| author | wenzelm | 
| Fri, 17 Sep 2010 20:42:26 +0200 | |
| changeset 39508 | dfacdb01e1ec | 
| parent 31076 | 99fe356cbbc2 | 
| child 39968 | d841744718fe | 
| permissions | -rw-r--r-- | 
| 15600 | 1  | 
(* Title: HOLCF/Porder.thy  | 
| 25773 | 2  | 
Author: Franz Regensburger and Brian Huffman  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
3  | 
*)  | 
| 
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
4  | 
|
| 
15587
 
f363e6e080e7
added subsections and text for document generation
 
huffman 
parents: 
15577 
diff
changeset
 | 
5  | 
header {* Partial orders *}
 | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
6  | 
|
| 15577 | 7  | 
theory Porder  | 
| 27317 | 8  | 
imports Main  | 
| 15577 | 9  | 
begin  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
10  | 
|
| 
15587
 
f363e6e080e7
added subsections and text for document generation
 
huffman 
parents: 
15577 
diff
changeset
 | 
11  | 
subsection {* Type class for partial orders *}
 | 
| 
 
f363e6e080e7
added subsections and text for document generation
 
huffman 
parents: 
15577 
diff
changeset
 | 
12  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
13  | 
class below =  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
14  | 
fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
| 31071 | 15  | 
begin  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
16  | 
|
| 
23284
 
07ae93e58fea
use new-style class for sq_ord; rename op << to sq_le
 
huffman 
parents: 
21524 
diff
changeset
 | 
17  | 
notation  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
18  | 
below (infixl "<<" 55)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
19  | 
|
| 
23284
 
