| author | wenzelm | 
| Thu, 27 Mar 2008 15:32:19 +0100 | |
| changeset 26436 | dfd6947ab5c2 | 
| parent 26420 | 57a626f64875 | 
| child 26806 | 40b411ec05aa | 
| permissions | -rw-r--r-- | 
| 25904 | 1 | (* Title: HOLCF/LowerPD.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Brian Huffman | |
| 4 | *) | |
| 5 | ||
| 6 | header {* Lower powerdomain *}
 | |
| 7 | ||
| 8 | theory LowerPD | |
| 9 | imports CompactBasis | |
| 10 | begin | |
| 11 | ||
| 12 | subsection {* Basis preorder *}
 | |
| 13 | ||
| 14 | definition | |
| 15 | lower_le :: "'a pd_basis \<Rightarrow> 'a pd_basis \<Rightarrow> bool" (infix "\<le>\<flat>" 50) where | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 16 | "lower_le = (\<lambda>u v. \<forall>x\<in>Rep_pd_basis u. \<exists>y\<in>Rep_pd_basis v. x \<sqsubseteq> y)" | 
| 25904 | 17 | |
| 18 | lemma lower_le_refl [simp]: "t \<le>\<flat> t" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 19 | unfolding lower_le_def by fast | 
| 25904 | 20 | |
| 21 | lemma lower_le_trans: "\<lbrakk>t \<le>\<flat> u; u \<le>\<flat> v\<rbrakk> \<Longrightarrow> t \<le>\<flat> v" | |
| 22 | unfolding lower_le_def | |
| 23 | apply (rule ballI) | |
| 24 | apply (drule (1) bspec, erule bexE) | |
| 25 | apply (drule (1) bspec, erule bexE) | |
| 26 | apply (erule rev_bexI) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 27 | apply (erule (1) trans_less) | 
| 25904 | 28 | done | 
| 29 | ||
| 30 | interpretation lower_le: preorder [lower_le] | |
| 31 | by (rule preorder.intro, rule lower_le_refl, rule lower_le_trans) | |
| 32 | ||
| 33 | lemma lower_le_minimal [simp]: "PDUnit compact_bot \<le>\<flat> t" | |
| 34 | unfolding lower_le_def Rep_PDUnit | |
| 35 | by (simp, rule Rep_pd_basis_nonempty [folded ex_in_conv]) | |
| 36 | ||
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 37 | lemma PDUnit_lower_mono: "x \<sqsubseteq> y \<Longrightarrow> PDUnit x \<le>\<flat> PDUnit y" | 
| 25904 | 38 | unfolding lower_le_def Rep_PDUnit by fast | 
| 39 | ||
| 40 | lemma PDPlus_lower_mono: "\<lbrakk>s \<le>\<flat> t; u \<le>\<flat> v\<rbrakk> \<Longrightarrow> PDPlus s u \<le>\<flat> PDPlus t v" | |
| 41 | unfolding lower_le_def Rep_PDPlus by fast | |
| 42 | ||
| 43 | lemma PDPlus_lower_less: "t \<le>\<flat> PDPlus t u" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 44 | unfolding lower_le_def Rep_PDPlus by fast | 
| 25904 | 45 | |
| 46 | lemma lower_le_PDUnit_PDUnit_iff [simp]: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 47 | "(PDUnit a \<le>\<flat> PDUnit b) = a \<sqsubseteq> b" | 
| 25904 | 48 | unfolding lower_le_def Rep_PDUnit by fast | 
| 49 | ||
| 50 | lemma lower_le_PDUnit_PDPlus_iff: | |
| 51 | "(PDUnit a \<le>\<flat> PDPlus t u) = (PDUnit a \<le>\<flat> t \<or> PDUnit a \<le>\<flat> u)" | |
| 52 | unfolding lower_le_def Rep_PDPlus Rep_PDUnit by fast | |
| 53 | ||
| 54 | lemma lower_le_PDPlus_iff: "(PDPlus t u \<le>\<flat> v) = (t \<le>\<flat> v \<and> u \<le>\<flat> v)" | |
| 55 | unfolding lower_le_def Rep_PDPlus by fast | |
| 56 | ||
| 57 | lemma lower_le_induct [induct set: lower_le]: | |
| 58 | assumes le: "t \<le>\<flat> u" | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 59 | assumes 1: "\<And>a b. a \<sqsubseteq> b \<Longrightarrow> P (PDUnit a) (PDUnit b)" | 
| 25904 | 60 | assumes 2: "\<And>t u a. P (PDUnit a) t \<Longrightarrow> P (PDUnit a) (PDPlus t u)" | 
