author | wenzelm |
Fri, 02 Jun 2006 23:22:29 +0200 | |
changeset 19765 | dfe940911617 |
parent 19279 | 48b527d0331b |
child 20217 | 25b068a99d2b |
permissions | -rw-r--r-- |
10751 | 1 |
(* Title : Series.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
14416 | 4 |
|
5 |
Converted to Isar and polished by lcp |
|
15539 | 6 |
Converted to setsum and polished yet more by TNN |
16819 | 7 |
Additional contributions by Jeremy Avigad |
10751 | 8 |
*) |
9 |
||
14416 | 10 |
header{*Finite Summation and Infinite Series*} |
10751 | 11 |
|
15131 | 12 |
theory Series |
15140 | 13 |
imports SEQ Lim |
15131 | 14 |
begin |
15561 | 15 |
|
15539 | 16 |
declare atLeastLessThan_iff[iff] |
15561 | 17 |
declare setsum_op_ivl_Suc[simp] |
10751 | 18 |
|
19765 | 19 |
definition |
15543 | 20 |
sums :: "(nat => real) => real => bool" (infixr "sums" 80) |
19765 | 21 |
"f sums s = (%n. setsum f {0..<n}) ----> s" |
10751 | 22 |
|
14416 | 23 |
summable :: "(nat=>real) => bool" |
19765 | 24 |
"summable f = (\<exists>s. f sums s)" |
14416 | 25 |
|
26 |
suminf :: "(nat=>real) => real" |
|
19765 | 27 |
"suminf f = (SOME s. f sums s)" |
14416 | 28 |
|
15546 | 29 |
syntax |
30 |
"_suminf" :: "idt => real => real" ("\<Sum>_. _" [0, 10] 10) |
|
31 |
translations |
|
32 |
"\<Sum>i. b" == "suminf (%i. b)" |
|
33 |
||
14416 | 34 |
|
15539 | 35 |
lemma sumr_diff_mult_const: |
36 |
"setsum f {0..<n} - (real n*r) = setsum (%i. f i - r) {0..<n::nat}" |
|
15536 | 37 |
by (simp add: diff_minus setsum_addf real_of_nat_def) |
38 |
||
15542 | 39 |
lemma real_setsum_nat_ivl_bounded: |
40 |
"(!!p. p < n \<Longrightarrow> f(p) \<le> K) |
|
41 |
\<Longrightarrow> setsum f {0..<n::nat} \<le> real n * K" |
|
42 |
using setsum_bounded[where A = "{0..<n}"] |
|
43 |
by (auto simp:real_of_nat_def) |
|
14416 | 44 |
|
15539 | 45 |
(* Generalize from real to some algebraic structure? *) |
46 |
lemma sumr_minus_one_realpow_zero [simp]: |
|
15543 | 47 |
"(\<Sum>i=0..<2*n. (-1) ^ Suc i) = (0::real)" |
15251 | 48 |
by (induct "n", auto) |
14416 | 49 |
|
15539 | 50 |
(* FIXME this is an awful lemma! *) |
51 |
lemma sumr_one_lb_realpow_zero [simp]: |
|
52 |
"(\<Sum>n=Suc 0..<n. f(n) * (0::real) ^ n) = 0" |
|
15251 | 53 |
apply (induct "n") |
14416 | 54 |
apply (case_tac [2] "n", auto) |
55 |
done |
|
56 |
||
15543 | 57 |
lemma sumr_group: |
15539 | 58 |
"(\<Sum>m=0..<n::nat. setsum f {m * k ..< m*k + k}) = setsum f {0 ..< n * k}" |
15543 | 59 |
apply (subgoal_tac "k = 0 | 0 < k", auto) |
15251 | 60 |
apply (induct "n") |
15539 | 61 |
apply (simp_all add: setsum_add_nat_ivl add_commute) |
14416 | 62 |
done |
15539 | 63 |
|
16819 | 64 |
(* FIXME generalize? *) |
65 |
lemma sumr_offset: |
|
66 |
"(\<Sum>m=0..<n::nat. f(m+k)::real) = setsum f {0..<n+k} - setsum f {0..<k}" |
|
67 |
by (induct "n", auto) |
|
68 |
||
69 |
lemma sumr_offset2: |
|
70 |
"\<forall>f. (\<Sum>m=0..<n::nat. f(m+k)::real) = setsum f {0..<n+k} - setsum f {0..<k}" |
|
71 |
by (induct "n", auto) |
|
72 |
||
73 |
lemma sumr_offset3: |
|
74 |
"setsum f {0::nat..<n+k} = (\<Sum>m=0..<n. f (m+k)::real) + setsum f {0..<k}" |
