| author | desharna | 
| Thu, 02 Oct 2025 11:02:15 +0000 | |
| changeset 83240 | dfa14d921fd2 | 
| parent 76213 | e44d86131648 | 
| permissions | -rw-r--r-- | 
| 13505 | 1 | (* Title: ZF/Constructible/MetaExists.thy | 
| 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 3 | *) | |
| 4 | ||
| 60770 | 5 | section\<open>The meta-existential quantifier\<close> | 
| 13314 | 6 | |
| 65449 
c82e63b11b8b
clarified main ZF.thy / ZFC.thy, and avoid name clash with global HOL/Main.thy;
 wenzelm parents: 
61393diff
changeset | 7 | theory MetaExists imports ZF begin | 
| 13314 | 8 | |
| 61393 | 9 | text\<open>Allows quantification over any term. Used to quantify over classes. | 
| 10 | Yields a proposition rather than a FOL formula.\<close> | |
| 13314 | 11 | |
| 21233 | 12 | definition | 
| 69587 | 13 |   ex :: "(('a::{}) \<Rightarrow> prop) \<Rightarrow> prop"  (binder \<open>\<Or>\<close> 0) where
 | 
| 76213 
e44d86131648
Removal of obsolete ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69587diff
changeset | 14 | "ex(P) \<equiv> (\<And>Q. (\<And>x. PROP P(x) \<Longrightarrow> PROP Q) \<Longrightarrow> PROP Q)" | 
| 13314 | 15 | |
| 76213 
e44d86131648
Removal of obsolete ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69587diff
changeset | 16 | lemma meta_exI: "PROP P(x) \<Longrightarrow> (\<Or>x. PROP P(x))" | 
| 13315 | 17 | proof (unfold ex_def) | 
| 13314 | 18 | assume P: "PROP P(x)" | 
| 13315 | 19 | fix Q | 
| 20 | assume PQ: "\<And>x. PROP P(x) \<Longrightarrow> PROP Q" | |
| 21 | from P show "PROP Q" by (rule PQ) | |
| 13314 | 22 | qed | 
| 23 | ||
| 76213 
e44d86131648
Removal of obsolete ASCII syntax
 paulson <lp15@cam.ac.uk> parents: 
69587diff
changeset | 24 | lemma meta_exE: "\<lbrakk>\<Or>x. PROP P(x); \<And>x. PROP P(x) \<Longrightarrow> PROP R\<rbrakk> \<Longrightarrow> PROP R" | 
| 13315 | 25 | proof (unfold ex_def) | 
| 13314 | 26 | assume QPQ: "\<And>Q. (\<And>x. PROP P(x) \<Longrightarrow> PROP Q) \<Longrightarrow> PROP Q" | 
| 27 | assume PR: "\<And>x. PROP P(x) \<Longrightarrow> PROP R" | |
| 28 | from PR show "PROP R" by (rule QPQ) | |
| 29 | qed | |
| 30 | ||
| 31 | end |