| 61 | assumes 3: "\<And>t u v. \<lbrakk>P t v; P u v\<rbrakk> \<Longrightarrow> P (PDPlus t u) v" | |
| 62 | shows "P t u" | |
| 63 | using le | |
| 64 | apply (induct t arbitrary: u rule: pd_basis_induct) | |
| 65 | apply (erule rev_mp) | |
| 66 | apply (induct_tac u rule: pd_basis_induct) | |
| 67 | apply (simp add: 1) | |
| 68 | apply (simp add: lower_le_PDUnit_PDPlus_iff) | |
| 69 | apply (simp add: 2) | |
| 70 | apply (subst PDPlus_commute) | |
| 71 | apply (simp add: 2) | |
| 72 | apply (simp add: lower_le_PDPlus_iff 3) | |
| 73 | done | |
| 74 | ||
| 75 | lemma approx_pd_lower_mono1: | |
| 76 | "i \<le> j \<Longrightarrow> approx_pd i t \<le>\<flat> approx_pd j t" | |
| 77 | apply (induct t rule: pd_basis_induct) | |
| 78 | apply (simp add: compact_approx_mono1) | |
| 79 | apply (simp add: PDPlus_lower_mono) | |
| 80 | done | |
| 81 | ||
| 82 | lemma approx_pd_lower_le: "approx_pd i t \<le>\<flat> t" | |
| 83 | apply (induct t rule: pd_basis_induct) | |
| 84 | apply (simp add: compact_approx_le) | |
| 85 | apply (simp add: PDPlus_lower_mono) | |
| 86 | done | |
| 87 | ||
| 88 | lemma approx_pd_lower_mono: | |
| 89 | "t \<le>\<flat> u \<Longrightarrow> approx_pd n t \<le>\<flat> approx_pd n u" | |
| 90 | apply (erule lower_le_induct) | |
| 91 | apply (simp add: compact_approx_mono) | |
| 92 | apply (simp add: lower_le_PDUnit_PDPlus_iff) | |
| 93 | apply (simp add: lower_le_PDPlus_iff) | |
| 94 | done | |
| 95 | ||
| 96 | ||
| 97 | subsection {* Type definition *}
 | |
| 98 | ||
| 99 | cpodef (open) 'a lower_pd = | |
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 100 |   "{S::'a::profinite pd_basis set. lower_le.ideal S}"
 | 
| 25904 | 101 | apply (simp add: lower_le.adm_ideal) | 
| 102 | apply (fast intro: lower_le.ideal_principal) | |
| 103 | done | |
| 104 | ||
| 105 | lemma ideal_Rep_lower_pd: "lower_le.ideal (Rep_lower_pd x)" | |
| 106 | by (rule Rep_lower_pd [simplified]) | |
| 107 | ||
| 108 | lemma Rep_lower_pd_mono: "x \<sqsubseteq> y \<Longrightarrow> Rep_lower_pd x \<subseteq> Rep_lower_pd y" | |
| 109 | unfolding less_lower_pd_def less_set_def . | |
| 110 | ||
| 111 | ||
| 112 | subsection {* Principal ideals *}
 | |
| 113 | ||
| 114 | definition | |
| 115 | lower_principal :: "'a pd_basis \<Rightarrow> 'a lower_pd" where | |
| 116 |   "lower_principal t = Abs_lower_pd {u. u \<le>\<flat> t}"
 | |
| 117 | ||
| 118 | lemma Rep_lower_principal: | |
| 119 |   "Rep_lower_pd (lower_principal t) = {u. u \<le>\<flat> t}"
 | |
| 120 | unfolding lower_principal_def | |
| 121 | apply (rule Abs_lower_pd_inverse [simplified]) | |
| 122 | apply (rule lower_le.ideal_principal) | |
| 123 | done | |
| 124 | ||
| 125 | interpretation lower_pd: | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 126 | bifinite_basis [lower_le approx_pd lower_principal Rep_lower_pd] | 
| 25904 | 127 | apply unfold_locales | 
| 128 | apply (rule approx_pd_lower_le) | |
| 129 | apply (rule approx_pd_idem) | |
| 130 | apply (erule approx_pd_lower_mono) | |
| 131 | apply (rule approx_pd_lower_mono1, simp) | |
| 132 | apply (rule finite_range_approx_pd) | |
| 133 | apply (rule ex_approx_pd_eq) | |
| 26420 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 134 | apply (rule ideal_Rep_lower_pd) | 
| 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 135 | apply (rule cont_Rep_lower_pd) | 