|
75 |
by (simp add: sumr_offset) |
|
76 |
||
77 |
lemma sumr_offset4: |
|
78 |
"\<forall>n f. setsum f {0::nat..<n+k} = |
|
79 |
(\<Sum>m=0..<n. f (m+k)::real) + setsum f {0..<k}" |
|
80 |
by (simp add: sumr_offset) |
|
81 |
||
82 |
(* |
|
83 |
lemma sumr_from_1_from_0: "0 < n ==> |
|
84 |
(\<Sum>n=Suc 0 ..< Suc n. if even(n) then 0 else |
|
85 |
((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n = |
|
86 |
(\<Sum>n=0..<Suc n. if even(n) then 0 else |
|
87 |
((- 1) ^ ((n - (Suc 0)) div 2))/(real (fact n))) * a ^ n" |
|
88 |
by (rule_tac n1 = 1 in sumr_split_add [THEN subst], auto) |
|
89 |
*) |
|
14416 | 90 |
|
91 |
subsection{* Infinite Sums, by the Properties of Limits*} |
|
92 |
||
93 |
(*---------------------- |
|
94 |
suminf is the sum |
|
95 |
---------------------*) |
|
96 |
lemma sums_summable: "f sums l ==> summable f" |
|
97 |
by (simp add: sums_def summable_def, blast) |
|
98 |
||
99 |
lemma summable_sums: "summable f ==> f sums (suminf f)" |
|
100 |
apply (simp add: summable_def suminf_def) |
|
101 |
apply (blast intro: someI2) |
|
102 |
done |
|
103 |
||
104 |
lemma summable_sumr_LIMSEQ_suminf: |
|
15539 | 105 |
"summable f ==> (%n. setsum f {0..<n}) ----> (suminf f)" |
14416 | 106 |
apply (simp add: summable_def suminf_def sums_def) |
107 |
apply (blast intro: someI2) |
|
108 |
done |
|
109 |
||
110 |
(*------------------- |
|
111 |
sum is unique |
|
112 |
------------------*) |
|
113 |
lemma sums_unique: "f sums s ==> (s = suminf f)" |
|
114 |
apply (frule sums_summable [THEN summable_sums]) |
|
115 |
apply (auto intro!: LIMSEQ_unique simp add: sums_def) |
|
116 |
done |
|
117 |
||
16819 | 118 |
lemma sums_split_initial_segment: "f sums s ==> |
119 |
(%n. f(n + k)) sums (s - (SUM i = 0..< k. f i))" |
|
120 |
apply (unfold sums_def); |
|
121 |
apply (simp add: sumr_offset); |
|
122 |
apply (rule LIMSEQ_diff_const) |
|
123 |
apply (rule LIMSEQ_ignore_initial_segment) |
|
124 |
apply assumption |
|
125 |
done |
|
126 |
||
127 |
lemma summable_ignore_initial_segment: "summable f ==> |
|
128 |
summable (%n. f(n + k))" |
|
129 |
apply (unfold summable_def) |
|
130 |
apply (auto intro: sums_split_initial_segment) |
|
131 |
done |
|
132 |
||
133 |
lemma suminf_minus_initial_segment: "summable f ==> |
|
134 |
suminf f = s ==> suminf (%n. f(n + k)) = s - (SUM i = 0..< k. f i)" |
|
135 |
apply (frule summable_ignore_initial_segment) |
|
136 |
apply (rule sums_unique [THEN sym]) |
|
137 |
apply (frule summable_sums) |
|
138 |
apply (rule sums_split_initial_segment) |
|
139 |
apply auto |
|
140 |
done |
|
141 |
||
142 |
lemma suminf_split_initial_segment: "summable f ==> |
|
143 |
suminf f = (SUM i = 0..< k. f i) + suminf (%n. f(n + k))" |
|
144 |
by (auto simp add: suminf_minus_initial_segment) |
|
145 |
||
14416 | 146 |
lemma series_zero: |
15539 | 147 |
"(\<forall>m. n \<le> m --> f(m) = 0) ==> f sums (setsum f {0..<n})" |
15537 | 148 |
apply (simp add: sums_def LIMSEQ_def diff_minus[symmetric], safe) |
14416 | 149 |
apply (rule_tac x = n in exI) |