07ae93e58fea
use new-style class for sq_ord; rename op << to sq_le
 
huffman 
parents: 
21524 
diff
changeset
 | 
20  | 
notation (xsymbols)  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
21  | 
below (infixl "\<sqsubseteq>" 55)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
22  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
23  | 
lemma below_eq_trans: "\<lbrakk>a \<sqsubseteq> b; b = c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"  | 
| 31071 | 24  | 
by (rule subst)  | 
25  | 
||
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
26  | 
lemma eq_below_trans: "\<lbrakk>a = b; b \<sqsubseteq> c\<rbrakk> \<Longrightarrow> a \<sqsubseteq> c"  | 
| 31071 | 27  | 
by (rule ssubst)  | 
28  | 
||
29  | 
end  | 
|
30  | 
||
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
31  | 
class po = below +  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
32  | 
assumes below_refl [iff]: "x \<sqsubseteq> x"  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
33  | 
assumes below_trans: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> z"  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
34  | 
assumes below_antisym: "x \<sqsubseteq> y \<Longrightarrow> y \<sqsubseteq> x \<Longrightarrow> x = y"  | 
| 31071 | 35  | 
begin  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
36  | 
|
| 
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
37  | 
text {* minimal fixes least element *}
 | 
| 
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
38  | 
|
| 31071 | 39  | 
lemma minimal2UU[OF allI] : "\<forall>x. uu \<sqsubseteq> x \<Longrightarrow> uu = (THE u. \<forall>y. u \<sqsubseteq> y)"  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
40  | 
by (blast intro: theI2 below_antisym)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
41  | 
|
| 
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
42  | 
text {* the reverse law of anti-symmetry of @{term "op <<"} *}
 | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
43  | 
(* Is this rule ever useful? *)  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
44  | 
lemma below_antisym_inverse: "x = y \<Longrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"  | 
| 31071 | 45  | 
by simp  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
46  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
47  | 
lemma box_below: "a \<sqsubseteq> b \<Longrightarrow> c \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> c \<sqsubseteq> d"  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
48  | 
by (rule below_trans [OF below_trans])  | 
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
49  | 
|
| 31071 | 50  | 
lemma po_eq_conv: "x = y \<longleftrightarrow> x \<sqsubseteq> y \<and> y \<sqsubseteq> x"  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
51  | 
by (fast intro!: below_antisym)  | 
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
52  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
53  | 
lemma rev_below_trans: "y \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z"  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
54  | 
by (rule below_trans)  | 
| 18647 | 55  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
56  | 
lemma not_below2not_eq: "\<not> x \<sqsubseteq> y \<Longrightarrow> x \<noteq> y"  | 
| 31071 | 57  | 
by auto  | 
58  | 
||
59  | 
end  | 
|
| 18647 | 60  | 
|
61  | 
lemmas HOLCF_trans_rules [trans] =  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
62  | 
below_trans  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
63  | 
below_antisym  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
64  | 
below_eq_trans  | 
| 
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
65  | 
eq_below_trans  | 
| 18647 | 66  | 
|
| 31071 | 67  | 
context po  | 
68  | 
begin  | 
|
69  | 
||
| 25777 | 70  | 
subsection {* Upper bounds *}
 | 
| 
18071
 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 
huffman 
parents: 
17810 
diff
changeset
 | 
71  | 
|
| 31071 | 72  | 
definition is_ub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "<|" 55) where  | 
73  | 
"S <| x \<longleftrightarrow> (\<forall>y. y \<in> S \<longrightarrow> y \<sqsubseteq> x)"  | 
|
| 
18071
 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 
huffman 
parents: 
17810 
diff
changeset
 | 
74  | 
|
| 25777 | 75  | 
lemma is_ubI: "(\<And>x. x \<in> S \<Longrightarrow> x \<sqsubseteq> u) \<Longrightarrow> S <| u"  | 
| 31071 | 76  | 
by (simp add: is_ub_def)  | 
| 25777 | 77  | 
|
78  | 
lemma is_ubD: "\<lbrakk>S <| u; x \<in> S\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"  | 
|
| 31071 | 79  | 
by (simp add: is_ub_def)  | 
| 25777 | 80  | 
|
81  | 
lemma ub_imageI: "(\<And>x. x \<in> S \<Longrightarrow> f x \<sqsubseteq> u) \<Longrightarrow> (\<lambda>x. f x) ` S <| u"  | 
|
| 31071 | 82  | 
unfolding is_ub_def by fast  | 
| 25777 | 83  | 
|
84  | 
lemma ub_imageD: "\<lbrakk>f ` S <| u; x \<in> S\<rbrakk> \<Longrightarrow> f x \<sqsubseteq> u"  | 
|
| 31071 | 85  | 
unfolding is_ub_def by fast  | 
| 25777 | 86  | 
|
87  | 
lemma ub_rangeI: "(\<And>i. S i \<sqsubseteq> x) \<Longrightarrow> range S <| x"  | 
|
| 31071 | 88  | 
unfolding is_ub_def by fast  | 
| 25777 | 89  | 
|
90  | 
lemma ub_rangeD: "range S <| x \<Longrightarrow> S i \<sqsubseteq> x"  | 
|
| 31071 | 91  | 
unfolding is_ub_def by fast  | 
| 25777 | 92  | 
|
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
93  | 
lemma is_ub_empty [simp]: "{} <| u"
 | 
| 31071 | 94  | 
unfolding is_ub_def by fast  | 
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
95  | 
|
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
96  | 
lemma is_ub_insert [simp]: "(insert x A) <| y = (x \<sqsubseteq> y \<and> A <| y)"  | 
| 31071 | 97  | 
unfolding is_ub_def by fast  | 
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
98  | 
|
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
99  | 
lemma is_ub_upward: "\<lbrakk>S <| x; x \<sqsubseteq> y\<rbrakk> \<Longrightarrow> S <| y"  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
100  | 
unfolding is_ub_def by (fast intro: below_trans)  | 
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
101  | 
|
| 25777 | 102  | 
subsection {* Least upper bounds *}
 | 
103  | 
||
| 31071 | 104  | 
definition is_lub :: "'a set \<Rightarrow> 'a \<Rightarrow> bool" (infixl "<<|" 55) where  | 
105  | 
"S <<| x \<longleftrightarrow> S <| x \<and> (\<forall>u. S <| u \<longrightarrow> x \<sqsubseteq> u)"  | 
|
| 
18071
 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 
huffman 
parents: 
17810 
diff
changeset
 | 
106  | 
|
| 31071 | 107  | 
definition lub :: "'a set \<Rightarrow> 'a" where  | 
| 
25131
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
24728 
diff
changeset
 | 
108  | 
"lub S = (THE x. S <<| x)"  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
109  | 
|
| 31071 | 110  | 
end  | 
111  | 
||
| 25777 | 112  | 
syntax  | 
113  | 
  "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3LUB _:_./ _)" [0,0, 10] 10)
 | 
|
114  | 
||
115  | 
syntax (xsymbols)  | 
|
116  | 
  "_BLub" :: "[pttrn, 'a set, 'b] \<Rightarrow> 'b" ("(3\<Squnion>_\<in>_./ _)" [0,0, 10] 10)
 | 
|
117  | 
||
118  | 
translations  | 
|
119  | 
"LUB x:A. t" == "CONST lub ((%x. t) ` A)"  | 
|
120  | 
||
| 31071 | 121  | 
context po  | 
122  | 
begin  | 
|
123  | 
||
| 21524 | 124  | 
abbreviation  | 
125  | 
Lub (binder "LUB " 10) where  | 
|
126  | 
"LUB n. t n == lub (range t)"  | 
|
| 2394 | 127  | 
|
| 21524 | 128  | 
notation (xsymbols)  | 
129  | 
Lub (binder "\<Squnion> " 10)  | 
|
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
130  | 
|
| 25813 | 131  | 
text {* access to some definition as inference rule *}
 | 
132  | 
||
133  | 
lemma is_lubD1: "S <<| x \<Longrightarrow> S <| x"  | 
|
| 31071 | 134  | 
unfolding is_lub_def by fast  | 
| 25813 | 135  | 
|
136  | 
lemma is_lub_lub: "\<lbrakk>S <<| x; S <| u\<rbrakk> \<Longrightarrow> x \<sqsubseteq> u"  | 
|
| 31071 | 137  | 
unfolding is_lub_def by fast  | 
| 25813 | 138  | 
|
139  | 
lemma is_lubI: "\<lbrakk>S <| x; \<And>u. S <| u \<Longrightarrow> x \<sqsubseteq> u\<rbrakk> \<Longrightarrow> S <<| x"  | 
|
| 31071 | 140  | 
unfolding is_lub_def by fast  | 
| 25813 | 141  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
142  | 
text {* lubs are unique *}
 | 
| 15562 | 143  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
144  | 
lemma unique_lub: "\<lbrakk>S <<| x; S <<| y\<rbrakk> \<Longrightarrow> x = y"  | 
| 15562 | 145  | 
apply (unfold is_lub_def is_ub_def)  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
146  | 
apply (blast intro: below_antisym)  | 
| 15562 | 147  | 
done  | 
148  | 
||
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
149  | 
text {* technical lemmas about @{term lub} and @{term is_lub} *}
 | 
| 15562 | 150  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
151  | 
lemma lubI: "M <<| x \<Longrightarrow> M <<| lub M"  | 
| 
15930
 
