| 16759 |      1 | (*  Title:      HOL/GCD.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Christophe Tabacznyj and Lawrence C Paulson
 | 
|  |      4 |     Copyright   1996  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | Builds on Integ/Parity mainly because that contains recdef, which we
 | 
|  |      7 | need, but also because we may want to include gcd on integers in here
 | 
|  |      8 | as well in the future.
 | 
|  |      9 | *)
 | 
|  |     10 | 
 | 
|  |     11 | header {* The Greatest Common Divisor *}
 | 
|  |     12 | 
 | 
|  |     13 | theory GCD
 | 
|  |     14 | imports Parity
 | 
|  |     15 | begin
 | 
|  |     16 | 
 | 
|  |     17 | text {*
 | 
|  |     18 |   See \cite{davenport92}.
 | 
|  |     19 |   \bigskip
 | 
|  |     20 | *}
 | 
|  |     21 | 
 | 
|  |     22 | consts
 | 
|  |     23 |   gcd  :: "nat \<times> nat => nat"  -- {* Euclid's algorithm *}
 | 
|  |     24 | 
 | 
|  |     25 | recdef gcd  "measure ((\<lambda>(m, n). n) :: nat \<times> nat => nat)"
 | 
|  |     26 |   "gcd (m, n) = (if n = 0 then m else gcd (n, m mod n))"
 | 
|  |     27 | 
 | 
|  |     28 | constdefs
 | 
|  |     29 |   is_gcd :: "nat => nat => nat => bool"  -- {* @{term gcd} as a relation *}
 | 
|  |     30 |   "is_gcd p m n == p dvd m \<and> p dvd n \<and>
 | 
|  |     31 |     (\<forall>d. d dvd m \<and> d dvd n --> d dvd p)"
 | 
|  |     32 | 
 | 
|  |     33 | 
 | 
|  |     34 | lemma gcd_induct:
 | 
|  |     35 |   "(!!m. P m 0) ==>
 | 
|  |     36 |     (!!m n. 0 < n ==> P n (m mod n) ==> P m n)
 | 
|  |     37 |   ==> P (m::nat) (n::nat)"
 | 
|  |     38 |   apply (induct m n rule: gcd.induct)
 | 
|  |     39 |   apply (case_tac "n = 0")
 | 
|  |     40 |    apply simp_all
 | 
|  |     41 |   done
 | 
|  |     42 | 
 | 
|  |     43 | 
 | 
|  |     44 | lemma gcd_0 [simp]: "gcd (m, 0) = m"
 | 
|  |     45 |   apply simp
 | 
|  |     46 |   done
 | 
|  |     47 | 
 | 
|  |     48 | lemma gcd_non_0: "0 < n ==> gcd (m, n) = gcd (n, m mod n)"
 | 
|  |     49 |   apply simp
 | 
|  |     50 |   done
 | 
|  |     51 | 
 | 
|  |     52 | declare gcd.simps [simp del]
 | 
|  |     53 | 
 | 
|  |     54 | lemma gcd_1 [simp]: "gcd (m, Suc 0) = 1"
 | 
|  |     55 |   apply (simp add: gcd_non_0)
 | 
|  |     56 |   done
 | 
|  |     57 | 
 | 
|  |     58 | text {*
 | 
|  |     59 |   \medskip @{term "gcd (m, n)"} divides @{text m} and @{text n}.  The
 | 
|  |     60 |   conjunctions don't seem provable separately.
 | 
|  |     61 | *}
 | 
|  |     62 | 
 | 
|  |     63 | lemma gcd_dvd1 [iff]: "gcd (m, n) dvd m"
 | 
|  |     64 |   and gcd_dvd2 [iff]: "gcd (m, n) dvd n"
 | 
|  |     65 |   apply (induct m n rule: gcd_induct)
 | 
|  |     66 |    apply (simp_all add: gcd_non_0)
 | 
|  |     67 |   apply (blast dest: dvd_mod_imp_dvd)
 | 
|  |     68 |   done
 | 
|  |     69 | 
 | 
|  |     70 | text {*
 | 
|  |     71 |   \medskip Maximality: for all @{term m}, @{term n}, @{term k}
 | 
|  |     72 |   naturals, if @{term k} divides @{term m} and @{term k} divides
 | 
|  |     73 |   @{term n} then @{term k} divides @{term "gcd (m, n)"}.
