfree_Color_Target_Redirect_Edge Mul_interfree_Color_Target_Color_Target | |
| 127 | ||
| 128 | lemma Mul_interfree_Mutator_Mutator: "\<lbrakk>i < n; j < n; i \<noteq> j\<rbrakk> \<Longrightarrow> | |
| 129 |   interfree_aux (Some (Mul_Mutator i n), {}, Some (Mul_Mutator j n))"
 | |
| 130 | apply(unfold Mul_Mutator_def) | |
| 131 | apply(interfree_aux) | |
| 132 | apply(simp_all add:mul_mutator_interfree) | |
| 133 | apply(simp_all add: mul_mutator_defs) | |
| 134 | apply(tactic {* TRYALL (interfree_aux_tac) *})
 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 135 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 136 | apply (simp_all add:nth_list_update) | 
| 137 | done | |
| 138 | ||
| 139 | subsubsection {* Modular Parameterized Mutators *}
 | |
| 140 | ||
| 141 | lemma Mul_Parameterized_Mutators: "0<n \<Longrightarrow> | |
| 142 |  \<parallel>- .{\<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.
 | |
| 143 | COBEGIN | |
| 144 | SCHEME [0\<le> j< n] | |
| 145 | Mul_Mutator j n | |
| 146 |  .{False}.
 | |
| 147 | COEND | |
| 148 |  .{False}."
 | |
| 149 | apply oghoare | |
| 150 | apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) | |
| 151 | apply(erule Mul_Mutator) | |
| 13187 | 152 | apply(simp add:Mul_interfree_Mutator_Mutator) | 
| 13020 | 153 | apply(force simp add:Mul_Mutator_def mul_mutator_defs nth_list_update) | 
| 154 | done | |
| 155 | ||
| 156 | subsection {* The Collector *}
 | |
| 157 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 158 | definition Queue :: "mul_gar_coll_state \<Rightarrow> nat" where | 
| 13020 | 159 | "Queue \<equiv> \<guillemotleft> length (filter (\<lambda>i. \<not> Z i \<and> \<acute>M!(T i) \<noteq> Black) \<acute>Muts) \<guillemotright>" | 
| 160 | ||
| 161 | consts M_init :: nodes | |
| 162 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 163 | definition Proper_M_init :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 164 | "Proper_M_init \<equiv> \<guillemotleft> Blacks M_init=Roots \<and> length M_init=length \<acute>M \<guillemotright>" | 
| 165 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 166 | definition Mul_Proper :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 13020 | 167 | "Mul_Proper \<equiv> \<guillemotleft> \<lambda>n. Proper_Roots \<acute>M \<and> Proper_Edges (\<acute>M, \<acute>E) \<and> \<acute>Proper_M_init \<and> n=length \<acute>Muts \<guillemotright>" | 
| 168 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 169 | definition Safe :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 170 | "Safe \<equiv> \<guillemotleft> Reach \<acute>E \<subseteq> Blacks \<acute>M \<guillemotright>" | 
| 171 | ||
| 172 | lemmas mul_collector_defs = Proper_M_init_def Mul_Proper_def Safe_def | |
| 173 | ||
| 174 | subsubsection {* Blackening Roots *}
 | |
| 175 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 176 | definition Mul_Blacken_Roots :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 177 | "Mul_Blacken_Roots n \<equiv> | 
| 178 |   .{\<acute>Mul_Proper n}.
 | |
| 179 | \<acute>ind:=0;; | |
| 180 |   .{\<acute>Mul_Proper n \<and> \<acute>ind=0}.
 | |
| 181 | WHILE \<acute>ind<length \<acute>M | |
| 182 |     INV .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind\<le>length \<acute>M}.
 | |
| 183 |   DO .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
 | |
| 184 | IF \<acute>ind\<in>Roots THEN | |
| 185 |      .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<in>Roots}. 
 | |
| 186 | \<acute>M:=\<acute>M[\<acute>ind:=Black] FI;; | |
| 187 |      .{\<acute>Mul_Proper n \<and> (\<forall>i<\<acute>ind+1. i\<in>Roots \<longrightarrow> \<acute>M!i=Black) \<and> \<acute>ind<length \<acute>M}.
 | |
| 188 | \<acute>ind:=\<acute>ind+1 | |
| 189 | OD" | |
| 190 | ||
| 191 | lemma Mul_Blacken_Roots: | |
| 192 | "\<turnstile> Mul_Blacken_Roots n | |
| 193 |   .{\<acute>Mul_Proper n \<and> Roots \<subseteq> Blacks \<acute>M}."
 | |
| 194 | apply (unfold Mul_Blacken_Roots_def) | |
| 195 | apply annhoare | |
| 196 | apply(simp_all add:mul_collector_defs Graph_defs) | |
| 197 | apply safe | |
| 198 | apply(simp_all add:nth_list_update) | |
| 199 | apply (erule less_SucE) | |
| 200 | apply simp+ | |
| 201 | apply force | |
| 202 | apply force | |
| 203 | done | |
| 204 | ||
| 205 | subsubsection {* Propagating Black *} 
 | |
| 206 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 207 | definition Mul_PBInv :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 208 | "Mul_PBInv \<equiv> \<guillemotleft>\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | 
| 209 | \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) \<and> \<acute>l\<le>\<acute>Queue\<guillemotright>" | |
| 210 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 211 | definition Mul_Auxk :: "mul_gar_coll_state \<Rightarrow> bool" where | 
| 13020 | 212 | "Mul_Auxk \<equiv> \<guillemotleft>\<acute>l<\<acute>Queue \<or> \<acute>M!\<acute>k\<noteq>Black \<or> \<not>BtoW(\<acute>E!\<acute>ind, \<acute>M) \<or> \<acute>obc\<subset>Blacks \<acute>M\<guillemotright>" | 
| 213 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 214 | definition Mul_Propagate_Black :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 215 | "Mul_Propagate_Black n \<equiv> | 
| 216 |  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | |
| 217 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)}. | |
| 218 | \<acute>ind:=0;; | |
| 219 |  .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 220 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> Blacks \<acute>M\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 221 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) \<and> \<acute>ind=0}. | |
| 222 | WHILE \<acute>ind<length \<acute>E | |
| 223 |   INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 224 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 225 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind\<le>length \<acute>E}. | |
| 226 |  DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 227 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 228 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}. | |
| 229 | IF \<acute>M!(fst (\<acute>E!\<acute>ind))=Black THEN | |
| 230 |    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 231 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 232 | \<and> \<acute>Mul_PBInv \<and> (\<acute>M!fst(\<acute>E!\<acute>ind))=Black \<and> \<acute>ind<length \<acute>E}. | |
| 233 | \<acute>k:=snd(\<acute>E!\<acute>ind);; | |
| 234 |    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 235 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 236 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<or> (\<forall>i<\<acute>ind. \<not>BtoW(\<acute>E!i,\<acute>M)) | |
| 237 | \<and> \<acute>l\<le>\<acute>Queue \<and> \<acute>Mul_Auxk ) \<and> \<acute>k<length \<acute>M \<and> \<acute>M!fst(\<acute>E!\<acute>ind)=Black | |
| 238 | \<and> \<acute>ind<length \<acute>E}. | |
| 239 | \<langle>\<acute>M:=\<acute>M[\<acute>k:=Black],,\<acute>ind:=\<acute>ind+1\<rangle> | |
| 240 |    ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 241 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 242 | \<and> \<acute>Mul_PBInv \<and> \<acute>ind<length \<acute>E}. | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32687diff
changeset | 243 | \<langle>IF \<acute>M!(fst (\<acute>E!\<acute>ind))\<noteq>Black THEN \<acute>ind:=\<acute>ind+1 FI\<rangle> FI | 
| 13020 | 244 | OD" | 