145651bc64a8
Replaced all unnecessary uses of SOME with THE or LEAST
 
huffman 
parents: 
15600 
diff
changeset
 | 
152  | 
apply (unfold lub_def)  | 
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
153  | 
apply (rule theI)  | 
| 
15930
 
145651bc64a8
Replaced all unnecessary uses of SOME with THE or LEAST
 
huffman 
parents: 
15600 
diff
changeset
 | 
154  | 
apply assumption  | 
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
155  | 
apply (erule (1) unique_lub)  | 
| 15562 | 156  | 
done  | 
157  | 
||
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
158  | 
lemma thelubI: "M <<| l \<Longrightarrow> lub M = l"  | 
| 31071 | 159  | 
by (rule unique_lub [OF lubI])  | 
| 15562 | 160  | 
|
| 25780 | 161  | 
lemma is_lub_singleton: "{x} <<| x"
 | 
| 31071 | 162  | 
by (simp add: is_lub_def)  | 
| 25780 | 163  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
164  | 
lemma lub_singleton [simp]: "lub {x} = x"
 | 
| 31071 | 165  | 
by (rule thelubI [OF is_lub_singleton])  | 
| 25780 | 166  | 
|
167  | 
lemma is_lub_bin: "x \<sqsubseteq> y \<Longrightarrow> {x, y} <<| y"
 | 
|
| 31071 | 168  | 
by (simp add: is_lub_def)  | 
| 25780 | 169  | 
|
170  | 
lemma lub_bin: "x \<sqsubseteq> y \<Longrightarrow> lub {x, y} = y"
 | 
|
| 31071 | 171  | 
by (rule is_lub_bin [THEN thelubI])  | 
| 15562 | 172  | 
|
| 25813 | 173  | 
lemma is_lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> S <<| x"  | 
| 31071 | 174  | 
by (erule is_lubI, erule (1) is_ubD)  | 
| 15562 | 175  | 
|
| 25813 | 176  | 
lemma lub_maximal: "\<lbrakk>S <| x; x \<in> S\<rbrakk> \<Longrightarrow> lub S = x"  | 
| 31071 | 177  | 
by (rule is_lub_maximal [THEN thelubI])  | 
| 
243
 