| 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 136 | apply (rule Rep_lower_principal) | 
| 
57a626f64875
make preorder locale into a superclass of class po
 huffman parents: 
26407diff
changeset | 137 | apply (simp only: less_lower_pd_def less_set_def) | 
| 25904 | 138 | done | 
| 139 | ||
| 140 | lemma lower_principal_less_iff [simp]: | |
| 141 | "(lower_principal t \<sqsubseteq> lower_principal u) = (t \<le>\<flat> u)" | |
| 142 | unfolding less_lower_pd_def Rep_lower_principal less_set_def | |
| 143 | by (fast intro: lower_le_refl elim: lower_le_trans) | |
| 144 | ||
| 145 | lemma lower_principal_mono: | |
| 146 | "t \<le>\<flat> u \<Longrightarrow> lower_principal t \<sqsubseteq> lower_principal u" | |
| 147 | by (rule lower_principal_less_iff [THEN iffD2]) | |
| 148 | ||
| 149 | lemma compact_lower_principal: "compact (lower_principal t)" | |
| 150 | apply (rule compactI2) | |
| 151 | apply (simp add: less_lower_pd_def) | |
| 152 | apply (simp add: cont2contlubE [OF cont_Rep_lower_pd]) | |
| 153 | apply (simp add: Rep_lower_principal set_cpo_simps) | |
| 154 | apply (simp add: subset_def) | |
| 155 | apply (drule spec, drule mp, rule lower_le_refl) | |
| 156 | apply (erule exE, rename_tac i) | |
| 157 | apply (rule_tac x=i in exI) | |
| 158 | apply clarify | |
| 159 | apply (erule (1) lower_le.idealD3 [OF ideal_Rep_lower_pd]) | |
| 160 | done | |
| 161 | ||
| 162 | lemma lower_pd_minimal: "lower_principal (PDUnit compact_bot) \<sqsubseteq> ys" | |
| 163 | by (induct ys rule: lower_pd.principal_induct, simp, simp) | |
| 164 | ||
| 165 | instance lower_pd :: (bifinite) pcpo | |
| 166 | by (intro_classes, fast intro: lower_pd_minimal) | |
| 167 | ||
| 168 | lemma inst_lower_pd_pcpo: "\<bottom> = lower_principal (PDUnit compact_bot)" | |
| 169 | by (rule lower_pd_minimal [THEN UU_I, symmetric]) | |
| 170 | ||
| 171 | ||
| 172 | subsection {* Approximation *}
 | |
| 173 | ||
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 174 | instance lower_pd :: (profinite) approx .. | 
| 25904 | 175 | |
| 176 | defs (overloaded) | |
| 177 | approx_lower_pd_def: | |
| 178 | "approx \<equiv> (\<lambda>n. lower_pd.basis_fun (\<lambda>t. lower_principal (approx_pd n t)))" | |
| 179 | ||
| 180 | lemma approx_lower_principal [simp]: | |
| 181 | "approx n\<cdot>(lower_principal t) = lower_principal (approx_pd n t)" | |
| 182 | unfolding approx_lower_pd_def | |
| 183 | apply (rule lower_pd.basis_fun_principal) | |
| 184 | apply (erule lower_principal_mono [OF approx_pd_lower_mono]) | |
| 185 | done | |
| 186 | ||
| 187 | lemma chain_approx_lower_pd: | |
| 188 | "chain (approx :: nat \<Rightarrow> 'a lower_pd \<rightarrow> 'a lower_pd)" | |
| 189 | unfolding approx_lower_pd_def | |
| 190 | by (rule lower_pd.chain_basis_fun_take) | |
| 191 | ||
| 192 | lemma lub_approx_lower_pd: | |
| 193 | "(\<Squnion>i. approx i\<cdot>xs) = (xs::'a lower_pd)" | |
| 194 | unfolding approx_lower_pd_def | |
| 195 | by (rule lower_pd.lub_basis_fun_take) | |
| 196 | ||
| 197 | lemma approx_lower_pd_idem: | |
| 198 | "approx n\<cdot>(approx n\<cdot>xs) = approx n\<cdot>(xs::'a lower_pd)" | |
| 199 | apply (induct xs rule: lower_pd.principal_induct, simp) | |
| 200 | apply (simp add: approx_pd_idem) | |
| 201 | done | |
| 202 | ||
| 203 | lemma approx_eq_lower_principal: | |
| 204 | "\<exists>t\<in>Rep_lower_pd xs. approx n\<cdot>xs = lower_principal (approx_pd n t)" | |