| 245 | ||
| 246 | lemma Mul_Propagate_Black: | |
| 247 | "\<turnstile> Mul_Propagate_Black n | |
| 248 |    .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | |
| 249 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}." | |
| 250 | apply(unfold Mul_Propagate_Black_def) | |
| 251 | apply annhoare | |
| 252 | apply(simp_all add:Mul_PBInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) | |
| 253 | --{* 8 subgoals left *}
 | |
| 254 | apply force | |
| 255 | apply force | |
| 256 | apply force | |
| 257 | apply(force simp add:BtoW_def Graph_defs) | |
| 258 | --{* 4 subgoals left *}
 | |
| 259 | apply clarify | |
| 260 | apply(simp add: mul_collector_defs Graph12 Graph6 Graph7 Graph8) | |
| 261 | apply(disjE_tac) | |
| 262 | apply(simp_all add:Graph12 Graph13) | |
| 263 | apply(case_tac "M x! k x=Black") | |
| 264 | apply(simp add: Graph10) | |
| 265 | apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) | |
| 266 | apply(case_tac "M x! k x=Black") | |
| 267 | apply(simp add: Graph10 BtoW_def) | |
| 268 | apply(rule disjI2, clarify, erule less_SucE, force) | |
| 269 | apply(case_tac "M x!snd(E x! ind x)=Black") | |
| 270 | apply(force) | |
| 271 | apply(force) | |
| 272 | apply(rule disjI2, rule disjI1, erule subset_psubset_trans, erule Graph11, force) | |
| 273 | --{* 2 subgoals left *}
 | |
| 274 | apply clarify | |
| 275 | apply(conjI_tac) | |
| 276 | apply(disjE_tac) | |
| 277 | apply (simp_all) | |
| 278 | apply clarify | |
| 279 | apply(erule less_SucE) | |
| 280 | apply force | |
| 281 | apply (simp add:BtoW_def) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 282 | --{* 1 subgoal left *}
 | 
| 13020 | 283 | apply clarify | 
| 284 | apply simp | |
| 285 | apply(disjE_tac) | |
| 286 | apply (simp_all) | |
| 287 | apply(rule disjI1 , rule Graph1) | |
| 288 | apply simp_all | |
| 289 | done | |
| 290 | ||
| 291 | subsubsection {* Counting Black Nodes *}
 | |
| 292 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 293 | definition Mul_CountInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 294 |   "Mul_CountInv \<equiv> \<guillemotleft> \<lambda>ind. {i. i<ind \<and> \<acute>Ma!i=Black}\<subseteq>\<acute>bc \<guillemotright>"
 | 
| 13020 | 295 | |
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 296 | definition Mul_Count :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 297 | "Mul_Count n \<equiv> | 
| 298 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 299 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 300 | \<and> length \<acute>Ma=length \<acute>M | |
| 301 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) | |
| 302 |     \<and> \<acute>q<n+1 \<and> \<acute>bc={}}.
 | |
| 303 | \<acute>ind:=0;; | |
| 304 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 305 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 306 | \<and> length \<acute>Ma=length \<acute>M | |
| 307 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M) ) | |
| 308 |     \<and> \<acute>q<n+1 \<and> \<acute>bc={} \<and> \<acute>ind=0}.
 | |
| 309 | WHILE \<acute>ind<length \<acute>M | |
| 310 |      INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 311 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 312 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 313 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32687diff
changeset | 314 | \<and> \<acute>q<n+1 \<and> \<acute>ind\<le>length \<acute>M}. | 
| 13020 | 315 |   DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | 
| 316 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 317 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 318 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 319 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}. | |
| 320 | IF \<acute>M!\<acute>ind=Black | |
| 321 |      THEN .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 322 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 323 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv \<acute>ind | |
| 324 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 325 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. | |
| 326 | \<acute>bc:=insert \<acute>ind \<acute>bc | |
| 327 | FI;; | |
| 328 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 329 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 330 | \<and> length \<acute>Ma=length \<acute>M \<and> \<acute>Mul_CountInv (\<acute>ind+1) | |
| 331 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 332 | \<and> \<acute>q<n+1 \<and> \<acute>ind<length \<acute>M}. | |
| 333 | \<acute>ind:=\<acute>ind+1 | |
| 334 | OD" | |
| 335 | ||
| 336 | lemma Mul_Count: | |
| 337 | "\<turnstile> Mul_Count n | |
| 338 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 339 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 340 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 341 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 342 | \<and> \<acute>q<n+1}." | |
| 343 | apply (unfold Mul_Count_def) | |
| 344 | apply annhoare | |
| 345 | apply(simp_all add:Mul_CountInv_def mul_collector_defs Mul_Auxk_def Graph6 Graph7 Graph8 Graph12 mul_collector_defs Queue_def) | |
| 346 | --{* 7 subgoals left *}
 | |
| 347 | apply force | |
| 348 | apply force | |
| 349 | apply force | |
| 350 | --{* 4 subgoals left *}
 | |
| 351 | apply clarify | |
| 352 | apply(conjI_tac) | |
| 353 | apply(disjE_tac) | |
| 354 | apply simp_all | |
| 355 | apply(simp add:Blacks_def) | |
| 356 | apply clarify | |
| 357 | apply(erule less_SucE) | |
| 358 | back | |
| 359 | apply force | |
| 360 | apply force | |
| 361 | --{* 3 subgoals left *}
 | |
| 362 | apply clarify | |
| 363 | apply(conjI_tac) | |
| 364 | apply(disjE_tac) | |
| 365 | apply simp_all | |
| 366 | apply clarify | |
| 367 | apply(erule less_SucE) | |
| 368 | back | |
| 369 | apply force | |
| 370 | apply simp | |
| 371 | apply(rotate_tac -1) | |
| 372 | apply (force simp add:Blacks_def) | |
| 373 | --{* 2 subgoals left *}
 | |
| 374 | apply force | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 375 | --{* 1 subgoal left *}
 | 
| 13020 | 376 | apply clarify | 
| 26316 
9e9e67e33557
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
24742diff
changeset | 377 | apply(drule_tac x = "ind x" in le_imp_less_or_eq) | 
| 13020 | 378 | apply (simp_all add:Blacks_def) | 
| 379 | done | |
| 380 | ||
| 381 | subsubsection {* Appending garbage nodes to the free list *}
 | |
| 382 | ||
| 383 | consts Append_to_free :: "nat \<times> edges \<Rightarrow> edges" | |
| 384 | ||
| 385 | axioms | |
| 386 | Append_to_free0: "length (Append_to_free (i, e)) = length e" | |
| 387 | Append_to_free1: "Proper_Edges (m, e) | |
| 388 | \<Longrightarrow> Proper_Edges (m, Append_to_free(i, e))" | |
| 389 | Append_to_free2: "i \<notin> Reach e | |
| 390 | \<Longrightarrow> n \<in> Reach (Append_to_free(i, e)) = ( n = i \<or> n \<in> Reach e)" | |
| 391 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 392 | definition Mul_AppendInv :: "mul_gar_coll_state \<Rightarrow> nat \<Rightarrow> bool" where | 
| 13020 | 393 | "Mul_AppendInv \<equiv> \<guillemotleft> \<lambda>ind. (\<forall>i. ind\<le>i \<longrightarrow> i<length \<acute>M \<longrightarrow> i\<in>Reach \<acute>E \<longrightarrow> \<acute>M!i=Black)\<guillemotright>" | 
| 394 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 395 | definition Mul_Append :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 396 | "Mul_Append n \<equiv> | 
| 397 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe}.