c22b85994e17
Franz Regensburger's Higher-Order Logic of Computable Functions embedding LCF
 
nipkow 
parents:  
diff
changeset
 | 
178  | 
|
| 25695 | 179  | 
subsection {* Countable chains *}
 | 
180  | 
||
| 31071 | 181  | 
definition chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where  | 
| 25695 | 182  | 
  -- {* Here we use countable chains and I prefer to code them as functions! *}
 | 
| 
25922
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
183  | 
"chain Y = (\<forall>i. Y i \<sqsubseteq> Y (Suc i))"  | 
| 
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
184  | 
|
| 
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
185  | 
lemma chainI: "(\<And>i. Y i \<sqsubseteq> Y (Suc i)) \<Longrightarrow> chain Y"  | 
| 31071 | 186  | 
unfolding chain_def by fast  | 
| 
25922
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
187  | 
|
| 
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
188  | 
lemma chainE: "chain Y \<Longrightarrow> Y i \<sqsubseteq> Y (Suc i)"  | 
| 31071 | 189  | 
unfolding chain_def by fast  | 
| 25695 | 190  | 
|
191  | 
text {* chains are monotone functions *}
 | 
|
192  | 
||
| 27317 | 193  | 
lemma chain_mono_less: "\<lbrakk>chain Y; i < j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
194  | 
by (erule less_Suc_induct, erule chainE, erule below_trans)  | 
| 25695 | 195  | 
|
| 27317 | 196  | 
lemma chain_mono: "\<lbrakk>chain Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i \<sqsubseteq> Y j"  | 
| 31071 | 197  | 
by (cases "i = j", simp, simp add: chain_mono_less)  | 
| 15562 | 198  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
199  | 
lemma chain_shift: "chain Y \<Longrightarrow> chain (\<lambda>i. Y (i + j))"  | 
| 31071 | 200  | 
by (rule chainI, simp, erule chainE)  | 
| 15562 | 201  | 
|
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
202  | 
text {* technical lemmas about (least) upper bounds of chains *}
 | 
| 15562 | 203  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
204  | 
lemma is_ub_lub: "range S <<| x \<Longrightarrow> S i \<sqsubseteq> x"  | 
| 31071 | 205  | 
by (rule is_lubD1 [THEN ub_rangeD])  | 
| 15562 | 206  | 
|
| 
16318
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
207  | 
lemma is_ub_range_shift:  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
208  | 
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <| x = range S <| x"  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
209  | 
apply (rule iffI)  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
210  | 
apply (rule ub_rangeI)  | 
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
211  | 
apply (rule_tac y="S (i + j)" in below_trans)  | 
| 
25922
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
212  | 
apply (erule chain_mono)  | 
| 
16318
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
213  | 
apply (rule le_add1)  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
214  | 
apply (erule ub_rangeD)  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
215  | 
apply (rule ub_rangeI)  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
216  | 
apply (erule ub_rangeD)  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
217  | 
done  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
218  | 
|
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
219  | 
lemma is_lub_range_shift:  | 
| 
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
220  | 
"chain S \<Longrightarrow> range (\<lambda>i. S (i + j)) <<| x = range S <<| x"  | 
| 31071 | 221  | 
by (simp add: is_lub_def is_ub_range_shift)  | 
| 
16318
 