15542 | 150 |
apply (clarsimp simp add:setsum_diff[symmetric] cong:setsum_ivl_cong) |
14416 | 151 |
done |
152 |
||
16819 | 153 |
lemma sums_zero: "(%n. 0) sums 0"; |
154 |
apply (unfold sums_def); |
|
155 |
apply simp; |
|
156 |
apply (rule LIMSEQ_const); |
|
157 |
done; |
|
15539 | 158 |
|
16819 | 159 |
lemma summable_zero: "summable (%n. 0)"; |
160 |
apply (rule sums_summable); |
|
161 |
apply (rule sums_zero); |
|
162 |
done; |
|
163 |
||
164 |
lemma suminf_zero: "suminf (%n. 0) = 0"; |
|
165 |
apply (rule sym); |
|
166 |
apply (rule sums_unique); |
|
167 |
apply (rule sums_zero); |
|
168 |
done; |
|
169 |
||
170 |
lemma sums_mult: "f sums a ==> (%n. c * f n) sums (c * a)" |
|
19279 | 171 |
by (auto simp add: sums_def setsum_right_distrib [symmetric] |
14416 | 172 |
intro!: LIMSEQ_mult intro: LIMSEQ_const) |
173 |
||
16819 | 174 |
lemma summable_mult: "summable f ==> summable (%n. c * f n)"; |
175 |
apply (unfold summable_def); |
|
176 |
apply (auto intro: sums_mult); |
|
177 |
done; |
|
178 |
||
179 |
lemma suminf_mult: "summable f ==> suminf (%n. c * f n) = c * suminf f"; |
|
180 |
apply (rule sym); |
|
181 |
apply (rule sums_unique); |
|
182 |
apply (rule sums_mult); |
|
183 |
apply (erule summable_sums); |
|
184 |
done; |
|
185 |
||
186 |
lemma sums_mult2: "f sums a ==> (%n. f n * c) sums (a * c)" |
|
187 |
apply (subst mult_commute) |
|
188 |
apply (subst mult_commute);back; |
|
189 |
apply (erule sums_mult) |
|
190 |
done |
|
191 |
||
192 |
lemma summable_mult2: "summable f ==> summable (%n. f n * c)" |
|
193 |
apply (unfold summable_def) |
|
194 |
apply (auto intro: sums_mult2) |
|
195 |
done |
|
196 |
||
197 |
lemma suminf_mult2: "summable f ==> suminf f * c = (\<Sum>n. f n * c)" |
|
198 |
by (auto intro!: sums_unique sums_mult summable_sums simp add: mult_commute) |
|
199 |
||
200 |
lemma sums_divide: "f sums a ==> (%n. (f n)/c) sums (a/c)" |
|
14416 | 201 |
by (simp add: real_divide_def sums_mult mult_commute [of _ "inverse c"]) |
202 |
||
16819 | 203 |
lemma summable_divide: "summable f ==> summable (%n. (f n) / c)"; |
204 |
apply (unfold summable_def); |
|
205 |
apply (auto intro: sums_divide); |
|
206 |
done; |
|
207 |
||
208 |
lemma suminf_divide: "summable f ==> suminf (%n. (f n) / c) = (suminf f) / c"; |
|
209 |
apply (rule sym); |
|
210 |
apply (rule sums_unique); |
|
211 |
apply (rule sums_divide); |
|
212 |
apply (erule summable_sums); |
|
213 |
done; |
|
214 |
||
215 |
lemma sums_add: "[| x sums x0; y sums y0 |] ==> (%n. x n + y n) sums (x0+y0)" |
|
216 |
by (auto simp add: sums_def setsum_addf intro: LIMSEQ_add) |
|
217 |
||
218 |
lemma summable_add: "summable f ==> summable g ==> summable (%x. f x + g x)"; |
|
219 |
apply (unfold summable_def); |
|
220 |
apply clarify; |
|
221 |
apply (rule exI); |
|
222 |
apply (erule sums_add); |
|
223 |
apply assumption; |
|
224 |
done; |
|
225 |
||
226 |
lemma suminf_add: |
|
227 |
"[| summable f; summable g |] |
|
228 |
==> suminf f + suminf g = (\<Sum>n. f n + g n)" |
|
229 |
by (auto intro!: sums_add sums_unique summable_sums) |