 | |
| 398 | \<acute>ind:=0;; | |
| 399 |   .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>Safe \<and> \<acute>ind=0}.
 | |
| 400 | WHILE \<acute>ind<length \<acute>M | |
| 401 |     INV .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind\<le>length \<acute>M}.
 | |
| 402 |   DO .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M}.
 | |
| 403 | IF \<acute>M!\<acute>ind=Black THEN | |
| 404 |      .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>M!\<acute>ind=Black}. 
 | |
| 405 | \<acute>M:=\<acute>M[\<acute>ind:=White] | |
| 406 | ELSE | |
| 407 |      .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv \<acute>ind \<and> \<acute>ind<length \<acute>M \<and> \<acute>ind\<notin>Reach \<acute>E}. 
 | |
| 408 | \<acute>E:=Append_to_free(\<acute>ind,\<acute>E) | |
| 409 | FI;; | |
| 410 |   .{\<acute>Mul_Proper n \<and> \<acute>Mul_AppendInv (\<acute>ind+1) \<and> \<acute>ind<length \<acute>M}. 
 | |
| 411 | \<acute>ind:=\<acute>ind+1 | |
| 412 | OD" | |
| 413 | ||
| 414 | lemma Mul_Append: | |
| 415 | "\<turnstile> Mul_Append n | |
| 416 |      .{\<acute>Mul_Proper n}."
 | |
| 417 | apply(unfold Mul_Append_def) | |
| 418 | apply annhoare | |
| 419 | apply(simp_all add: mul_collector_defs Mul_AppendInv_def | |
| 420 | Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 421 | apply(force simp add:Blacks_def) | |
| 422 | apply(force simp add:Blacks_def) | |
| 423 | apply(force simp add:Blacks_def) | |
| 424 | apply(force simp add:Graph_defs) | |
| 425 | apply force | |
| 426 | apply(force simp add:Append_to_free1 Append_to_free2) | |
| 427 | apply force | |
| 428 | apply force | |
| 429 | done | |
| 430 | ||
| 431 | subsubsection {* Collector *}
 | |
| 432 | ||
| 35416 
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
 haftmann parents: 
32960diff
changeset | 433 | definition Mul_Collector :: "nat \<Rightarrow> mul_gar_coll_state ann_com" where | 
| 13020 | 434 | "Mul_Collector n \<equiv> | 
| 435 | .{\<acute>Mul_Proper n}.  
 | |
| 436 | WHILE True INV .{\<acute>Mul_Proper n}. 
 | |
| 437 | DO | |
| 438 | Mul_Blacken_Roots n ;; | |
| 439 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M}.  
 | |
| 440 |  \<acute>obc:={};; 
 | |
| 441 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={}}.  
 | |
| 442 | \<acute>bc:=Roots;; | |
| 443 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots}. 
 | |
| 444 | \<acute>l:=0;; | |
| 445 | .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>obc={} \<and> \<acute>bc=Roots \<and> \<acute>l=0}. 
 | |
| 446 | WHILE \<acute>l<n+1 | |
| 447 |    INV .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M \<and>  
 | |
| 448 | (\<acute>Safe \<or> (\<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M) \<and> \<acute>l<n+1)}. | |
| 449 |  DO .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M 
 | |
| 450 | \<and> (\<acute>Safe \<or> \<acute>l\<le>\<acute>Queue \<or> \<acute>bc\<subset>Blacks \<acute>M)}. | |
| 451 | \<acute>obc:=\<acute>bc;; | |
| 452 | Mul_Propagate_Black n;; | |
| 453 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 454 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 455 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | |
| 456 | \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M))}. | |
| 457 |     \<acute>bc:={};;
 | |
| 458 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 459 | \<and> \<acute>obc\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 460 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>M \<or> \<acute>l<\<acute>Queue | |
| 461 |       \<and> (\<acute>l\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) \<and> \<acute>bc={}}. 
 | |
| 462 | \<langle> \<acute>Ma:=\<acute>M,, \<acute>q:=\<acute>Queue \<rangle>;; | |
| 463 | Mul_Count n;; | |
| 464 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 465 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 466 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 467 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 468 | \<and> \<acute>q<n+1}. | |
| 469 | IF \<acute>obc=\<acute>bc THEN | |
| 470 |     .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 471 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 472 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 473 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 474 | \<and> \<acute>q<n+1 \<and> \<acute>obc=\<acute>bc}. | |
| 475 | \<acute>l:=\<acute>l+1 | |
| 476 |     ELSE .{\<acute>Mul_Proper n \<and> Roots\<subseteq>Blacks \<acute>M 
 | |
| 477 | \<and> \<acute>obc\<subseteq>Blacks \<acute>Ma \<and> Blacks \<acute>Ma\<subseteq>Blacks \<acute>M \<and> \<acute>bc\<subseteq>Blacks \<acute>M | |
| 478 | \<and> length \<acute>Ma=length \<acute>M \<and> Blacks \<acute>Ma\<subseteq>\<acute>bc | |
| 479 | \<and> (\<acute>Safe \<or> \<acute>obc\<subset>Blacks \<acute>Ma \<or> \<acute>l<\<acute>q \<and> (\<acute>q\<le>\<acute>Queue \<or> \<acute>obc\<subset>Blacks \<acute>M)) | |
| 480 | \<and> \<acute>q<n+1 \<and> \<acute>obc\<noteq>\<acute>bc}. | |
| 481 | \<acute>l:=0 FI | |
| 482 | OD;; | |
| 483 | Mul_Append n | |
| 484 | OD" | |
| 485 | ||
| 486 | lemmas mul_modules = Mul_Redirect_Edge_def Mul_Color_Target_def | |
| 487 | Mul_Blacken_Roots_def Mul_Propagate_Black_def | |
| 488 | Mul_Count_def Mul_Append_def | |
| 489 | ||
| 490 | lemma Mul_Collector: | |
| 491 | "\<turnstile> Mul_Collector n | |
| 492 |   .{False}."