| 205 | unfolding approx_lower_pd_def | |
| 206 | by (rule lower_pd.basis_fun_take_eq_principal) | |
| 207 | ||
| 208 | lemma finite_fixes_approx_lower_pd: | |
| 209 |   "finite {xs::'a lower_pd. approx n\<cdot>xs = xs}"
 | |
| 210 | unfolding approx_lower_pd_def | |
| 211 | by (rule lower_pd.finite_fixes_basis_fun_take) | |
| 212 | ||
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 213 | instance lower_pd :: (profinite) profinite | 
| 25904 | 214 | apply intro_classes | 
| 215 | apply (simp add: chain_approx_lower_pd) | |
| 216 | apply (rule lub_approx_lower_pd) | |
| 217 | apply (rule approx_lower_pd_idem) | |
| 218 | apply (rule finite_fixes_approx_lower_pd) | |
| 219 | done | |
| 220 | ||
| 26407 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 221 | instance lower_pd :: (bifinite) bifinite .. | 
| 
562a1d615336
rename class bifinite_cpo to profinite; generalize powerdomains from bifinite to profinite
 huffman parents: 
26041diff
changeset | 222 | |
| 25904 | 223 | lemma compact_imp_lower_principal: | 
| 224 | "compact xs \<Longrightarrow> \<exists>t. xs = lower_principal t" | |
| 225 | apply (drule bifinite_compact_eq_approx) | |
| 226 | apply (erule exE) | |
| 227 | apply (erule subst) | |
| 228 | apply (cut_tac n=i and xs=xs in approx_eq_lower_principal) | |
| 229 | apply fast | |
| 230 | done | |
| 231 | ||
| 232 | lemma lower_principal_induct: | |
| 233 | "\<lbrakk>adm P; \<And>t. P (lower_principal t)\<rbrakk> \<Longrightarrow> P xs" | |
| 234 | apply (erule approx_induct, rename_tac xs) | |
| 235 | apply (cut_tac n=n and xs=xs in approx_eq_lower_principal) | |
| 236 | apply (clarify, simp) | |
| 237 | done | |
| 238 | ||
| 239 | lemma lower_principal_induct2: | |
| 240 | "\<lbrakk>\<And>ys. adm (\<lambda>xs. P xs ys); \<And>xs. adm (\<lambda>ys. P xs ys); | |
| 241 | \<And>t u. P (lower_principal t) (lower_principal u)\<rbrakk> \<Longrightarrow> P xs ys" | |
| 242 | apply (rule_tac x=ys in spec) | |
| 243 | apply (rule_tac xs=xs in lower_principal_induct, simp) | |
| 244 | apply (rule allI, rename_tac ys) | |
| 245 | apply (rule_tac xs=ys in lower_principal_induct, simp) | |
| 246 | apply simp | |
| 247 | done | |
| 248 | ||
| 249 | ||
| 250 | subsection {* Monadic unit *}
 | |
| 251 | ||
| 252 | definition | |
| 253 | lower_unit :: "'a \<rightarrow> 'a lower_pd" where | |
| 254 | "lower_unit = compact_basis.basis_fun (\<lambda>a. lower_principal (PDUnit a))" | |
| 255 | ||
| 256 | lemma lower_unit_Rep_compact_basis [simp]: | |
| 257 | "lower_unit\<cdot>(Rep_compact_basis a) = lower_principal (PDUnit a)" | |
| 258 | unfolding lower_unit_def | |
| 259 | apply (rule compact_basis.basis_fun_principal) | |
| 260 | apply (rule lower_principal_mono) | |
| 261 | apply (erule PDUnit_lower_mono) | |
| 262 | done | |
| 263 | ||
| 264 | lemma lower_unit_strict [simp]: "lower_unit\<cdot>\<bottom> = \<bottom>" | |
| 265 | unfolding inst_lower_pd_pcpo Rep_compact_bot [symmetric] by simp | |
| 266 | ||
| 267 | lemma approx_lower_unit [simp]: | |
| 268 | "approx n\<cdot>(lower_unit\<cdot>x) = lower_unit\<cdot>(approx n\<cdot>x)" | |
| 269 | apply (induct x rule: compact_basis_induct, simp) | |
| 270 | apply (simp add: approx_Rep_compact_basis) | |
| 271 | done | |
| 272 | ||
| 273 | lemma lower_unit_less_iff [simp]: | |
| 274 | "(lower_unit\<cdot>x \<sqsubseteq> lower_unit\<cdot>y) = (x \<sqsubseteq> y)" | |