45b12a01382f
added theorems is_ub_range_shift and is_lub_range_shift
 
huffman 
parents: 
16092 
diff
changeset
 | 
222  | 
|
| 25695 | 223  | 
text {* the lub of a constant chain is the constant *}
 | 
224  | 
||
225  | 
lemma chain_const [simp]: "chain (\<lambda>i. c)"  | 
|
| 31071 | 226  | 
by (simp add: chainI)  | 
| 25695 | 227  | 
|
228  | 
lemma lub_const: "range (\<lambda>x. c) <<| c"  | 
|
229  | 
by (blast dest: ub_rangeD intro: is_lubI ub_rangeI)  | 
|
230  | 
||
231  | 
lemma thelub_const [simp]: "(\<Squnion>i. c) = c"  | 
|
| 31071 | 232  | 
by (rule lub_const [THEN thelubI])  | 
| 25695 | 233  | 
|
234  | 
subsection {* Finite chains *}
 | 
|
235  | 
||
| 31071 | 236  | 
definition max_in_chain :: "nat \<Rightarrow> (nat \<Rightarrow> 'a) \<Rightarrow> bool" where  | 
| 25695 | 237  | 
  -- {* finite chains, needed for monotony of continuous functions *}
 | 
| 31071 | 238  | 
"max_in_chain i C \<longleftrightarrow> (\<forall>j. i \<le> j \<longrightarrow> C i = C j)"  | 
| 25695 | 239  | 
|
| 31071 | 240  | 
definition finite_chain :: "(nat \<Rightarrow> 'a) \<Rightarrow> bool" where  | 
| 25695 | 241  | 
"finite_chain C = (chain C \<and> (\<exists>i. max_in_chain i C))"  | 
242  | 
||
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
243  | 
text {* results about finite chains *}
 | 
| 15562 | 244  | 
|
| 25878 | 245  | 
lemma max_in_chainI: "(\<And>j. i \<le> j \<Longrightarrow> Y i = Y j) \<Longrightarrow> max_in_chain i Y"  | 
| 31071 | 246  | 
unfolding max_in_chain_def by fast  | 
| 25878 | 247  | 
|
248  | 
lemma max_in_chainD: "\<lbrakk>max_in_chain i Y; i \<le> j\<rbrakk> \<Longrightarrow> Y i = Y j"  | 
|
| 31071 | 249  | 
unfolding max_in_chain_def by fast  | 
| 25878 | 250  | 
|
| 27317 | 251  | 
lemma finite_chainI:  | 
252  | 
"\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> finite_chain C"  | 
|
| 31071 | 253  | 
unfolding finite_chain_def by fast  | 
| 27317 | 254  | 
|
255  | 
lemma finite_chainE:  | 
|
256  | 
"\<lbrakk>finite_chain C; \<And>i. \<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R"  | 
|
| 31071 | 257  | 
unfolding finite_chain_def by fast  | 
| 27317 | 258  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
259  | 
lemma lub_finch1: "\<lbrakk>chain C; max_in_chain i C\<rbrakk> \<Longrightarrow> range C <<| C i"  | 
| 15562 | 260  | 
apply (rule is_lubI)  | 
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
261  | 
apply (rule ub_rangeI, rename_tac j)  | 
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
262  | 
apply (rule_tac x=i and y=j in linorder_le_cases)  | 
| 25878 | 263  | 
apply (drule (1) max_in_chainD, simp)  | 
| 
25922
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
264  | 
apply (erule (1) chain_mono)  | 
| 15562 | 265  | 
apply (erule ub_rangeD)  | 
266  | 
done  | 
|
267  | 
||
| 
25131
 
2c8caac48ade
modernized specifications ('definition', 'abbreviation', 'notation');
 