|
230 |
||
14416 | 231 |
lemma sums_diff: "[| x sums x0; y sums y0 |] ==> (%n. x n - y n) sums (x0-y0)" |
15536 | 232 |
by (auto simp add: sums_def setsum_subtractf intro: LIMSEQ_diff) |
14416 | 233 |
|
16819 | 234 |
lemma summable_diff: "summable f ==> summable g ==> summable (%x. f x - g x)"; |
235 |
apply (unfold summable_def); |
|
236 |
apply clarify; |
|
237 |
apply (rule exI); |
|
238 |
apply (erule sums_diff); |
|
239 |
apply assumption; |
|
240 |
done; |
|
14416 | 241 |
|
242 |
lemma suminf_diff: |
|
243 |
"[| summable f; summable g |] |
|
15546 | 244 |
==> suminf f - suminf g = (\<Sum>n. f n - g n)" |
14416 | 245 |
by (auto intro!: sums_diff sums_unique summable_sums) |
246 |
||
16819 | 247 |
lemma sums_minus: "f sums s ==> (%x. - f x) sums (- s)"; |
248 |
by (simp add: sums_def setsum_negf LIMSEQ_minus); |
|
249 |
||
250 |
lemma summable_minus: "summable f ==> summable (%x. - f x)"; |
|
251 |
by (auto simp add: summable_def intro: sums_minus); |
|
252 |
||
253 |
lemma suminf_minus: "summable f ==> suminf (%x. - f x) = - (suminf f)"; |
|
254 |
apply (rule sym); |
|
255 |
apply (rule sums_unique); |
|
256 |
apply (rule sums_minus); |
|
257 |
apply (erule summable_sums); |
|
258 |
done; |
|
14416 | 259 |
|
260 |
lemma sums_group: |
|
15539 | 261 |
"[|summable f; 0 < k |] ==> (%n. setsum f {n*k..<n*k+k}) sums (suminf f)" |
14416 | 262 |
apply (drule summable_sums) |
15543 | 263 |
apply (auto simp add: sums_def LIMSEQ_def sumr_group) |
14416 | 264 |
apply (drule_tac x = r in spec, safe) |
265 |
apply (rule_tac x = no in exI, safe) |
|
266 |
apply (drule_tac x = "n*k" in spec) |
|
267 |
apply (auto dest!: not_leE) |
|
268 |
apply (drule_tac j = no in less_le_trans, auto) |
|
269 |
done |
|
270 |
||
271 |
lemma sumr_pos_lt_pair_lemma: |
|
15539 | 272 |
"[|\<forall>d. - f (n + (d + d)) < (f (Suc (n + (d + d))) :: real) |] |
273 |
==> setsum f {0..<n+Suc(Suc 0)} \<le> setsum f {0..<Suc(Suc 0) * Suc no + n}" |
|
15251 | 274 |
apply (induct "no", auto) |
275 |
apply (drule_tac x = "Suc no" in spec) |
|
15539 | 276 |
apply (simp add: add_ac) |
16733
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15561
diff
changeset
|
277 |
(* FIXME why does simp require a separate step to prove the (pure arithmetic) |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15561
diff
changeset
|
278 |
left-over? With del cong: strong_setsum_cong it works! |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15561
diff
changeset
|
279 |
*) |
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
nipkow
parents:
15561
diff
changeset
|
280 |
apply simp |
14416 | 281 |
done |
10751 | 282 |
|
14416 | 283 |
lemma sumr_pos_lt_pair: |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
284 |
"[|summable f; |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
285 |
\<forall>d. 0 < (f(n + (Suc(Suc 0) * d))) + f(n + ((Suc(Suc 0) * d) + 1))|] |
15539 | 286 |
==> setsum f {0..<n} < suminf f" |
14416 | 287 |
apply (drule summable_sums) |
288 |
apply (auto simp add: sums_def LIMSEQ_def) |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
