author | wenzelm |
Fri, 02 Jan 2009 23:59:32 +0100 | |
changeset 29331 | dfaf9d086868 |
parent 29269 | 5c25a2012975 |
child 30607 | c3d1590debd8 |
permissions | -rw-r--r-- |
23146 | 1 |
(* Title: ZF/int_arith.ML |
2 |
Author: Larry Paulson |
|
3 |
||
4 |
Simprocs for linear arithmetic. |
|
5 |
*) |
|
6 |
||
7 |
structure Int_Numeral_Simprocs = |
|
8 |
struct |
|
9 |
||
10 |
(*Utilities*) |
|
11 |
||
27237 | 12 |
fun mk_numeral n = @{const integ_of} $ NumeralSyntax.mk_bin n; |
23146 | 13 |
|
14 |
(*Decodes a binary INTEGER*) |
|
27237 | 15 |
fun dest_numeral (Const(@{const_name integ_of}, _) $ w) = |
23146 | 16 |
(NumeralSyntax.dest_bin w |
17 |
handle Match => raise TERM("Int_Numeral_Simprocs.dest_numeral:1", [w])) |
|
18 |
| dest_numeral t = raise TERM("Int_Numeral_Simprocs.dest_numeral:2", [t]); |
|
19 |
||
20 |
fun find_first_numeral past (t::terms) = |
|
21 |
((dest_numeral t, rev past @ terms) |
|
22 |
handle TERM _ => find_first_numeral (t::past) terms) |
|
23 |
| find_first_numeral past [] = raise TERM("find_first_numeral", []); |
|
24 |
||
25 |
val zero = mk_numeral 0; |
|
26059 | 26 |
val mk_plus = FOLogic.mk_binop @{const_name "zadd"}; |
23146 | 27 |
|
28 |
(*Thus mk_sum[t] yields t+#0; longer sums don't have a trailing zero*) |
|
29 |
fun mk_sum [] = zero |
|
30 |
| mk_sum [t,u] = mk_plus (t, u) |
|
31 |
| mk_sum (t :: ts) = mk_plus (t, mk_sum ts); |
|
32 |
||
33 |
(*this version ALWAYS includes a trailing zero*) |
|
34 |
fun long_mk_sum [] = zero |
|
35 |
| long_mk_sum (t :: ts) = mk_plus (t, mk_sum ts); |
|
36 |
||
26190 | 37 |
val dest_plus = FOLogic.dest_bin @{const_name "zadd"} @{typ i}; |
23146 | 38 |
|
39 |
(*decompose additions AND subtractions as a sum*) |
|
26059 | 40 |
fun dest_summing (pos, Const (@{const_name "zadd"}, _) $ t $ u, ts) = |
23146 | 41 |
dest_summing (pos, t, dest_summing (pos, u, ts)) |
26059 | 42 |
| dest_summing (pos, Const (@{const_name "zdiff"}, _) $ t $ u, ts) = |
23146 | 43 |
dest_summing (pos, t, dest_summing (not pos, u, ts)) |
44 |
| dest_summing (pos, t, ts) = |
|
27237 | 45 |
if pos then t::ts else @{const zminus} $ t :: ts; |
23146 | 46 |
|
47 |
fun dest_sum t = dest_summing (true, t, []); |
|
48 |
||
26059 | 49 |
val mk_diff = FOLogic.mk_binop @{const_name "zdiff"}; |
26190 | 50 |
val dest_diff = FOLogic.dest_bin @{const_name "zdiff"} @{typ i}; |
23146 | 51 |
|
52 |
val one = mk_numeral 1; |
|
26059 | 53 |
val mk_times = FOLogic.mk_binop @{const_name "zmult"}; |
23146 | 54 |
|
55 |
fun mk_prod [] = one |
|
56 |
| mk_prod [t] = t |
|
57 |
| mk_prod (t :: ts) = if t = one then mk_prod ts |
|
58 |
else mk_times (t, mk_prod ts); |
|
59 |
||
26190 | 60 |
val dest_times = FOLogic.dest_bin @{const_name "zmult"} @{typ i}; |
23146 | 61 |
|
62 |