 | |
| 493 | apply(unfold Mul_Collector_def) | |
| 494 | apply annhoare | |
| 495 | apply(simp_all only:pre.simps Mul_Blacken_Roots | |
| 496 | Mul_Propagate_Black Mul_Count Mul_Append) | |
| 497 | apply(simp_all add:mul_modules) | |
| 498 | apply(simp_all add:mul_collector_defs Queue_def) | |
| 499 | apply force | |
| 500 | apply force | |
| 501 | apply force | |
| 15247 | 502 | apply (force simp add: less_Suc_eq_le) | 
| 13020 | 503 | apply force | 
| 504 | apply (force dest:subset_antisym) | |
| 505 | apply force | |
| 506 | apply force | |
| 507 | apply force | |
| 508 | done | |
| 509 | ||
| 510 | subsection {* Interference Freedom *}
 | |
| 511 | ||
| 512 | lemma le_length_filter_update[rule_format]: | |
| 513 | "\<forall>i. (\<not>P (list!i) \<or> P j) \<and> i<length list | |
| 514 | \<longrightarrow> length(filter P list) \<le> length(filter P (list[i:=j]))" | |
| 515 | apply(induct_tac "list") | |
| 516 | apply(simp) | |
| 517 | apply(clarify) | |
| 518 | apply(case_tac i) | |
| 519 | apply(simp) | |
| 520 | apply(simp) | |
| 521 | done | |
| 522 | ||
| 523 | lemma less_length_filter_update [rule_format]: | |
| 524 | "\<forall>i. P j \<and> \<not>(P (list!i)) \<and> i<length list | |
| 525 | \<longrightarrow> length(filter P list) < length(filter P (list[i:=j]))" | |
| 526 | apply(induct_tac "list") | |
| 527 | apply(simp) | |
| 528 | apply(clarify) | |
| 529 | apply(case_tac i) | |
| 530 | apply(simp) | |
| 531 | apply(simp) | |
| 532 | done | |
| 533 | ||
| 534 | lemma Mul_interfree_Blacken_Roots_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk> \<Longrightarrow> | |
| 535 |   interfree_aux (Some(Mul_Blacken_Roots n),{},Some(Mul_Redirect_Edge j n))"
 | |
| 536 | apply (unfold mul_modules) | |
| 537 | apply interfree_aux | |
| 538 | apply safe | |
| 539 | apply(simp_all add:Graph6 Graph9 Graph12 nth_list_update mul_mutator_defs mul_collector_defs) | |
| 540 | done | |
| 541 | ||
| 542 | lemma Mul_interfree_Redirect_Edge_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 543 |   interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Blacken_Roots n))"
 | |
| 544 | apply (unfold mul_modules) | |
| 545 | apply interfree_aux | |
| 546 | apply safe | |
| 547 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 548 | done | |
| 549 | ||
| 550 | lemma Mul_interfree_Blacken_Roots_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 551 |   interfree_aux (Some(Mul_Blacken_Roots n),{},Some (Mul_Color_Target j n ))"
 | |
| 552 | apply (unfold mul_modules) | |
| 553 | apply interfree_aux | |
| 554 | apply safe | |
| 555 | apply(simp_all add:mul_mutator_defs mul_collector_defs nth_list_update Graph7 Graph8 Graph9 Graph12) | |
| 556 | done | |
| 557 | ||
| 558 | lemma Mul_interfree_Color_Target_Blacken_Roots: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 559 |   interfree_aux (Some(Mul_Color_Target j n ),{},Some (Mul_Blacken_Roots n ))"
 | |
| 560 | apply (unfold mul_modules) | |
| 561 | apply interfree_aux | |
| 562 | apply safe | |
| 563 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 564 | done | |
| 565 | ||
| 566 | lemma Mul_interfree_Propagate_Black_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 567 |   interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Redirect_Edge j n ))"
 | |
| 568 | apply (unfold mul_modules) | |
| 569 | apply interfree_aux | |
| 570 | apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_PBInv_def nth_list_update Graph6) | |
| 571 | --{* 7 subgoals left *}
 | |
| 572 | apply clarify | |
| 573 | apply(disjE_tac) | |
| 574 | apply(simp_all add:Graph6) | |
| 575 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 576 | apply(rule conjI) | |
| 577 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 578 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 579 | --{* 6 subgoals left *}
 | |
| 580 | apply clarify | |
| 581 | apply(disjE_tac) | |
| 582 | apply(simp_all add:Graph6) | |
| 583 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 584 | apply(rule conjI) | |
| 585 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 586 | apply(rule impI,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 587 | --{* 5 subgoals left *}
 | |
| 588 | apply clarify | |
| 589 | apply(disjE_tac) | |
| 590 | apply(simp_all add:Graph6) | |
| 591 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 592 | apply(rule conjI) | |
| 593 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 594 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 595 | apply(erule conjE) | |
| 596 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 597 | apply(rule conjI) | |
| 598 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 599 | apply clarify | |
| 600 | apply(case_tac "R (Muts x! j)=i") | |
| 601 | apply (force simp add: nth_list_update BtoW_def) | |
| 602 | apply (force simp add: nth_list_update) | |
| 603 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 604 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 605 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 606 | apply(rule conjI) | |
| 607 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 608 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 609 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 610 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 611 | --{* 4 subgoals left *}
 | |
| 612 | apply clarify | |
| 613 | apply(disjE_tac) | |
| 614 | apply(simp_all add:Graph6) | |
| 615 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 616 | apply(rule conjI) | |
| 617 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 618 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 619 | apply(erule conjE) | |
| 620 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 621 | apply(rule conjI) | |
| 622 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 623 | apply clarify | |
| 624 | apply(case_tac "R (Muts x! j)=i") | |
| 625 | apply (force simp add: nth_list_update BtoW_def) | |
| 626 | apply (force simp add: nth_list_update) | |
| 627 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 628 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 629 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 630 | apply(rule conjI) | |
| 631 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 632 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 633 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 634 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 635 | --{* 3 subgoals left *}
 | |
| 636 | apply clarify | |
| 637 | apply(disjE_tac) | |
| 638 | apply(simp_all add:Graph6) | |
| 639 | apply (rule impI) | |
| 640 | apply(rule conjI) | |
| 641 | apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 642 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 643 | apply(simp add:nth_list_update) | |
| 644 | apply(simp add:nth_list_update) | |
| 645 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 646 | apply(simp add:nth_list_update) | |
| 647 | apply(simp add:nth_list_update) | |
| 648 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 649 | apply(rule conjI) | |
| 650 | apply(rule impI) | |
| 651 | apply(rule conjI) | |
| 652 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 653 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 654 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 655 | apply(simp add:nth_list_update) | |
| 656 | apply(simp add:nth_list_update) | |
| 657 | apply(rule impI) | |
| 658 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 659 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 660 | apply(rule conjI) | |
| 661 | apply(rule impI) | |
| 662 | apply(rule conjI) | |
| 663 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 664 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 665 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 666 | apply(simp add:nth_list_update) | |