wenzelm 
parents: 
24728 
diff
changeset
 | 
268  | 
lemma lub_finch2:  | 
| 27317 | 269  | 
"finite_chain C \<Longrightarrow> range C <<| C (LEAST i. max_in_chain i C)"  | 
270  | 
apply (erule finite_chainE)  | 
|
271  | 
apply (erule LeastI2 [where Q="\<lambda>i. range C <<| C i"])  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
272  | 
apply (erule (1) lub_finch1)  | 
| 15562 | 273  | 
done  | 
274  | 
||
| 19621 | 275  | 
lemma finch_imp_finite_range: "finite_chain Y \<Longrightarrow> finite (range Y)"  | 
| 27317 | 276  | 
apply (erule finite_chainE)  | 
277  | 
 apply (rule_tac B="Y ` {..i}" in finite_subset)
 | 
|
| 19621 | 278  | 
apply (rule subsetI)  | 
279  | 
apply (erule rangeE, rename_tac j)  | 
|
280  | 
apply (rule_tac x=i and y=j in linorder_le_cases)  | 
|
281  | 
apply (subgoal_tac "Y j = Y i", simp)  | 
|
282  | 
apply (simp add: max_in_chain_def)  | 
|
283  | 
apply simp  | 
|
| 27317 | 284  | 
apply simp  | 
| 19621 | 285  | 
done  | 
286  | 
||
| 27317 | 287  | 
lemma finite_range_has_max:  | 
288  | 
fixes f :: "nat \<Rightarrow> 'a" and r :: "'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
|
289  | 
assumes mono: "\<And>i j. i \<le> j \<Longrightarrow> r (f i) (f j)"  | 
|
290  | 
assumes finite_range: "finite (range f)"  | 
|
291  | 
shows "\<exists>k. \<forall>i. r (f i) (f k)"  | 
|
292  | 
proof (intro exI allI)  | 
|
293  | 
fix i :: nat  | 
|
294  | 
let ?j = "LEAST k. f k = f i"  | 
|
295  | 
let ?k = "Max ((\<lambda>x. LEAST k. f k = x) ` range f)"  | 
|
296  | 
have "?j \<le> ?k"  | 
|
297  | 
proof (rule Max_ge)  | 
|
298  | 
show "finite ((\<lambda>x. LEAST k. f k = x) ` range f)"  | 
|
299  | 
using finite_range by (rule finite_imageI)  | 
|
300  | 
show "?j \<in> (\<lambda>x. LEAST k. f k = x) ` range f"  | 
|
301  | 
by (intro imageI rangeI)  | 
|
302  | 
qed  | 
|
303  | 
hence "r (f ?j) (f ?k)"  | 
|
304  | 
by (rule mono)  | 
|
305  | 
also have "f ?j = f i"  | 
|
306  | 
by (rule LeastI, rule refl)  | 
|
307  | 
finally show "r (f i) (f ?k)" .  | 
|
308  | 
qed  | 
|
309  | 
||
| 19621 | 310  | 
lemma finite_range_imp_finch:  | 
311  | 
"\<lbrakk>chain Y; finite (range Y)\<rbrakk> \<Longrightarrow> finite_chain Y"  | 
|
| 27317 | 312  | 
apply (subgoal_tac "\<exists>k. \<forall>i. Y i \<sqsubseteq> Y k")  | 
313  | 
apply (erule exE)  | 
|
314  | 
apply (rule finite_chainI, assumption)  | 
|
315  | 
apply (rule max_in_chainI)  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
316  | 
apply (rule below_antisym)  | 
| 27317 | 317  | 
apply (erule (1) chain_mono)  | 
318  | 
apply (erule spec)  | 
|
319  | 
apply (rule finite_range_has_max)  | 
|
320  | 
apply (erule (1) chain_mono)  | 
|
321  | 
apply assumption  | 
|
| 19621 | 322  | 
done  | 
323  | 
||
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
324  | 
lemma bin_chain: "x \<sqsubseteq> y \<Longrightarrow> chain (\<lambda>i. if i=0 then x else y)"  | 
| 31071 | 325  | 
by (rule chainI, simp)  | 
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
326  | 
|
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
327  | 
lemma bin_chainmax:  | 
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
328  | 
"x \<sqsubseteq> y \<Longrightarrow> max_in_chain (Suc 0) (\<lambda>i. if i=0 then x else y)"  | 
| 31071 | 329  | 
unfolding max_in_chain_def by simp  | 
| 15562 | 330  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
331  | 
lemma lub_bin_chain:  | 
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
332  | 
"x \<sqsubseteq> y \<Longrightarrow> range (\<lambda>i::nat. if i=0 then x else y) <<| y"  | 
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
333  | 
apply (frule bin_chain)  | 
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
334  | 
apply (drule bin_chainmax)  | 
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
335  | 
apply (drule (1) lub_finch1)  | 
| 
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
336  | 
apply simp  | 
| 15562 | 337  | 
done  | 
338  | 
||
| 
15576
 
efb95d0d01f7
converted to new-style theories, and combined numbered files
 
huffman 
parents: 
15562 
diff
changeset
 | 
339  | 
text {* the maximal element in a chain is its lub *}
 | 
| 15562 | 340  | 
|
| 
17810
 