fun dest_prod t = |
|
63 |
let val (t,u) = dest_times t |
|
64 |
in dest_prod t @ dest_prod u end |
|
65 |
handle TERM _ => [t]; |
|
66 |
||
67 |
(*DON'T do the obvious simplifications; that would create special cases*) |
|
68 |
fun mk_coeff (k, t) = mk_times (mk_numeral k, t); |
|
69 |
||
70 |
(*Express t as a product of (possibly) a numeral with other sorted terms*) |
|
26059 | 71 |
fun dest_coeff sign (Const (@{const_name "zminus"}, _) $ t) = dest_coeff (~sign) t |
23146 | 72 |
| dest_coeff sign t = |
29269
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
wenzelm
parents:
27237
diff
changeset
|
73 |
let val ts = sort TermOrd.term_ord (dest_prod t) |
23146 | 74 |
val (n, ts') = find_first_numeral [] ts |
75 |
handle TERM _ => (1, ts) |
|
76 |
in (sign*n, mk_prod ts') end; |
|
77 |
||
78 |
(*Find first coefficient-term THAT MATCHES u*) |
|
79 |
fun find_first_coeff past u [] = raise TERM("find_first_coeff", []) |
|
80 |
| find_first_coeff past u (t::terms) = |
|
81 |
let val (n,u') = dest_coeff 1 t |
|
82 |
in if u aconv u' then (n, rev past @ terms) |
|
83 |
else find_first_coeff (t::past) u terms |
|
84 |
end |
|
85 |
handle TERM _ => find_first_coeff (t::past) u terms; |
|
86 |
||
87 |
||
88 |
(*Simplify #1*n and n*#1 to n*) |
|
24893 | 89 |
val add_0s = [@{thm zadd_0_intify}, @{thm zadd_0_right_intify}]; |
23146 | 90 |
|
24893 | 91 |
val mult_1s = [@{thm zmult_1_intify}, @{thm zmult_1_right_intify}, |
92 |
@{thm zmult_minus1}, @{thm zmult_minus1_right}]; |
|
23146 | 93 |
|
24893 | 94 |
val tc_rules = [@{thm integ_of_type}, @{thm intify_in_int}, |
95 |
@{thm int_of_type}, @{thm zadd_type}, @{thm zdiff_type}, @{thm zmult_type}] @ |
|
96 |
@{thms bin.intros}; |
|
97 |
val intifys = [@{thm intify_ident}, @{thm zadd_intify1}, @{thm zadd_intify2}, |
|
98 |
@{thm zdiff_intify1}, @{thm zdiff_intify2}, @{thm zmult_intify1}, @{thm zmult_intify2}, |
|
99 |
@{thm zless_intify1}, @{thm zless_intify2}, @{thm zle_intify1}, @{thm zle_intify2}]; |
|
23146 | 100 |
|
101 |
(*To perform binary arithmetic*) |
|
24893 | 102 |
val bin_simps = [@{thm add_integ_of_left}] @ @{thms bin_arith_simps} @ @{thms bin_rel_simps}; |
23146 | 103 |
|
104 |
(*To evaluate binary negations of coefficients*) |
|
24893 | 105 |
val zminus_simps = @{thms NCons_simps} @ |
106 |
[@{thm integ_of_minus} RS sym, |
|
107 |
@{thm bin_minus_1}, @{thm bin_minus_0}, @{thm bin_minus_Pls}, @{thm bin_minus_Min}, |
|
108 |
@{thm bin_pred_1}, @{thm bin_pred_0}, @{thm bin_pred_Pls}, @{thm bin_pred_Min}]; |
|
23146 | 109 |
|
110 |
(*To let us treat subtraction as addition*) |
|
24893 | 111 |
val diff_simps = [@{thm zdiff_def}, @{thm zminus_zadd_distrib}, @{thm zminus_zminus}]; |
23146 | 112 |
|
113 |
(*push the unary minus down: - x * y = x * - y *) |