| 667 | apply(simp add:nth_list_update) | |
| 668 | apply(rule impI) | |
| 669 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 670 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 671 | apply(erule conjE) | |
| 672 | apply(rule conjI) | |
| 673 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 674 | apply(rule impI,rule conjI,(rule disjI2)+,rule conjI) | |
| 675 | apply clarify | |
| 676 | apply(case_tac "R (Muts x! j)=i") | |
| 677 | apply (force simp add: nth_list_update BtoW_def) | |
| 678 | apply (force simp add: nth_list_update) | |
| 679 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 680 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 681 | apply(simp add:nth_list_update) | |
| 682 | apply(simp add:nth_list_update) | |
| 683 | apply(rule impI,rule conjI) | |
| 684 | apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 685 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 686 | apply(case_tac "R (Muts x! j)=ind x") | |
| 687 | apply (force simp add: nth_list_update) | |
| 688 | apply (force simp add: nth_list_update) | |
| 689 | apply(rule impI, (rule disjI2)+, erule le_trans) | |
| 690 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 691 | --{* 2 subgoals left *}
 | |
| 692 | apply clarify | |
| 693 | apply(rule conjI) | |
| 694 | apply(disjE_tac) | |
| 695 | apply(simp_all add:Mul_Auxk_def Graph6) | |
| 696 | apply (rule impI) | |
| 697 | apply(rule conjI) | |
| 698 | apply(rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 699 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 700 | apply(simp add:nth_list_update) | |
| 701 | apply(simp add:nth_list_update) | |
| 702 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 703 | apply(simp add:nth_list_update) | |
| 704 | apply(simp add:nth_list_update) | |
| 705 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 706 | apply(rule impI) | |
| 707 | apply(rule conjI) | |
| 708 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 709 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 710 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 711 | apply(simp add:nth_list_update) | |
| 712 | apply(simp add:nth_list_update) | |
| 713 | apply(rule impI) | |
| 714 | apply(rule conjI) | |
| 715 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 716 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 717 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 718 | apply(simp add:nth_list_update) | |
| 719 | apply(simp add:nth_list_update) | |
| 720 | apply(rule impI) | |
| 721 | apply(rule conjI) | |
| 722 | apply(erule conjE)+ | |
| 723 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 724 | apply((rule disjI2)+,rule conjI) | |
| 725 | apply clarify | |
| 726 | apply(case_tac "R (Muts x! j)=i") | |
| 727 | apply (force simp add: nth_list_update BtoW_def) | |
| 728 | apply (force simp add: nth_list_update) | |
| 729 | apply(rule conjI) | |
| 730 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 731 | apply(rule impI) | |
| 732 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 733 | apply(simp add:nth_list_update BtoW_def) | |
| 734 | apply (simp add:nth_list_update) | |
| 735 | apply(rule impI) | |
| 736 | apply simp | |
| 737 | apply(disjE_tac) | |
| 738 | apply(rule disjI1, erule less_le_trans) | |
| 739 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 740 | apply force | |
| 741 | apply(rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 742 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 743 | apply(case_tac "R (Muts x ! j)= ind x") | |
| 744 | apply(simp add:nth_list_update) | |
| 745 | apply(simp add:nth_list_update) | |
| 746 | apply(disjE_tac) | |
| 747 | apply simp_all | |
| 748 | apply(conjI_tac) | |
| 749 | apply(rule impI) | |
| 750 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 751 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 752 | apply(erule conjE)+ | |
| 753 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 754 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 755 | apply(rule impI)+ | |
| 756 | apply simp | |
| 757 | apply(disjE_tac) | |
| 758 | apply(rule disjI1, erule less_le_trans) | |
| 759 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 760 | apply force | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 761 | --{* 1 subgoal left *} 
 | 
| 13020 | 762 | apply clarify | 
| 763 | apply(disjE_tac) | |
| 764 | apply(simp_all add:Graph6) | |
| 765 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 766 | apply(rule conjI) | |
| 767 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 768 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 769 | apply(erule conjE) | |
| 770 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 771 | apply(rule conjI) | |
| 772 | apply(rule impI,(rule disjI2)+,rule conjI) | |
| 773 | apply clarify | |
| 774 | apply(case_tac "R (Muts x! j)=i") | |
| 775 | apply (force simp add: nth_list_update BtoW_def) | |
| 776 | apply (force simp add: nth_list_update) | |
| 777 | apply(erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 778 | apply(rule impI,(rule disjI2)+, erule le_trans) | |
| 779 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 780 | apply(rule conjI) | |
| 781 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 782 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 783 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1, erule le_less_trans) | |
| 784 | apply(force simp add:Queue_def less_Suc_eq_le less_length_filter_update) | |
| 785 | done | |
| 786 | ||
| 787 | lemma Mul_interfree_Redirect_Edge_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 788 |   interfree_aux (Some(Mul_Redirect_Edge j n ),{},Some (Mul_Propagate_Black n))"
 | |
| 789 | apply (unfold mul_modules) | |
| 790 | apply interfree_aux | |
| 791 | apply safe | |
| 792 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 793 | done | |
| 794 | ||
| 795 | lemma Mul_interfree_Propagate_Black_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 796 |   interfree_aux (Some(Mul_Propagate_Black n),{},Some (Mul_Color_Target j n ))"
 | |
| 797 | apply (unfold mul_modules) | |
| 798 | apply interfree_aux | |
| 799 | apply(simp_all add: mul_collector_defs mul_mutator_defs) | |
| 800 | --{* 7 subgoals left *}
 | |
| 801 | apply clarify | |
| 802 | apply (simp add:Graph7 Graph8 Graph12) | |
| 803 | apply(disjE_tac) | |
| 804 | apply(simp add:Graph7 Graph8 Graph12) | |
| 805 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 806 | apply(rule disjI2,rule disjI1, erule le_trans) | |
| 807 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 808 | apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) | |
| 809 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 810 | --{* 6 subgoals left *}
 | |
| 811 | apply clarify | |
| 812 | apply (simp add:Graph7 Graph8 Graph12) | |
| 813 | apply(disjE_tac) | |
| 814 | apply(simp add:Graph7 Graph8 Graph12) | |
| 815 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 816 | apply(rule disjI2,rule disjI1, erule le_trans) | |
| 817 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 818 | apply((rule disjI2)+,erule subset_psubset_trans, erule Graph11, simp) | |
| 819 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 820 | --{* 5 subgoals left *}
 | |
| 821 | apply clarify | |
| 822 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 823 | apply(disjE_tac) | |
| 824 | apply(simp add:Graph7 Graph8 Graph12) | |
| 825 | apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) | |
| 826 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 827 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 828 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 829 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 830 | apply(erule conjE) | |