3bdf516d93d8
cleaned up; renamed "Porder.op <<" to "Porder.<<"
 
huffman 
parents: 
17372 
diff
changeset
 | 
341  | 
lemma lub_chain_maxelem: "\<lbrakk>Y i = c; \<forall>i. Y i \<sqsubseteq> c\<rbrakk> \<Longrightarrow> lub (range Y) = c"  | 
| 31071 | 342  | 
by (blast dest: ub_rangeD intro: thelubI is_lubI ub_rangeI)  | 
| 15562 | 343  | 
|
| 25773 | 344  | 
subsection {* Directed sets *}
 | 
345  | 
||
| 31071 | 346  | 
definition directed :: "'a set \<Rightarrow> bool" where  | 
347  | 
"directed S \<longleftrightarrow> (\<exists>x. x \<in> S) \<and> (\<forall>x\<in>S. \<forall>y\<in>S. \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z)"  | 
|
| 25773 | 348  | 
|
349  | 
lemma directedI:  | 
|
350  | 
assumes 1: "\<exists>z. z \<in> S"  | 
|
351  | 
assumes 2: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"  | 
|
352  | 
shows "directed S"  | 
|
| 31071 | 353  | 
unfolding directed_def using prems by fast  | 
| 25773 | 354  | 
|
355  | 
lemma directedD1: "directed S \<Longrightarrow> \<exists>z. z \<in> S"  | 
|
| 31071 | 356  | 
unfolding directed_def by fast  | 
| 25773 | 357  | 
|
358  | 
lemma directedD2: "\<lbrakk>directed S; x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z"  | 
|
| 31071 | 359  | 
unfolding directed_def by fast  | 
| 25773 | 360  | 
|
| 25780 | 361  | 
lemma directedE1:  | 
362  | 
assumes S: "directed S"  | 
|
363  | 
obtains z where "z \<in> S"  | 
|
| 31071 | 364  | 
by (insert directedD1 [OF S], fast)  | 
| 25780 | 365  | 
|
366  | 
lemma directedE2:  | 
|
367  | 
assumes S: "directed S"  | 
|
368  | 
assumes x: "x \<in> S" and y: "y \<in> S"  | 
|
369  | 
obtains z where "z \<in> S" "x \<sqsubseteq> z" "y \<sqsubseteq> z"  | 
|
| 31071 | 370  | 
by (insert directedD2 [OF S x y], fast)  | 
| 25780 | 371  | 
|
| 25773 | 372  | 
lemma directed_finiteI:  | 
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
373  | 
assumes U: "\<And>U. \<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z"  | 
| 25773 | 374  | 
shows "directed S"  | 
375  | 
proof (rule directedI)  | 
|
376  | 
  have "finite {}" and "{} \<subseteq> S" by simp_all
 | 
|
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
377  | 
  hence "\<exists>z\<in>S. {} <| z" by (rule U)
 | 
| 25773 | 378  | 
thus "\<exists>z. z \<in> S" by simp  | 
379  | 
next  | 
|
380  | 
fix x y  | 
|
381  | 
assume "x \<in> S" and "y \<in> S"  | 
|
382  | 
  hence "finite {x, y}" and "{x, y} \<subseteq> S" by simp_all
 | 
|
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
383  | 
  hence "\<exists>z\<in>S. {x, y} <| z" by (rule U)
 | 
| 25773 | 384  | 
thus "\<exists>z\<in>S. x \<sqsubseteq> z \<and> y \<sqsubseteq> z" by simp  | 
385  | 
qed  | 
|
386  | 
||
387  | 
lemma directed_finiteD:  | 
|
388  | 
assumes S: "directed S"  | 
|
| 
25828
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
389  | 
shows "\<lbrakk>finite U; U \<subseteq> S\<rbrakk> \<Longrightarrow> \<exists>z\<in>S. U <| z"  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
390  | 
proof (induct U set: finite)  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
391  | 
case empty  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
392  | 
from S have "\<exists>z. z \<in> S" by (rule directedD1)  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
393  | 
  thus "\<exists>z\<in>S. {} <| z" by simp
 | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
394  | 
next  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
395  | 
case (insert x F)  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
396  | 
from `insert x F \<subseteq> S`  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
397  | 
have xS: "x \<in> S" and FS: "F \<subseteq> S" by simp_all  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
398  | 
from FS have "\<exists>y\<in>S. F <| y" by fact  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
399  | 
then obtain y where yS: "y \<in> S" and Fy: "F <| y" ..  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
400  | 
obtain z where zS: "z \<in> S" and xz: "x \<sqsubseteq> z" and yz: "y \<sqsubseteq> z"  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
401  | 
using S xS yS by (rule directedE2)  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
402  | 
from Fy yz have "F <| z" by (rule is_ub_upward)  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
403  | 
with xz have "insert x F <| z" by simp  | 
| 
 