|
114 |
val int_minus_mult_eq_1_to_2 = |
|
24893 | 115 |
[@{thm zmult_zminus}, @{thm zmult_zminus_right} RS sym] MRS trans |> standard; |
23146 | 116 |
|
117 |
(*to extract again any uncancelled minuses*) |
|
118 |
val int_minus_from_mult_simps = |
|
24893 | 119 |
[@{thm zminus_zminus}, @{thm zmult_zminus}, @{thm zmult_zminus_right}]; |
23146 | 120 |
|
121 |
(*combine unary minus with numeric literals, however nested within a product*) |
|
122 |
val int_mult_minus_simps = |
|
24893 | 123 |
[@{thm zmult_assoc}, @{thm zmult_zminus} RS sym, int_minus_mult_eq_1_to_2]; |
23146 | 124 |
|
125 |
fun prep_simproc (name, pats, proc) = |
|
126 |
Simplifier.simproc (the_context ()) name pats proc; |
|
127 |
||
128 |
structure CancelNumeralsCommon = |
|
129 |
struct |
|
130 |
val mk_sum = (fn T:typ => mk_sum) |
|
131 |
val dest_sum = dest_sum |
|
132 |
val mk_coeff = mk_coeff |
|
133 |
val dest_coeff = dest_coeff 1 |
|
134 |
val find_first_coeff = find_first_coeff [] |
|
135 |
fun trans_tac _ = ArithData.gen_trans_tac iff_trans |
|
136 |
||
24893 | 137 |
val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac} |
23146 | 138 |
val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys |
24893 | 139 |
val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys |
23146 | 140 |
fun norm_tac ss = |
141 |
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1)) |
|
142 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2)) |
|
143 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3)) |
|
144 |
||
145 |
val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys |
|
146 |
fun numeral_simp_tac ss = |
|
147 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) |
|
148 |
THEN ALLGOALS (SIMPSET' (fn simpset => asm_simp_tac (Simplifier.inherit_context ss simpset))) |
|
149 |
val simplify_meta_eq = ArithData.simplify_meta_eq (add_0s @ mult_1s) |
|
150 |
end; |
|
151 |
||
152 |
||
153 |
structure EqCancelNumerals = CancelNumeralsFun |
|
154 |
(open CancelNumeralsCommon |
|
155 |
val prove_conv = ArithData.prove_conv "inteq_cancel_numerals" |
|
156 |
val mk_bal = FOLogic.mk_eq |
|
157 |
val dest_bal = FOLogic.dest_eq |
|
27237 | 158 |
val bal_add1 = @{thm eq_add_iff1} RS iff_trans |
159 |
val bal_add2 = @{thm eq_add_iff2} RS iff_trans |
|
23146 | 160 |
); |
161 |
||
162 |
structure LessCancelNumerals = CancelNumeralsFun |
|
163 |
(open CancelNumeralsCommon |
|
164 |
val prove_conv = ArithData.prove_conv "intless_cancel_numerals" |
|
26059 | 165 |
val mk_bal = FOLogic.mk_binrel @{const_name "zless"} |
26190 | 166 |
val dest_bal = FOLogic.dest_bin @{const_name "zless"} @{typ i} |
27237 | 167 |
val bal_add1 = @{thm less_add_iff1} RS iff_trans |
168 |
val bal_add2 = @{thm less_add_iff2} RS iff_trans |
|