289 |
apply (drule_tac x = "f (n) + f (n + 1)" in spec) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
290 |
apply (auto iff: real_0_less_add_iff) |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
291 |
--{*legacy proof: not necessarily better!*} |
14416 | 292 |
apply (rule_tac [2] ccontr, drule_tac [2] linorder_not_less [THEN iffD1]) |
293 |
apply (frule_tac [2] no=no in sumr_pos_lt_pair_lemma) |
|
294 |
apply (drule_tac x = 0 in spec, simp) |
|
295 |
apply (rotate_tac 1, drule_tac x = "Suc (Suc 0) * (Suc no) + n" in spec) |
|
296 |
apply (safe, simp) |
|
15539 | 297 |
apply (subgoal_tac "suminf f + (f (n) + f (n + 1)) \<le> |
298 |
setsum f {0 ..< Suc (Suc 0) * (Suc no) + n}") |
|
299 |
apply (rule_tac [2] y = "setsum f {0..<n+ Suc (Suc 0)}" in order_trans) |
|
14416 | 300 |
prefer 3 apply assumption |
15539 | 301 |
apply (rule_tac [2] y = "setsum f {0..<n} + (f (n) + f (n + 1))" in order_trans) |
14416 | 302 |
apply simp_all |
15539 | 303 |
apply (subgoal_tac "suminf f \<le> setsum f {0..< Suc (Suc 0) * (Suc no) + n}") |
14416 | 304 |
apply (rule_tac [2] y = "suminf f + (f (n) + f (n + 1))" in order_trans) |
15539 | 305 |
prefer 3 apply simp |
14416 | 306 |
apply (drule_tac [2] x = 0 in spec) |
307 |
prefer 2 apply simp |
|
15539 | 308 |
apply (subgoal_tac "0 \<le> setsum f {0 ..< Suc (Suc 0) * Suc no + n} + - suminf f") |
309 |
apply (simp add: abs_if) |
|
14416 | 310 |
apply (auto simp add: linorder_not_less [symmetric]) |
311 |
done |
|
312 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
313 |
text{*A summable series of positive terms has limit that is at least as |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
314 |
great as any partial sum.*} |
14416 | 315 |
|
316 |
lemma series_pos_le: |
|
15539 | 317 |
"[| summable f; \<forall>m \<ge> n. 0 \<le> f(m) |] ==> setsum f {0..<n} \<le> suminf f" |
14416 | 318 |
apply (drule summable_sums) |
319 |
apply (simp add: sums_def) |
|
15539 | 320 |
apply (cut_tac k = "setsum f {0..<n}" in LIMSEQ_const) |
321 |
apply (erule LIMSEQ_le, blast) |
|
322 |
apply (rule_tac x = n in exI, clarify) |
|
323 |
apply (rule setsum_mono2) |
|
324 |
apply auto |
|
14416 | 325 |
done |
326 |
||
327 |
lemma series_pos_less: |
|
15539 | 328 |
"[| summable f; \<forall>m \<ge> n. 0 < f(m) |] ==> setsum f {0..<n} < suminf f" |
329 |
apply (rule_tac y = "setsum f {0..<Suc n}" in order_less_le_trans) |
|
14416 | 330 |
apply (rule_tac [2] series_pos_le, auto) |
331 |
apply (drule_tac x = m in spec, auto) |
|
332 |
done |
|
333 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
334 |
text{*Sum of a geometric progression.*} |
14416 | 335 |
|
17149
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
ballarin
parents:
16819
diff
changeset
|
336 |
lemmas sumr_geometric = geometric_sum [where 'a = real] |
14416 | 337 |
|
338 |
lemma geometric_sums: "abs(x) < 1 ==> (%n. x ^ n) sums (1/(1 - x))" |
|
339 |
apply (case_tac "x = 1") |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
340 |