| 275 | apply (rule iffI) | |
| 276 | apply (rule bifinite_less_ext) | |
| 277 | apply (drule_tac f="approx i" in monofun_cfun_arg, simp) | |
| 278 | apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp) | |
| 279 | apply (cut_tac x="approx i\<cdot>y" in compact_imp_Rep_compact_basis, simp) | |
| 280 | apply (clarify, simp add: compact_le_def) | |
| 281 | apply (erule monofun_cfun_arg) | |
| 282 | done | |
| 283 | ||
| 284 | lemma lower_unit_eq_iff [simp]: | |
| 285 | "(lower_unit\<cdot>x = lower_unit\<cdot>y) = (x = y)" | |
| 286 | unfolding po_eq_conv by simp | |
| 287 | ||
| 288 | lemma lower_unit_strict_iff [simp]: "(lower_unit\<cdot>x = \<bottom>) = (x = \<bottom>)" | |
| 289 | unfolding lower_unit_strict [symmetric] by (rule lower_unit_eq_iff) | |
| 290 | ||
| 291 | lemma compact_lower_unit_iff [simp]: | |
| 292 | "compact (lower_unit\<cdot>x) = compact x" | |
| 293 | unfolding bifinite_compact_iff by simp | |
| 294 | ||
| 295 | ||
| 296 | subsection {* Monadic plus *}
 | |
| 297 | ||
| 298 | definition | |
| 299 | lower_plus :: "'a lower_pd \<rightarrow> 'a lower_pd \<rightarrow> 'a lower_pd" where | |
| 300 | "lower_plus = lower_pd.basis_fun (\<lambda>t. lower_pd.basis_fun (\<lambda>u. | |
| 301 | lower_principal (PDPlus t u)))" | |
| 302 | ||
| 303 | abbreviation | |
| 304 | lower_add :: "'a lower_pd \<Rightarrow> 'a lower_pd \<Rightarrow> 'a lower_pd" | |
| 305 | (infixl "+\<flat>" 65) where | |
| 306 | "xs +\<flat> ys == lower_plus\<cdot>xs\<cdot>ys" | |
| 307 | ||
| 308 | lemma lower_plus_principal [simp]: | |
| 309 | "lower_plus\<cdot>(lower_principal t)\<cdot>(lower_principal u) = | |
| 310 | lower_principal (PDPlus t u)" | |
| 311 | unfolding lower_plus_def | |
| 312 | by (simp add: lower_pd.basis_fun_principal | |
| 313 | lower_pd.basis_fun_mono PDPlus_lower_mono) | |
| 314 | ||
| 315 | lemma approx_lower_plus [simp]: | |
| 316 | "approx n\<cdot>(lower_plus\<cdot>xs\<cdot>ys) = lower_plus\<cdot>(approx n\<cdot>xs)\<cdot>(approx n\<cdot>ys)" | |
| 317 | by (induct xs ys rule: lower_principal_induct2, simp, simp, simp) | |
| 318 | ||
| 319 | lemma lower_plus_commute: "lower_plus\<cdot>xs\<cdot>ys = lower_plus\<cdot>ys\<cdot>xs" | |
| 320 | apply (induct xs ys rule: lower_principal_induct2, simp, simp) | |
| 321 | apply (simp add: PDPlus_commute) | |
| 322 | done | |
| 323 | ||
| 324 | lemma lower_plus_assoc: | |
| 325 | "lower_plus\<cdot>(lower_plus\<cdot>xs\<cdot>ys)\<cdot>zs = lower_plus\<cdot>xs\<cdot>(lower_plus\<cdot>ys\<cdot>zs)" | |
| 326 | apply (induct xs ys arbitrary: zs rule: lower_principal_induct2, simp, simp) | |
| 327 | apply (rule_tac xs=zs in lower_principal_induct, simp) | |
| 328 | apply (simp add: PDPlus_assoc) | |
| 329 | done | |
| 330 | ||
| 331 | lemma lower_plus_absorb: "lower_plus\<cdot>xs\<cdot>xs = xs" | |
| 332 | apply (induct xs rule: lower_principal_induct, simp) | |
| 333 | apply (simp add: PDPlus_absorb) | |
| 334 | done | |
| 335 | ||
| 336 | lemma lower_plus_less1: "xs \<sqsubseteq> lower_plus\<cdot>xs\<cdot>ys" | |
| 337 | apply (induct xs ys rule: lower_principal_induct2, simp, simp) | |
| 338 | apply (simp add: PDPlus_lower_less) | |
| 339 | done | |
| 340 | ||
| 341 | lemma lower_plus_less2: "ys \<sqsubseteq> lower_plus\<cdot>xs\<cdot>ys" | |
| 342 | by (subst lower_plus_commute, rule lower_plus_less1) | |
| 343 | ||