23146 | 169 |
); |
170 |
||
171 |
structure LeCancelNumerals = CancelNumeralsFun |
|
172 |
(open CancelNumeralsCommon |
|
173 |
val prove_conv = ArithData.prove_conv "intle_cancel_numerals" |
|
26059 | 174 |
val mk_bal = FOLogic.mk_binrel @{const_name "zle"} |
26190 | 175 |
val dest_bal = FOLogic.dest_bin @{const_name "zle"} @{typ i} |
27237 | 176 |
val bal_add1 = @{thm le_add_iff1} RS iff_trans |
177 |
val bal_add2 = @{thm le_add_iff2} RS iff_trans |
|
23146 | 178 |
); |
179 |
||
180 |
val cancel_numerals = |
|
181 |
map prep_simproc |
|
182 |
[("inteq_cancel_numerals", |
|
183 |
["l $+ m = n", "l = m $+ n", |
|
184 |
"l $- m = n", "l = m $- n", |
|
185 |
"l $* m = n", "l = m $* n"], |
|
186 |
K EqCancelNumerals.proc), |
|
187 |
("intless_cancel_numerals", |
|
188 |
["l $+ m $< n", "l $< m $+ n", |
|
189 |
"l $- m $< n", "l $< m $- n", |
|
190 |
"l $* m $< n", "l $< m $* n"], |
|
191 |
K LessCancelNumerals.proc), |
|
192 |
("intle_cancel_numerals", |
|
193 |
["l $+ m $<= n", "l $<= m $+ n", |
|
194 |
"l $- m $<= n", "l $<= m $- n", |
|
195 |
"l $* m $<= n", "l $<= m $* n"], |
|
196 |
K LeCancelNumerals.proc)]; |
|
197 |
||
198 |
||
199 |
(*version without the hyps argument*) |
|
200 |
fun prove_conv_nohyps name tacs sg = ArithData.prove_conv name tacs sg []; |
|
201 |
||
202 |
structure CombineNumeralsData = |
|
203 |
struct |
|
24630
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
23146
diff
changeset
|
204 |
type coeff = int |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
23146
diff
changeset
|
205 |
val iszero = (fn x => x = 0) |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
23146
diff
changeset
|
206 |
val add = op + |
23146 | 207 |
val mk_sum = (fn T:typ => long_mk_sum) (*to work for #2*x $+ #3*x *) |
208 |
val dest_sum = dest_sum |
|
209 |
val mk_coeff = mk_coeff |
|
210 |
val dest_coeff = dest_coeff 1 |
|
27237 | 211 |
val left_distrib = @{thm left_zadd_zmult_distrib} RS trans |
23146 | 212 |
val prove_conv = prove_conv_nohyps "int_combine_numerals" |
213 |
fun trans_tac _ = ArithData.gen_trans_tac trans |
|
214 |
||
24893 | 215 |
val norm_ss1 = ZF_ss addsimps add_0s @ mult_1s @ diff_simps @ zminus_simps @ @{thms zadd_ac} @ intifys |
23146 | 216 |
val norm_ss2 = ZF_ss addsimps bin_simps @ int_mult_minus_simps @ intifys |
24893 | 217 |
val norm_ss3 = ZF_ss addsimps int_minus_from_mult_simps @ @{thms zadd_ac} @ @{thms zmult_ac} @ tc_rules @ intifys |
23146 | 218 |
fun norm_tac ss = |
219 |
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1)) |
|
220 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2)) |
|
221 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss3)) |
|
222 |
||
223 |
val numeral_simp_ss = ZF_ss addsimps add_0s @ bin_simps @ tc_rules @ intifys |