| 831 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 832 | apply((rule disjI2)+) | |
| 833 | apply (rule conjI) | |
| 834 | apply(simp add:Graph10) | |
| 835 | apply(erule le_trans) | |
| 836 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 837 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 838 | --{* 4 subgoals left *}
 | |
| 839 | apply clarify | |
| 840 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 841 | apply(disjE_tac) | |
| 842 | apply(simp add:Graph7 Graph8 Graph12) | |
| 843 | apply(rule disjI2,rule disjI1, erule psubset_subset_trans,simp add:Graph9) | |
| 844 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 845 | apply(rule disjI2,rule disjI2,rule disjI1, erule less_le_trans) | |
| 846 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 847 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 848 | apply(erule conjE) | |
| 849 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 850 | apply((rule disjI2)+) | |
| 851 | apply (rule conjI) | |
| 852 | apply(simp add:Graph10) | |
| 853 | apply(erule le_trans) | |
| 854 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 855 | apply(rule disjI2,rule disjI1,erule subset_psubset_trans, erule Graph11, simp) | |
| 856 | --{* 3 subgoals left *}
 | |
| 857 | apply clarify | |
| 858 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 859 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 860 | apply(simp add:Graph10) | |
| 861 | apply(disjE_tac) | |
| 862 | apply simp_all | |
| 863 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 864 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 865 | apply(erule conjE) | |
| 866 | apply((rule disjI2)+,erule le_trans) | |
| 867 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 868 | apply(rule conjI) | |
| 869 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 870 | apply (force simp add:nth_list_update) | |
| 871 | --{* 2 subgoals left *}
 | |
| 872 | apply clarify | |
| 873 | apply(simp add:Mul_Auxk_def Graph7 Graph8 Graph12) | |
| 874 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 875 | apply(simp add:Graph10) | |
| 876 | apply(disjE_tac) | |
| 877 | apply simp_all | |
| 878 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 879 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 880 | apply(erule conjE)+ | |
| 881 | apply((rule disjI2)+,rule conjI, erule le_trans) | |
| 882 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 883 | apply((rule impI)+) | |
| 884 | apply simp | |
| 885 | apply(erule disjE) | |
| 886 | apply(rule disjI1, erule less_le_trans) | |
| 887 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 888 | apply force | |
| 889 | apply(rule conjI) | |
| 890 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 891 | apply (force simp add:nth_list_update) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 892 | --{* 1 subgoal left *}
 | 
| 13020 | 893 | apply clarify | 
| 894 | apply (simp add:mul_collector_defs Mul_PBInv_def Graph7 Graph8 Graph12) | |
| 895 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 896 | apply(simp add:Graph10) | |
| 897 | apply(disjE_tac) | |
| 898 | apply simp_all | |
| 899 | apply(rule disjI2, rule disjI2, rule disjI1,erule less_le_trans) | |
| 900 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 901 | apply(erule conjE) | |
| 902 | apply((rule disjI2)+,erule le_trans) | |
| 903 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 904 | apply(rule disjI2,rule disjI1, erule subset_psubset_trans,simp add:Graph11) | |
| 905 | done | |
| 906 | ||
| 907 | lemma Mul_interfree_Color_Target_Propagate_Black: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 908 |   interfree_aux (Some(Mul_Color_Target j n),{},Some(Mul_Propagate_Black n ))"
 | |
| 909 | apply (unfold mul_modules) | |
| 910 | apply interfree_aux | |
| 911 | apply safe | |
| 912 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 913 | done | |
| 914 | ||
| 915 | lemma Mul_interfree_Count_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 916 |   interfree_aux (Some(Mul_Count n ),{},Some(Mul_Redirect_Edge j n))"
 | |
| 917 | apply (unfold mul_modules) | |
| 918 | apply interfree_aux | |
| 919 | --{* 9 subgoals left *}
 | |
| 920 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def Graph6) | |
| 921 | apply clarify | |
| 922 | apply disjE_tac | |
| 923 | apply(simp add:Graph6) | |
| 924 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 925 | apply(simp add:Graph6) | |
| 926 | apply clarify | |
| 927 | apply disjE_tac | |
| 928 | apply(simp add:Graph6) | |
| 929 | apply(rule conjI) | |
| 930 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 931 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 932 | apply(simp add:Graph6) | |
| 933 | --{* 8 subgoals left *}
 | |
| 934 | apply(simp add:mul_mutator_defs nth_list_update) | |
| 935 | --{* 7 subgoals left *}
 | |
| 936 | apply(simp add:mul_mutator_defs mul_collector_defs) | |
| 937 | apply clarify | |
| 938 | apply disjE_tac | |
| 939 | apply(simp add:Graph6) | |
| 940 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 941 | apply(simp add:Graph6) | |
| 942 | apply clarify | |
| 943 | apply disjE_tac | |
| 944 | apply(simp add:Graph6) | |
| 945 | apply(rule conjI) | |
| 946 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 947 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 948 | apply(simp add:Graph6) | |
| 949 | --{* 6 subgoals left *}
 | |
| 950 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 951 | apply clarify | |
| 952 | apply disjE_tac | |
| 953 | apply(simp add:Graph6 Queue_def) | |
| 954 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 955 | apply(simp add:Graph6) | |
| 956 | apply clarify | |
| 957 | apply disjE_tac | |
| 958 | apply(simp add:Graph6) | |
| 959 | apply(rule conjI) | |
| 960 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 961 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 962 | apply(simp add:Graph6) | |
| 963 | --{* 5 subgoals left *}
 | |
| 964 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 965 | apply clarify | |
| 966 | apply disjE_tac | |
| 967 | apply(simp add:Graph6) | |
| 968 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 969 | apply(simp add:Graph6) | |
| 970 | apply clarify | |
| 971 | apply disjE_tac | |
| 972 | apply(simp add:Graph6) | |
| 973 | apply(rule conjI) | |
| 974 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 975 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 976 | apply(simp add:Graph6) | |
| 977 | --{* 4 subgoals left *}
 | |
| 978 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 979 | apply clarify | |
| 980 | apply disjE_tac | |
| 981 | apply(simp add:Graph6) | |
| 982 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 983 | apply(simp add:Graph6) | |
| 984 | apply clarify | |
| 985 | apply disjE_tac | |
| 986 | apply(simp add:Graph6) | |
| 987 | apply(rule conjI) | |
| 988 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 989 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 990 | apply(simp add:Graph6) | |
| 991 | --{* 3 subgoals left *}
 | |
| 992 | apply(simp add:mul_mutator_defs nth_list_update) | |
| 993 | --{* 2 subgoals left *}
 | |
| 994 | apply(simp add:mul_mutator_defs mul_collector_defs Mul_CountInv_def) | |
| 995 | apply clarify | |
| 996 | apply disjE_tac | |
| 997 | apply(simp add:Graph6) | |
| 998 | apply(rule impI,rule disjI1,rule subset_trans,erule Graph3,simp,simp) | |
| 999 | apply(simp add:Graph6) | |
| 1000 | apply clarify | |
| 1001 | apply disjE_tac | |
| 1002 | apply(simp add:Graph6) | |
| 1003 | apply(rule conjI) | |
| 1004 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1005 | apply(rule impI,rule disjI2,rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1006 | apply(simp add:Graph6) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1007 | --{* 1 subgoal left *}