| 344 | lemma lower_plus_least: "\<lbrakk>xs \<sqsubseteq> zs; ys \<sqsubseteq> zs\<rbrakk> \<Longrightarrow> lower_plus\<cdot>xs\<cdot>ys \<sqsubseteq> zs" | |
| 345 | apply (subst lower_plus_absorb [of zs, symmetric]) | |
| 346 | apply (erule (1) monofun_cfun [OF monofun_cfun_arg]) | |
| 347 | done | |
| 348 | ||
| 349 | lemma lower_plus_less_iff: | |
| 350 | "(lower_plus\<cdot>xs\<cdot>ys \<sqsubseteq> zs) = (xs \<sqsubseteq> zs \<and> ys \<sqsubseteq> zs)" | |
| 351 | apply safe | |
| 352 | apply (erule trans_less [OF lower_plus_less1]) | |
| 353 | apply (erule trans_less [OF lower_plus_less2]) | |
| 354 | apply (erule (1) lower_plus_least) | |
| 355 | done | |
| 356 | ||
| 357 | lemma lower_plus_strict_iff [simp]: | |
| 358 | "(lower_plus\<cdot>xs\<cdot>ys = \<bottom>) = (xs = \<bottom> \<and> ys = \<bottom>)" | |
| 359 | apply safe | |
| 360 | apply (rule UU_I, erule subst, rule lower_plus_less1) | |
| 361 | apply (rule UU_I, erule subst, rule lower_plus_less2) | |
| 362 | apply (rule lower_plus_absorb) | |
| 363 | done | |
| 364 | ||
| 365 | lemma lower_plus_strict1 [simp]: "lower_plus\<cdot>\<bottom>\<cdot>ys = ys" | |
| 366 | apply (rule antisym_less [OF _ lower_plus_less2]) | |
| 367 | apply (simp add: lower_plus_least) | |
| 368 | done | |
| 369 | ||
| 370 | lemma lower_plus_strict2 [simp]: "lower_plus\<cdot>xs\<cdot>\<bottom> = xs" | |
| 371 | apply (rule antisym_less [OF _ lower_plus_less1]) | |
| 372 | apply (simp add: lower_plus_least) | |
| 373 | done | |
| 374 | ||
| 375 | lemma lower_unit_less_plus_iff: | |
| 376 | "(lower_unit\<cdot>x \<sqsubseteq> lower_plus\<cdot>ys\<cdot>zs) = | |
| 377 | (lower_unit\<cdot>x \<sqsubseteq> ys \<or> lower_unit\<cdot>x \<sqsubseteq> zs)" | |
| 378 | apply (rule iffI) | |
| 379 | apply (subgoal_tac | |
| 380 | "adm (\<lambda>f. f\<cdot>(lower_unit\<cdot>x) \<sqsubseteq> f\<cdot>ys \<or> f\<cdot>(lower_unit\<cdot>x) \<sqsubseteq> f\<cdot>zs)") | |
| 25925 | 381 | apply (drule admD, rule chain_approx) | 
| 25904 | 382 | apply (drule_tac f="approx i" in monofun_cfun_arg) | 
| 383 | apply (cut_tac x="approx i\<cdot>x" in compact_imp_Rep_compact_basis, simp) | |
| 384 | apply (cut_tac xs="approx i\<cdot>ys" in compact_imp_lower_principal, simp) | |
| 385 | apply (cut_tac xs="approx i\<cdot>zs" in compact_imp_lower_principal, simp) | |
| 386 | apply (clarify, simp add: lower_le_PDUnit_PDPlus_iff) | |
| 387 | apply simp | |
| 388 | apply simp | |
| 389 | apply (erule disjE) | |
| 390 | apply (erule trans_less [OF _ lower_plus_less1]) | |
| 391 | apply (erule trans_less [OF _ lower_plus_less2]) | |
| 392 | done | |
| 393 | ||
| 394 | lemmas lower_pd_less_simps = | |
| 395 | lower_unit_less_iff | |
| 396 | lower_plus_less_iff | |
| 397 | lower_unit_less_plus_iff | |
| 398 | ||
| 399 | ||
| 400 | subsection {* Induction rules *}
 | |
| 401 | ||
| 402 | lemma lower_pd_induct1: | |
| 403 | assumes P: "adm P" | |
| 404 | assumes unit: "\<And>x. P (lower_unit\<cdot>x)" | |
| 405 | assumes insert: | |
| 406 | "\<And>x ys. \<lbrakk>P (lower_unit\<cdot>x); P ys\<rbrakk> \<Longrightarrow> P (lower_plus\<cdot>(lower_unit\<cdot>x)\<cdot>ys)" | |
| 407 | shows "P (xs::'a lower_pd)" | |
| 408 | apply (induct xs rule: lower_principal_induct, rule P) | |
| 409 | apply (induct_tac t rule: pd_basis_induct1) | |
| 410 | apply (simp only: lower_unit_Rep_compact_basis [symmetric]) | |
| 411 | apply (rule unit) | |