|
224 |
fun numeral_simp_tac ss = |
|
225 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) |
|
226 |
val simplify_meta_eq = ArithData.simplify_meta_eq (add_0s @ mult_1s) |
|
227 |
end; |
|
228 |
||
229 |
structure CombineNumerals = CombineNumeralsFun(CombineNumeralsData); |
|
230 |
||
231 |
val combine_numerals = |
|
232 |
prep_simproc ("int_combine_numerals", ["i $+ j", "i $- j"], K CombineNumerals.proc); |
|
233 |
||
234 |
||
235 |
||
236 |
(** Constant folding for integer multiplication **) |
|
237 |
||
238 |
(*The trick is to regard products as sums, e.g. #3 $* x $* #4 as |
|
239 |
the "sum" of #3, x, #4; the literals are then multiplied*) |
|
240 |
||
241 |
||
242 |
structure CombineNumeralsProdData = |
|
243 |
struct |
|
24630
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
23146
diff
changeset
|
244 |
type coeff = int |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
23146
diff
changeset
|
245 |
val iszero = (fn x => x = 0) |
351a308ab58d
simplified type int (eliminated IntInf.int, integer);
wenzelm
parents:
23146
diff
changeset
|
246 |
val add = op * |
23146 | 247 |
val mk_sum = (fn T:typ => mk_prod) |
248 |
val dest_sum = dest_prod |
|
249 |
fun mk_coeff(k,t) = if t=one then mk_numeral k |
|
250 |
else raise TERM("mk_coeff", []) |
|
251 |
fun dest_coeff t = (dest_numeral t, one) (*We ONLY want pure numerals.*) |
|
24893 | 252 |
val left_distrib = @{thm zmult_assoc} RS sym RS trans |
23146 | 253 |
val prove_conv = prove_conv_nohyps "int_combine_numerals_prod" |
254 |
fun trans_tac _ = ArithData.gen_trans_tac trans |
|
255 |
||
256 |
||
257 |
||
258 |
val norm_ss1 = ZF_ss addsimps mult_1s @ diff_simps @ zminus_simps |
|
24893 | 259 |
val norm_ss2 = ZF_ss addsimps [@{thm zmult_zminus_right} RS sym] @ |
260 |
bin_simps @ @{thms zmult_ac} @ tc_rules @ intifys |
|
23146 | 261 |
fun norm_tac ss = |
262 |
ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss1)) |
|
263 |
THEN ALLGOALS (asm_simp_tac (Simplifier.inherit_context ss norm_ss2)) |
|
264 |
||
265 |
val numeral_simp_ss = ZF_ss addsimps bin_simps @ tc_rules @ intifys |
|
266 |
fun numeral_simp_tac ss = |
|
267 |
ALLGOALS (simp_tac (Simplifier.inherit_context ss numeral_simp_ss)) |
|
268 |
val simplify_meta_eq = ArithData.simplify_meta_eq (mult_1s); |
|
269 |
end; |
|
270 |
||
271 |
||
272 |
structure CombineNumeralsProd = CombineNumeralsFun(CombineNumeralsProdData); |
|
273 |
||
274 |
val combine_numerals_prod = |
|
275 |
prep_simproc ("int_combine_numerals_prod", ["i $* j"], K CombineNumeralsProd.proc); |
|
276 |
||
277 |
end; |
|
278 |
||
279 |
||
280 |
Addsimprocs Int_Numeral_Simprocs.cancel_numerals; |
|
281 |
Addsimprocs [Int_Numeral_Simprocs.combine_numerals, |
|
282 |
Int_Numeral_Simprocs.combine_numerals_prod]; |