apply (auto dest!: LIMSEQ_rabs_realpow_zero2 |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
341 |
simp add: sumr_geometric sums_def diff_minus add_divide_distrib) |
14416 | 342 |
apply (subgoal_tac "1 / (1 + -x) = 0/ (x - 1) + - 1/ (x - 1) ") |
343 |
apply (erule ssubst) |
|
344 |
apply (rule LIMSEQ_add, rule LIMSEQ_divide) |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
345 |
apply (auto intro: LIMSEQ_const simp add: diff_minus minus_divide_right LIMSEQ_rabs_realpow_zero2) |
14416 | 346 |
done |
347 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
348 |
text{*Cauchy-type criterion for convergence of series (c.f. Harrison)*} |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
349 |
|
15539 | 350 |
lemma summable_convergent_sumr_iff: |
351 |
"summable f = convergent (%n. setsum f {0..<n})" |
|
14416 | 352 |
by (simp add: summable_def sums_def convergent_def) |
353 |
||
354 |
lemma summable_Cauchy: |
|
355 |
"summable f = |
|
15539 | 356 |
(\<forall>e > 0. \<exists>N. \<forall>m \<ge> N. \<forall>n. abs(setsum f {m..<n}) < e)" |
15537 | 357 |
apply (auto simp add: summable_convergent_sumr_iff Cauchy_convergent_iff [symmetric] Cauchy_def diff_minus[symmetric]) |
15539 | 358 |
apply (drule_tac [!] spec, auto) |
14416 | 359 |
apply (rule_tac x = M in exI) |
360 |
apply (rule_tac [2] x = N in exI, auto) |
|
361 |
apply (cut_tac [!] m = m and n = n in less_linear, auto) |
|
362 |
apply (frule le_less_trans [THEN less_imp_le], assumption) |
|
15360 | 363 |
apply (drule_tac x = n in spec, simp) |
14416 | 364 |
apply (drule_tac x = m in spec) |
15539 | 365 |
apply(simp add: setsum_diff[symmetric]) |
15537 | 366 |
apply(subst abs_minus_commute) |
15539 | 367 |
apply(simp add: setsum_diff[symmetric]) |
368 |
apply(simp add: setsum_diff[symmetric]) |
|
14416 | 369 |
done |
370 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
371 |
text{*Comparison test*} |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
372 |
|
14416 | 373 |
lemma summable_comparison_test: |
15360 | 374 |
"[| \<exists>N. \<forall>n \<ge> N. abs(f n) \<le> g n; summable g |] ==> summable f" |
14416 | 375 |
apply (auto simp add: summable_Cauchy) |
376 |
apply (drule spec, auto) |
|
377 |
apply (rule_tac x = "N + Na" in exI, auto) |
|
378 |
apply (rotate_tac 2) |
|
379 |
apply (drule_tac x = m in spec) |
|
380 |
apply (auto, rotate_tac 2, drule_tac x = n in spec) |
|
15539 | 381 |
apply (rule_tac y = "\<Sum>k=m..<n. abs(f k)" in order_le_less_trans) |
15536 | 382 |
apply (rule setsum_abs) |
15539 | 383 |
apply (rule_tac y = "setsum g {m..<n}" in order_le_less_trans) |
384 |
apply (auto intro: setsum_mono simp add: abs_interval_iff) |
|
14416 | 385 |
done |
386 |
||
387 |
lemma summable_rabs_comparison_test: |
|
15360 | 388 |
"[| \<exists>N. \<forall>n \<ge> N. abs(f n) \<le> g n; summable g |] |
14416 | 389 |
==> summable (%k. abs (f k))" |
390 |
apply (rule summable_comparison_test) |
|
15543 | 391 |
apply (auto) |
14416 | 392 |
done |
393 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
394 |