| 412 | apply (simp only: lower_unit_Rep_compact_basis [symmetric] | |
| 413 | lower_plus_principal [symmetric]) | |
| 414 | apply (erule insert [OF unit]) | |
| 415 | done | |
| 416 | ||
| 417 | lemma lower_pd_induct: | |
| 418 | assumes P: "adm P" | |
| 419 | assumes unit: "\<And>x. P (lower_unit\<cdot>x)" | |
| 420 | assumes plus: "\<And>xs ys. \<lbrakk>P xs; P ys\<rbrakk> \<Longrightarrow> P (lower_plus\<cdot>xs\<cdot>ys)" | |
| 421 | shows "P (xs::'a lower_pd)" | |
| 422 | apply (induct xs rule: lower_principal_induct, rule P) | |
| 423 | apply (induct_tac t rule: pd_basis_induct) | |
| 424 | apply (simp only: lower_unit_Rep_compact_basis [symmetric] unit) | |
| 425 | apply (simp only: lower_plus_principal [symmetric] plus) | |
| 426 | done | |
| 427 | ||
| 428 | ||
| 429 | subsection {* Monadic bind *}
 | |
| 430 | ||
| 431 | definition | |
| 432 | lower_bind_basis :: | |
| 433 |   "'a pd_basis \<Rightarrow> ('a \<rightarrow> 'b lower_pd) \<rightarrow> 'b lower_pd" where
 | |
| 434 | "lower_bind_basis = fold_pd | |
| 435 | (\<lambda>a. \<Lambda> f. f\<cdot>(Rep_compact_basis a)) | |
| 436 | (\<lambda>x y. \<Lambda> f. lower_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))" | |
| 437 | ||
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 438 | lemma ACI_lower_bind: "ab_semigroup_idem_mult (\<lambda>x y. \<Lambda> f. lower_plus\<cdot>(x\<cdot>f)\<cdot>(y\<cdot>f))" | 
| 25904 | 439 | apply unfold_locales | 
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 440 | apply (simp add: lower_plus_assoc) | 
| 25904 | 441 | apply (simp add: lower_plus_commute) | 
| 442 | apply (simp add: lower_plus_absorb eta_cfun) | |
| 443 | done | |
| 444 | ||
| 445 | lemma lower_bind_basis_simps [simp]: | |
| 446 | "lower_bind_basis (PDUnit a) = | |
| 447 | (\<Lambda> f. f\<cdot>(Rep_compact_basis a))" | |
| 448 | "lower_bind_basis (PDPlus t u) = | |
| 449 | (\<Lambda> f. lower_plus\<cdot>(lower_bind_basis t\<cdot>f)\<cdot>(lower_bind_basis u\<cdot>f))" | |
| 450 | unfolding lower_bind_basis_def | |
| 451 | apply - | |
| 26041 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 452 | apply (rule ab_semigroup_idem_mult.fold_pd_PDUnit [OF ACI_lower_bind]) | 
| 
c2e15e65165f
locales ACf, ACIf, ACIfSL and ACIfSLlin have been abandoned in favour of the existing algebraic classes ab_semigroup_mult, ab_semigroup_idem_mult, lower_semilattice (resp. uper_semilattice) and linorder
 haftmann parents: 
25925diff
changeset | 453 | apply (rule ab_semigroup_idem_mult.fold_pd_PDPlus [OF ACI_lower_bind]) | 
| 25904 | 454 | done | 
| 455 | ||
| 456 | lemma lower_bind_basis_mono: | |
| 457 | "t \<le>\<flat> u \<Longrightarrow> lower_bind_basis t \<sqsubseteq> lower_bind_basis u" | |
| 458 | unfolding expand_cfun_less | |
| 459 | apply (erule lower_le_induct, safe) | |
| 460 | apply (simp add: compact_le_def monofun_cfun) | |
| 461 | apply (simp add: rev_trans_less [OF lower_plus_less1]) | |
| 462 | apply (simp add: lower_plus_less_iff) | |
| 463 | done | |
| 464 | ||
| 465 | definition | |
| 466 |   lower_bind :: "'a lower_pd \<rightarrow> ('a \<rightarrow> 'b lower_pd) \<rightarrow> 'b lower_pd" where
 | |
| 467 | "lower_bind = lower_pd.basis_fun lower_bind_basis" | |
| 468 | ||
| 469 | lemma lower_bind_principal [simp]: | |
| 470 | "lower_bind\<cdot>(lower_principal t) = lower_bind_basis t" | |
| 471 | unfolding lower_bind_def | |
| 472 | apply (rule lower_pd.basis_fun_principal) | |