|
283 |
||
284 |
||
285 |
(*examples:*) |
|
286 |
(* |
|
287 |
print_depth 22; |
|
288 |
set timing; |
|
289 |
set trace_simp; |
|
290 |
fun test s = (Goal s; by (Asm_simp_tac 1)); |
|
291 |
val sg = #sign (rep_thm (topthm())); |
|
292 |
val t = FOLogic.dest_Trueprop (Logic.strip_assums_concl(getgoal 1)); |
|
293 |
val (t,_) = FOLogic.dest_eq t; |
|
294 |
||
295 |
(*combine_numerals_prod (products of separate literals) *) |
|
296 |
test "#5 $* x $* #3 = y"; |
|
297 |
||
298 |
test "y2 $+ ?x42 = y $+ y2"; |
|
299 |
||
300 |
test "oo : int ==> l $+ (l $+ #2) $+ oo = oo"; |
|
301 |
||
302 |
test "#9$*x $+ y = x$*#23 $+ z"; |
|
303 |
test "y $+ x = x $+ z"; |
|
304 |
||
305 |
test "x : int ==> x $+ y $+ z = x $+ z"; |
|
306 |
test "x : int ==> y $+ (z $+ x) = z $+ x"; |
|
307 |
test "z : int ==> x $+ y $+ z = (z $+ y) $+ (x $+ w)"; |
|
308 |
test "z : int ==> x$*y $+ z = (z $+ y) $+ (y$*x $+ w)"; |
|
309 |
||
310 |
test "#-3 $* x $+ y $<= x $* #2 $+ z"; |
|
311 |
test "y $+ x $<= x $+ z"; |
|
312 |
test "x $+ y $+ z $<= x $+ z"; |
|
313 |
||
314 |
test "y $+ (z $+ x) $< z $+ x"; |
|
315 |
test "x $+ y $+ z $< (z $+ y) $+ (x $+ w)"; |
|
316 |
test "x$*y $+ z $< (z $+ y) $+ (y$*x $+ w)"; |
|
317 |
||
318 |
test "l $+ #2 $+ #2 $+ #2 $+ (l $+ #2) $+ (oo $+ #2) = uu"; |
|
319 |
test "u : int ==> #2 $* u = u"; |
|
320 |
test "(i $+ j $+ #12 $+ k) $- #15 = y"; |
|
321 |
test "(i $+ j $+ #12 $+ k) $- #5 = y"; |
|
322 |
||
323 |
test "y $- b $< b"; |
|
324 |
test "y $- (#3 $* b $+ c) $< b $- #2 $* c"; |
|
325 |
||
326 |
test "(#2 $* x $- (u $* v) $+ y) $- v $* #3 $* u = w"; |
|
327 |
test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u $* #4 = w"; |
|
328 |
test "(#2 $* x $* u $* v $+ (u $* v) $* #4 $+ y) $- v $* u = w"; |
|
329 |
test "u $* v $- (x $* u $* v $+ (u $* v) $* #4 $+ y) = w"; |
|
330 |
||
331 |
test "(i $+ j $+ #12 $+ k) = u $+ #15 $+ y"; |
|
332 |
test "(i $+ j $* #2 $+ #12 $+ k) = j $+ #5 $+ y"; |
|
333 |
||
334 |
test "#2 $* y $+ #3 $* z $+ #6 $* w $+ #2 $* y $+ #3 $* z $+ #2 $* u = #2 $* y' $+ #3 $* z' $+ #6 $* w' $+ #2 $* y' $+ #3 $* z' $+ u $+ vv"; |
|
335 |
||
336 |
test "a $+ $-(b$+c) $+ b = d"; |
|
337 |
test "a $+ $-(b$+c) $- b = d"; |
|
338 |
||
339 |
(*negative numerals*) |
|
340 |
test "(i $+ j $+ #-2 $+ k) $- (u $+ #5 $+ y) = zz"; |
|
341 |
test "(i $+ j $+ #-3 $+ k) $< u $+ #5 $+ y"; |
|
342 |
test "(i $+ j $+ #3 $+ k) $< u $+ #-6 $+ y"; |
|
343 |
test "(i $+ j $+ #-12 $+ k) $- #15 = y"; |
|
344 |
test "(i $+ j $+ #12 $+ k) $- #-15 = y"; |
|
345 |
test "(i $+ j $+ #-12 $+ k) $- #-15 = y"; |
|
346 |
||
347 |
(*Multiplying separated numerals*) |
|
348 |
Goal "#6 $* ($# x $* #2) = uu"; |
|
349 |
Goal "#4 $* ($# x $* $# x) $* (#2 $* $# x) = uu"; |
|
350 |
*) |
|
351 |