text{*Limit comparison property for series (c.f. jrh)*} |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
395 |
|
14416 | 396 |
lemma summable_le: |
397 |
"[|\<forall>n. f n \<le> g n; summable f; summable g |] ==> suminf f \<le> suminf g" |
|
398 |
apply (drule summable_sums)+ |
|
399 |
apply (auto intro!: LIMSEQ_le simp add: sums_def) |
|
400 |
apply (rule exI) |
|
15539 | 401 |
apply (auto intro!: setsum_mono) |
14416 | 402 |
done |
403 |
||
404 |
lemma summable_le2: |
|
405 |
"[|\<forall>n. abs(f n) \<le> g n; summable g |] |
|
406 |
==> summable f & suminf f \<le> suminf g" |
|
407 |
apply (auto intro: summable_comparison_test intro!: summable_le) |
|
408 |
apply (simp add: abs_le_interval_iff) |
|
409 |
done |
|
410 |
||
19106
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
411 |
(* specialisation for the common 0 case *) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
412 |
lemma suminf_0_le: |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
413 |
fixes f::"nat\<Rightarrow>real" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
414 |
assumes gt0: "\<forall>n. 0 \<le> f n" and sm: "summable f" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
415 |
shows "0 \<le> suminf f" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
416 |
proof - |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
417 |
let ?g = "(\<lambda>n. (0::real))" |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
418 |
from gt0 have "\<forall>n. ?g n \<le> f n" by simp |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
419 |
moreover have "summable ?g" by (rule summable_zero) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
420 |
moreover from sm have "summable f" . |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
421 |
ultimately have "suminf ?g \<le> suminf f" by (rule summable_le) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
422 |
then show "0 \<le> suminf f" by (simp add: suminf_zero) |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
423 |
qed |
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
424 |
|
6e6b5b1fdc06
* added Library/ASeries (sum of arithmetic series with instantiation to nat and int)
kleing
parents:
17149
diff
changeset
|
425 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
426 |
text{*Absolute convergence imples normal convergence*} |
14416 | 427 |
lemma summable_rabs_cancel: "summable (%n. abs (f n)) ==> summable f" |
15536 | 428 |
apply (auto simp add: summable_Cauchy) |
14416 | 429 |
apply (drule spec, auto) |
430 |
apply (rule_tac x = N in exI, auto) |
|
431 |
apply (drule spec, auto) |
|
15539 | 432 |
apply (rule_tac y = "\<Sum>n=m..<n. abs(f n)" in order_le_less_trans) |
15536 | 433 |
apply (auto) |
14416 | 434 |
done |
435 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
436 |
text{*Absolute convergence of series*} |
14416 | 437 |
lemma summable_rabs: |
15546 | 438 |
"summable (%n. abs (f n)) ==> abs(suminf f) \<le> (\<Sum>n. abs(f n))" |
15536 | 439 |
by (auto intro: LIMSEQ_le LIMSEQ_imp_rabs summable_rabs_cancel summable_sumr_LIMSEQ_suminf) |
14416 | 440 |