| 473 | apply (erule lower_bind_basis_mono) | |
| 474 | done | |
| 475 | ||
| 476 | lemma lower_bind_unit [simp]: | |
| 477 | "lower_bind\<cdot>(lower_unit\<cdot>x)\<cdot>f = f\<cdot>x" | |
| 478 | by (induct x rule: compact_basis_induct, simp, simp) | |
| 479 | ||
| 480 | lemma lower_bind_plus [simp]: | |
| 481 | "lower_bind\<cdot>(lower_plus\<cdot>xs\<cdot>ys)\<cdot>f = | |
| 482 | lower_plus\<cdot>(lower_bind\<cdot>xs\<cdot>f)\<cdot>(lower_bind\<cdot>ys\<cdot>f)" | |
| 483 | by (induct xs ys rule: lower_principal_induct2, simp, simp, simp) | |
| 484 | ||
| 485 | lemma lower_bind_strict [simp]: "lower_bind\<cdot>\<bottom>\<cdot>f = f\<cdot>\<bottom>" | |
| 486 | unfolding lower_unit_strict [symmetric] by (rule lower_bind_unit) | |
| 487 | ||
| 488 | ||
| 489 | subsection {* Map and join *}
 | |
| 490 | ||
| 491 | definition | |
| 492 |   lower_map :: "('a \<rightarrow> 'b) \<rightarrow> 'a lower_pd \<rightarrow> 'b lower_pd" where
 | |
| 493 | "lower_map = (\<Lambda> f xs. lower_bind\<cdot>xs\<cdot>(\<Lambda> x. lower_unit\<cdot>(f\<cdot>x)))" | |
| 494 | ||
| 495 | definition | |
| 496 | lower_join :: "'a lower_pd lower_pd \<rightarrow> 'a lower_pd" where | |
| 497 | "lower_join = (\<Lambda> xss. lower_bind\<cdot>xss\<cdot>(\<Lambda> xs. xs))" | |
| 498 | ||
| 499 | lemma lower_map_unit [simp]: | |
| 500 | "lower_map\<cdot>f\<cdot>(lower_unit\<cdot>x) = lower_unit\<cdot>(f\<cdot>x)" | |
| 501 | unfolding lower_map_def by simp | |
| 502 | ||
| 503 | lemma lower_map_plus [simp]: | |
| 504 | "lower_map\<cdot>f\<cdot>(lower_plus\<cdot>xs\<cdot>ys) = | |
| 505 | lower_plus\<cdot>(lower_map\<cdot>f\<cdot>xs)\<cdot>(lower_map\<cdot>f\<cdot>ys)" | |
| 506 | unfolding lower_map_def by simp | |
| 507 | ||
| 508 | lemma lower_join_unit [simp]: | |
| 509 | "lower_join\<cdot>(lower_unit\<cdot>xs) = xs" | |
| 510 | unfolding lower_join_def by simp | |
| 511 | ||
| 512 | lemma lower_join_plus [simp]: | |
| 513 | "lower_join\<cdot>(lower_plus\<cdot>xss\<cdot>yss) = | |
| 514 | lower_plus\<cdot>(lower_join\<cdot>xss)\<cdot>(lower_join\<cdot>yss)" | |
| 515 | unfolding lower_join_def by simp | |
| 516 | ||
| 517 | lemma lower_map_ident: "lower_map\<cdot>(\<Lambda> x. x)\<cdot>xs = xs" | |
| 518 | by (induct xs rule: lower_pd_induct, simp_all) | |
| 519 | ||
| 520 | lemma lower_map_map: | |
| 521 | "lower_map\<cdot>f\<cdot>(lower_map\<cdot>g\<cdot>xs) = lower_map\<cdot>(\<Lambda> x. f\<cdot>(g\<cdot>x))\<cdot>xs" | |
| 522 | by (induct xs rule: lower_pd_induct, simp_all) | |
| 523 | ||
| 524 | lemma lower_join_map_unit: | |
| 525 | "lower_join\<cdot>(lower_map\<cdot>lower_unit\<cdot>xs) = xs" | |
| 526 | by (induct xs rule: lower_pd_induct, simp_all) | |
| 527 | ||
| 528 | lemma lower_join_map_join: | |
| 529 | "lower_join\<cdot>(lower_map\<cdot>lower_join\<cdot>xsss) = lower_join\<cdot>(lower_join\<cdot>xsss)" | |
| 530 | by (induct xsss rule: lower_pd_induct, simp_all) | |
| 531 | ||
| 532 | lemma lower_join_map_map: | |
| 533 | "lower_join\<cdot>(lower_map\<cdot>(lower_map\<cdot>f)\<cdot>xss) = | |
| 534 | lower_map\<cdot>f\<cdot>(lower_join\<cdot>xss)" | |
| 535 | by (induct xss rule: lower_pd_induct, simp_all) | |
| 536 | ||
| 537 | lemma lower_map_approx: "lower_map\<cdot>(approx n)\<cdot>xs = approx n\<cdot>xs" | |
| 538 | by (induct xs rule: lower_pd_induct, simp_all) | |
| 539 | ||
| 540 | end |