 | 
| 13020 | 1008 | apply(simp add:mul_mutator_defs nth_list_update) | 
| 1009 | done | |
| 1010 | ||
| 1011 | lemma Mul_interfree_Redirect_Edge_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1012 |   interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Count n ))"
 | |
| 1013 | apply (unfold mul_modules) | |
| 1014 | apply interfree_aux | |
| 1015 | apply safe | |
| 1016 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 1017 | done | |
| 1018 | ||
| 1019 | lemma Mul_interfree_Count_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1020 |   interfree_aux (Some(Mul_Count n ),{},Some(Mul_Color_Target j n))"
 | |
| 1021 | apply (unfold mul_modules) | |
| 1022 | apply interfree_aux | |
| 1023 | apply(simp_all add:mul_collector_defs mul_mutator_defs Mul_CountInv_def) | |
| 1024 | --{* 6 subgoals left *}
 | |
| 1025 | apply clarify | |
| 1026 | apply disjE_tac | |
| 1027 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1028 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1029 | apply clarify | |
| 1030 | apply disjE_tac | |
| 1031 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1032 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1033 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1034 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1035 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1036 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1037 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1038 | --{* 5 subgoals left *}
 | |
| 1039 | apply clarify | |
| 1040 | apply disjE_tac | |
| 1041 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1042 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1043 | apply clarify | |
| 1044 | apply disjE_tac | |
| 1045 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1046 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1047 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1048 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1049 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1050 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1051 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1052 | --{* 4 subgoals left *}
 | |
| 1053 | apply clarify | |
| 1054 | apply disjE_tac | |
| 1055 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1056 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1057 | apply clarify | |
| 1058 | apply disjE_tac | |
| 1059 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1060 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1061 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1062 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1063 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1064 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1065 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1066 | --{* 3 subgoals left *}
 | |
| 1067 | apply clarify | |
| 1068 | apply disjE_tac | |
| 1069 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1070 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1071 | apply clarify | |
| 1072 | apply disjE_tac | |
| 1073 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1074 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1075 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1076 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1077 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1078 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1079 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1080 | --{* 2 subgoals left *}
 | |
| 1081 | apply clarify | |
| 1082 | apply disjE_tac | |
| 1083 | apply (simp add: Graph7 Graph8 Graph12 nth_list_update) | |
| 1084 | apply (simp add: Graph7 Graph8 Graph12 nth_list_update) | |
| 1085 | apply clarify | |
| 1086 | apply disjE_tac | |
| 1087 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1088 | apply(rule conjI) | |
| 1089 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1090 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1091 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1092 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1093 | apply (simp add: nth_list_update) | |
| 1094 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1095 | apply(rule conjI) | |
| 1096 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1097 | apply (simp add: nth_list_update) | |
| 13022 
b115b305612f
New order in the loading of theories (Quote-antiquote right before the OG_Syntax and RG_Syntax respectively)
 prensani parents: 
13020diff
changeset | 1098 | --{* 1 subgoal left *}
 | 
| 13020 | 1099 | apply clarify | 
| 1100 | apply disjE_tac | |
| 1101 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1102 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1103 | apply clarify | |
| 1104 | apply disjE_tac | |
| 1105 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1106 | apply(case_tac "M x!(T (Muts x!j))=Black") | |
| 1107 | apply(rule disjI2,rule disjI2, rule disjI1, erule le_trans) | |
| 1108 | apply(force simp add:Queue_def less_Suc_eq_le le_length_filter_update Graph10) | |
| 1109 | apply((rule disjI2)+,(erule subset_psubset_trans)+, simp add: Graph11) | |
| 1110 | apply (simp add: Graph7 Graph8 Graph12) | |
| 1111 | apply((rule disjI2)+,erule psubset_subset_trans, simp add: Graph9) | |
| 1112 | done | |
| 1113 | ||
| 1114 | lemma Mul_interfree_Color_Target_Count: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1115 |   interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Count n ))"
 | |
| 1116 | apply (unfold mul_modules) | |
| 1117 | apply interfree_aux | |
| 1118 | apply safe | |
| 1119 | apply(simp_all add:mul_mutator_defs nth_list_update) | |
| 1120 | done | |
| 1121 | ||
| 1122 | lemma Mul_interfree_Append_Redirect_Edge: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1123 |   interfree_aux (Some(Mul_Append n),{}, Some(Mul_Redirect_Edge j n))"
 | |
| 1124 | apply (unfold mul_modules) | |
| 1125 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1126 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1127 | apply(simp_all add:Graph6 Append_to_free0 Append_to_free1 mul_collector_defs mul_mutator_defs Mul_AppendInv_def) | 
| 1128 | apply(erule_tac x=j in allE, force dest:Graph3)+ | |
| 1129 | done | |
| 1130 | ||
| 1131 | lemma Mul_interfree_Redirect_Edge_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1132 |   interfree_aux (Some(Mul_Redirect_Edge j n),{},Some(Mul_Append n))"
 | |
| 1133 | apply (unfold mul_modules) | |
| 1134 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1135 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1136 | apply(simp_all add:mul_collector_defs Append_to_free0 Mul_AppendInv_def mul_mutator_defs nth_list_update) | 
| 1137 | done | |
| 1138 | ||
| 1139 | lemma Mul_interfree_Append_Color_Target: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1140 |   interfree_aux (Some(Mul_Append n),{}, Some(Mul_Color_Target j n))"
 | |
| 1141 | apply (unfold mul_modules) | |
| 1142 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1143 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1144 | apply(simp_all add:mul_mutator_defs mul_collector_defs Mul_AppendInv_def Graph7 Graph8 Append_to_free0 Append_to_free1 | 
| 1145 | Graph12 nth_list_update) | |
| 1146 | done | |
| 1147 | ||
| 1148 | lemma Mul_interfree_Color_Target_Append: "\<lbrakk>0\<le>j; j<n\<rbrakk>\<Longrightarrow> | |
| 1149 |   interfree_aux (Some(Mul_Color_Target j n),{}, Some(Mul_Append n))"
 | |
| 1150 | apply (unfold mul_modules) | |
| 1151 | apply interfree_aux | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1152 | apply(tactic {* ALLGOALS (clarify_tac @{claset}) *})
 | 