|
441 |
||
442 |
subsection{* The Ratio Test*} |
|
443 |
||
444 |
lemma rabs_ratiotest_lemma: "[| c \<le> 0; abs x \<le> c * abs y |] ==> x = (0::real)" |
|
445 |
apply (drule order_le_imp_less_or_eq, auto) |
|
446 |
apply (subgoal_tac "0 \<le> c * abs y") |
|
447 |
apply (simp add: zero_le_mult_iff, arith) |
|
448 |
done |
|
449 |
||
450 |
lemma le_Suc_ex: "(k::nat) \<le> l ==> (\<exists>n. l = k + n)" |
|
451 |
apply (drule le_imp_less_or_eq) |
|
452 |
apply (auto dest: less_imp_Suc_add) |
|
453 |
done |
|
454 |
||
455 |
lemma le_Suc_ex_iff: "((k::nat) \<le> l) = (\<exists>n. l = k + n)" |
|
456 |
by (auto simp add: le_Suc_ex) |
|
457 |
||
458 |
(*All this trouble just to get 0<c *) |
|
459 |
lemma ratio_test_lemma2: |
|
15360 | 460 |
"[| \<forall>n \<ge> N. abs(f(Suc n)) \<le> c*abs(f n) |] |
14416 | 461 |
==> 0 < c | summable f" |
462 |
apply (simp (no_asm) add: linorder_not_le [symmetric]) |
|
463 |
apply (simp add: summable_Cauchy) |
|
15543 | 464 |
apply (safe, subgoal_tac "\<forall>n. N < n --> f (n) = 0") |
465 |
prefer 2 |
|
466 |
apply clarify |
|
467 |
apply(erule_tac x = "n - 1" in allE) |
|
468 |
apply (simp add:diff_Suc split:nat.splits) |
|
469 |
apply (blast intro: rabs_ratiotest_lemma) |
|
14416 | 470 |
apply (rule_tac x = "Suc N" in exI, clarify) |
15543 | 471 |
apply(simp cong:setsum_ivl_cong) |
14416 | 472 |
done |
473 |
||
474 |
lemma ratio_test: |
|
15360 | 475 |
"[| c < 1; \<forall>n \<ge> N. abs(f(Suc n)) \<le> c*abs(f n) |] |
14416 | 476 |
==> summable f" |
477 |
apply (frule ratio_test_lemma2, auto) |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
478 |
apply (rule_tac g = "%n. (abs (f N) / (c ^ N))*c ^ n" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
479 |
in summable_comparison_test) |
14416 | 480 |
apply (rule_tac x = N in exI, safe) |
481 |
apply (drule le_Suc_ex_iff [THEN iffD1]) |
|
482 |
apply (auto simp add: power_add realpow_not_zero) |
|
15539 | 483 |
apply (induct_tac "na", auto) |
14416 | 484 |
apply (rule_tac y = "c*abs (f (N + n))" in order_trans) |
485 |
apply (auto intro: mult_right_mono simp add: summable_def) |
|
486 |
apply (simp add: mult_ac) |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
487 |
apply (rule_tac x = "abs (f N) * (1/ (1 - c)) / (c ^ N)" in exI) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
488 |
apply (rule sums_divide) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
489 |
apply (rule sums_mult) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
490 |
apply (auto intro!: geometric_sums) |
14416 | 491 |
done |
492 |
||
493 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15053
diff
changeset
|
494 |
text{*Differentiation of finite sum*} |
14416 | 495 |
|
496 |
lemma DERIV_sumr [rule_format (no_asm)]: |
|
497 |
"(\<forall>r. m \<le> r & r < (m + n) --> DERIV (%x. f r x) x :> (f' r x)) |
|
15539 | 498 |
--> DERIV (%x. \<Sum>n=m..<n::nat. f n x) x :> (\<Sum>r=m..<n. f' r x)" |
15251 | 499 |
apply (induct "n") |
14416 | 500 |
apply (auto intro: DERIV_add) |
501 |
done |
|
502 |
||
503 |
end |