228c53fdb3b4
add new is_ub lemmas; clean up directed_finite proofs
 
huffman 
parents: 
25813 
diff
changeset
 | 
404  | 
with zS show "\<exists>z\<in>S. insert x F <| z" ..  | 
| 25773 | 405  | 
qed  | 
406  | 
||
| 25813 | 407  | 
lemma not_directed_empty [simp]: "\<not> directed {}"
 | 
| 31071 | 408  | 
by (rule notI, drule directedD1, simp)  | 
| 25773 | 409  | 
|
410  | 
lemma directed_singleton: "directed {x}"
 | 
|
| 31071 | 411  | 
by (rule directedI, auto)  | 
| 25773 | 412  | 
|
413  | 
lemma directed_bin: "x \<sqsubseteq> y \<Longrightarrow> directed {x, y}"
 | 
|
| 31071 | 414  | 
by (rule directedI, auto)  | 
| 25773 | 415  | 
|
416  | 
lemma directed_chain: "chain S \<Longrightarrow> directed (range S)"  | 
|
417  | 
apply (rule directedI)  | 
|
418  | 
apply (rule_tac x="S 0" in exI, simp)  | 
|
419  | 
apply (clarify, rename_tac m n)  | 
|
420  | 
apply (rule_tac x="S (max m n)" in bexI)  | 
|
| 
25922
 
cb04d05e95fb
rename lemma chain_mono3 -> chain_mono, chain_mono -> chain_mono_less
 
huffman 
parents: 
25897 
diff
changeset
 | 
421  | 
apply (simp add: chain_mono)  | 
| 25773 | 422  | 
apply simp  | 
423  | 
done  | 
|
424  | 
||
| 31071 | 425  | 
text {* lemmata for improved admissibility introdution rule *}
 | 
426  | 
||
427  | 
lemma infinite_chain_adm_lemma:  | 
|
428  | 
"\<lbrakk>chain Y; \<forall>i. P (Y i);  | 
|
429  | 
\<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i); \<not> finite_chain Y\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk>  | 
|
430  | 
\<Longrightarrow> P (\<Squnion>i. Y i)"  | 
|
431  | 
apply (case_tac "finite_chain Y")  | 
|
432  | 
prefer 2 apply fast  | 
|
433  | 
apply (unfold finite_chain_def)  | 
|
434  | 
apply safe  | 
|
435  | 
apply (erule lub_finch1 [THEN thelubI, THEN ssubst])  | 
|
436  | 
apply assumption  | 
|
437  | 
apply (erule spec)  | 
|
438  | 
done  | 
|
439  | 
||
440  | 
lemma increasing_chain_adm_lemma:  | 
|
441  | 
"\<lbrakk>chain Y; \<forall>i. P (Y i); \<And>Y. \<lbrakk>chain Y; \<forall>i. P (Y i);  | 
|
442  | 
\<forall>i. \<exists>j>i. Y i \<noteq> Y j \<and> Y i \<sqsubseteq> Y j\<rbrakk> \<Longrightarrow> P (\<Squnion>i. Y i)\<rbrakk>  | 
|
443  | 
\<Longrightarrow> P (\<Squnion>i. Y i)"  | 
|
444  | 
apply (erule infinite_chain_adm_lemma)  | 
|
445  | 
apply assumption  | 
|
446  | 
apply (erule thin_rl)  | 
|
447  | 
apply (unfold finite_chain_def)  | 
|
448  | 
apply (unfold max_in_chain_def)  | 
|
449  | 
apply (fast dest: le_imp_less_or_eq elim: chain_mono_less)  | 
|
450  | 
done  | 
|
451  | 
||
| 
18071
 
940c2c0ff33a
cleaned up; chain_const and thelub_const are simp rules
 
huffman 
parents: 
17810 
diff
changeset
 | 
452  | 
end  | 
| 31071 | 453  | 
|
| 
31076
 
99fe356cbbc2
rename constant sq_le to below; rename class sq_ord to below; less->below in many lemma names
 
huffman 
parents: 
31071 
diff
changeset
 | 
454  | 
end  |