| 13020 | 1153 | apply(simp_all add: mul_mutator_defs nth_list_update) | 
| 1154 | apply(simp add:Mul_AppendInv_def Append_to_free0) | |
| 1155 | done | |
| 1156 | ||
| 1157 | subsubsection {* Interference freedom Collector-Mutator *}
 | |
| 1158 | ||
| 1159 | lemmas mul_collector_mutator_interfree = | |
| 1160 | Mul_interfree_Blacken_Roots_Redirect_Edge Mul_interfree_Blacken_Roots_Color_Target | |
| 1161 | Mul_interfree_Propagate_Black_Redirect_Edge Mul_interfree_Propagate_Black_Color_Target | |
| 1162 | Mul_interfree_Count_Redirect_Edge Mul_interfree_Count_Color_Target | |
| 1163 | Mul_interfree_Append_Redirect_Edge Mul_interfree_Append_Color_Target | |
| 1164 | Mul_interfree_Redirect_Edge_Blacken_Roots Mul_interfree_Color_Target_Blacken_Roots | |
| 1165 | Mul_interfree_Redirect_Edge_Propagate_Black Mul_interfree_Color_Target_Propagate_Black | |
| 1166 | Mul_interfree_Redirect_Edge_Count Mul_interfree_Color_Target_Count | |
| 1167 | Mul_interfree_Redirect_Edge_Append Mul_interfree_Color_Target_Append | |
| 1168 | ||
| 1169 | lemma Mul_interfree_Collector_Mutator: "j<n \<Longrightarrow> | |
| 1170 |   interfree_aux (Some (Mul_Collector n), {}, Some (Mul_Mutator j n))"
 | |
| 1171 | apply(unfold Mul_Collector_def Mul_Mutator_def) | |
| 1172 | apply interfree_aux | |
| 1173 | apply(simp_all add:mul_collector_mutator_interfree) | |
| 1174 | apply(unfold mul_modules mul_collector_defs mul_mutator_defs) | |
| 1175 | apply(tactic  {* TRYALL (interfree_aux_tac) *})
 | |
| 1176 | --{* 42 subgoals left *}
 | |
| 1177 | apply (clarify,simp add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12)+ | |
| 1178 | --{* 24 subgoals left *}
 | |
| 1179 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 1180 | --{* 14 subgoals left *}
 | |
| 23894 
1a4167d761ac
tactics: avoid dynamic reference to accidental theory context (via ML_Context.the_context etc.);
 wenzelm parents: 
23880diff
changeset | 1181 | apply(tactic {* TRYALL (clarify_tac @{claset}) *})
 | 
| 13020 | 1182 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | 
| 1183 | apply(tactic {* TRYALL (rtac conjI) *})
 | |
| 1184 | apply(tactic {* TRYALL (rtac impI) *})
 | |
| 1185 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1186 | apply(tactic {* TRYALL (etac conjE) *})
 | |
| 1187 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1188 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1189 | --{* 72 subgoals left *}
 | |
| 1190 | apply(simp_all add:Graph6 Graph7 Graph8 Append_to_free0 Append_to_free1 Graph12) | |
| 1191 | --{* 35 subgoals left *}
 | |
| 26342 | 1192 | apply(tactic {* TRYALL(EVERY'[rtac disjI1,rtac subset_trans,etac @{thm Graph3},force_tac @{clasimpset}, assume_tac]) *})
 | 
| 13020 | 1193 | --{* 28 subgoals left *}
 | 
| 1194 | apply(tactic {* TRYALL (etac conjE) *})
 | |
| 1195 | apply(tactic {* TRYALL (etac disjE) *})
 | |
| 1196 | --{* 34 subgoals left *}
 | |
| 1197 | apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 1198 | apply(rule disjI2,rule disjI1,erule le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update) | |
| 27095 | 1199 | apply(case_tac [!] "M x!(T (Muts x ! j))=Black") | 
| 13020 | 1200 | apply(simp_all add:Graph10) | 
| 1201 | --{* 47 subgoals left *}
 | |
| 39159 | 1202 | apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac @{thm subset_psubset_trans}, etac @{thm Graph11},force_tac @{clasimpset}]) *})
 | 
| 13020 | 1203 | --{* 41 subgoals left *}
 | 
| 26342 | 1204 | apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI1, etac @{thm le_trans}, force_tac (@{claset},@{simpset} addsimps [@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}])]) *})
 | 
| 13020 | 1205 | --{* 35 subgoals left *}
 | 
| 39159 | 1206 | apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac @{thm psubset_subset_trans},rtac @{thm Graph9},force_tac @{clasimpset}]) *})
 | 
| 13020 | 1207 | --{* 31 subgoals left *}
 | 
| 39159 | 1208 | apply(tactic {* TRYALL(EVERY'[rtac disjI2,rtac disjI1,etac @{thm subset_psubset_trans},etac @{thm Graph11},force_tac @{clasimpset}]) *})
 | 
| 13020 | 1209 | --{* 29 subgoals left *}
 | 
| 39159 | 1210 | apply(tactic {* TRYALL(EVERY'[REPEAT o (rtac disjI2),etac @{thm subset_psubset_trans},etac @{thm subset_psubset_trans},etac @{thm Graph11},force_tac @{clasimpset}]) *})
 | 
| 13020 | 1211 | --{* 25 subgoals left *}
 | 
| 26342 | 1212 | apply(tactic {* TRYALL(EVERY'[rtac disjI2, rtac disjI2, rtac disjI1, etac @{thm le_trans}, force_tac (@{claset},@{simpset} addsimps [@{thm Queue_def}, @{thm less_Suc_eq_le}, @{thm le_length_filter_update}])]) *})
 | 
| 13020 | 1213 | --{* 10 subgoals left *}
 | 
| 1214 | apply(rule disjI2,rule disjI2,rule conjI,erule less_le_trans,force simp add:Queue_def less_Suc_eq_le le_length_filter_update, rule disjI1, rule less_imp_le, erule less_le_trans, force simp add:Queue_def less_Suc_eq_le le_length_filter_update)+ | |
| 1215 | done | |
| 1216 | ||
| 1217 | subsubsection {* Interference freedom Mutator-Collector *}
 | |
| 1218 | ||
| 1219 | lemma Mul_interfree_Mutator_Collector: " j < n \<Longrightarrow> | |
| 1220 |   interfree_aux (Some (Mul_Mutator j n), {}, Some (Mul_Collector n))"
 | |
| 1221 | apply(unfold Mul_Collector_def Mul_Mutator_def) | |
| 1222 | apply interfree_aux | |
| 1223 | apply(simp_all add:mul_collector_mutator_interfree) | |
| 1224 | apply(unfold mul_modules mul_collector_defs mul_mutator_defs) | |
| 1225 | apply(tactic  {* TRYALL (interfree_aux_tac) *})
 | |
| 1226 | --{* 76 subgoals left *}
 | |
| 32687 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 haftmann parents: 
32621diff
changeset | 1227 | apply (clarsimp simp add: nth_list_update)+ | 
| 13020 | 1228 | --{* 56 subgoals left *}
 | 
| 32687 
27530efec97a
tuned proofs; be more cautios wrt. default simp rules
 haftmann parents: 
32621diff
changeset | 1229 | apply (clarsimp simp add: Mul_AppendInv_def Append_to_free0 nth_list_update)+ | 
| 13020 | 1230 | done | 
| 1231 | ||
| 1232 | subsubsection {* The Multi-Mutator Garbage Collection Algorithm *}
 | |
| 1233 | ||
| 1234 | text {* The total number of verification conditions is 328 *}
 | |
| 1235 | ||
| 1236 | lemma Mul_Gar_Coll: | |
| 1237 |  "\<parallel>- .{\<acute>Mul_Proper n \<and> \<acute>Mul_mut_init n \<and> (\<forall>i<n. Z (\<acute>Muts!i))}.  
 | |
| 1238 | COBEGIN | |
| 1239 | Mul_Collector n | |
| 1240 |  .{False}.
 | |
| 1241 | \<parallel> | |
| 1242 | SCHEME [0\<le> j< n] | |
| 1243 | Mul_Mutator j n | |
| 1244 |  .{False}.  
 | |
| 1245 | COEND | |
| 1246 |  .{False}."
 | |
| 1247 | apply oghoare | |
| 1248 | --{* Strengthening the precondition *}
 | |
| 1249 | apply(rule Int_greatest) | |
| 1250 | apply (case_tac n) | |
| 1251 | apply(force simp add: Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1252 | apply(simp add: Mul_Mutator_def mul_collector_defs mul_mutator_defs nth_append) | |
| 1253 | apply force | |
| 1254 | apply clarify | |
| 32133 | 1255 | apply(case_tac i) | 
| 13020 | 1256 | apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | 
| 1257 | apply(simp add: Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append nth_map_upt) | |
| 1258 | --{* Collector *}
 | |
| 1259 | apply(rule Mul_Collector) | |
| 1260 | --{* Mutator *}
 | |
| 1261 | apply(erule Mul_Mutator) | |
| 1262 | --{* Interference freedom *}
 | |
| 1263 | apply(simp add:Mul_interfree_Collector_Mutator) | |
| 1264 | apply(simp add:Mul_interfree_Mutator_Collector) | |
| 1265 | apply(simp add:Mul_interfree_Mutator_Mutator) | |
| 1266 | --{* Weakening of the postcondition *}
 | |
| 1267 | apply(case_tac n) | |
| 1268 | apply(simp add:Mul_Collector_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1269 | apply(simp add:Mul_Mutator_def mul_mutator_defs mul_collector_defs nth_append) | |
| 1270 | done | |
| 1271 | ||
| 13187 | 1272 | end |