 | 
|  |     74 | *}
 | 
|  |     75 | 
 | 
|  |     76 | lemma gcd_greatest: "k dvd m ==> k dvd n ==> k dvd gcd (m, n)"
 | 
|  |     77 |   apply (induct m n rule: gcd_induct)
 | 
|  |     78 |    apply (simp_all add: gcd_non_0 dvd_mod)
 | 
|  |     79 |   done
 | 
|  |     80 | 
 | 
|  |     81 | lemma gcd_greatest_iff [iff]: "(k dvd gcd (m, n)) = (k dvd m \<and> k dvd n)"
 | 
|  |     82 |   apply (blast intro!: gcd_greatest intro: dvd_trans)
 | 
|  |     83 |   done
 | 
|  |     84 | 
 | 
|  |     85 | lemma gcd_zero: "(gcd (m, n) = 0) = (m = 0 \<and> n = 0)"
 | 
|  |     86 |   by (simp only: dvd_0_left_iff [THEN sym] gcd_greatest_iff)
 | 
|  |     87 | 
 | 
|  |     88 | 
 | 
|  |     89 | text {*
 | 
|  |     90 |   \medskip Function gcd yields the Greatest Common Divisor.
 | 
|  |     91 | *}
 | 
|  |     92 | 
 | 
|  |     93 | lemma is_gcd: "is_gcd (gcd (m, n)) m n"
 | 
|  |     94 |   apply (simp add: is_gcd_def gcd_greatest)
 | 
|  |     95 |   done
 | 
|  |     96 | 
 | 
|  |     97 | text {*
 | 
|  |     98 |   \medskip Uniqueness of GCDs.
 | 
|  |     99 | *}
 | 
|  |    100 | 
 | 
|  |    101 | lemma is_gcd_unique: "is_gcd m a b ==> is_gcd n a b ==> m = n"
 | 
|  |    102 |   apply (simp add: is_gcd_def)
 | 
|  |    103 |   apply (blast intro: dvd_anti_sym)
 | 
|  |    104 |   done
 | 
|  |    105 | 
 | 
|  |    106 | lemma is_gcd_dvd: "is_gcd m a b ==> k dvd a ==> k dvd b ==> k dvd m"
 | 
|  |    107 |   apply (auto simp add: is_gcd_def)
 | 
|  |    108 |   done
 | 
|  |    109 | 
 | 
|  |    110 | 
 | 
|  |    111 | text {*
 | 
|  |    112 |   \medskip Commutativity
 | 
|  |    113 | *}
 | 
|  |    114 | 
 | 
|  |    115 | lemma is_gcd_commute: "is_gcd k m n = is_gcd k n m"
 | 
|  |    116 |   apply (auto simp add: is_gcd_def)
 | 
|  |    117 |   done
 | 
|  |    118 | 
 | 
|  |    119 | lemma gcd_commute: "gcd (m, n) = gcd (n, m)"
 | 
|  |    120 |   apply (rule is_gcd_unique)
 | 
|  |    121 |    apply (rule is_gcd)
 | 
|  |    122 |   apply (subst is_gcd_commute)
 | 
|  |    123 |   apply (simp add: is_gcd)
 | 
|  |    124 |   done
 | 
|  |    125 | 
 | 
|  |    126 | lemma gcd_assoc: "gcd (gcd (k, m), n) = gcd (k, gcd (m, n))"
 | 
|  |    127 |   apply (rule is_gcd_unique)
 | 
|  |    128 |    apply (rule is_gcd)
 | 
|  |    129 |   apply (simp add: is_gcd_def)
 | 
|  |    130 |   apply (blast intro: dvd_trans)
 | 
|  |    131 |   done
 | 
|  |    132 | 
 | 
|  |    133 | lemma gcd_0_left [simp]: "gcd (0, m) = m"
 | 
|  |    134 |   apply (simp add: gcd_commute [of 0])
 | 
|  |    135 |   done
 | 
|  |    136 | 
 | 
|  |    137 | lemma gcd_1_left [simp]: "gcd (Suc 0, m) = 1"
 | 
|  |    138 |   apply (simp add: gcd_commute [of "Suc 0"])
 | 
|  |    139 |   done
 | 
|  |    140 | 
 | 
|  |    141 | 
 | 
|  |    142 | text {*
 | 
|  |    143 |   \medskip Multiplication laws
 | 
|  |    144 | *}
 | 
|  |    145 | 
 | 
|  |    146 | lemma gcd_mult_distrib2: "k * gcd (m, n) = gcd (k * m, k * n)"
 | 
|  |    147 |     -- {* \cite[page 27]{davenport92} *}
 | 
|  |    148 |   apply (induct m n rule: gcd_induct)
 | 
|  |    149 |    apply simp
 | 
|  |    150 |   apply (case_tac "k = 0")
 | 
|  |    151 |    apply (simp_all add: mod_geq gcd_non_0 mod_mult_distrib2)
 | 
|  |    152 |   done
 | 
|  |    153 | 
 | 
|  |    154 | lemma gcd_mult [simp]: "gcd (k, k * n) = k"
 | 
|  |    155 |   apply (rule gcd_mult_distrib2 [of k 1 n, simplified, symmetric])
 | 
|  |    156 |   done
 | 
|  |    157 | 
 | 
|  |    158 | lemma gcd_self [simp]: "gcd (k, k) = k"
 | 
|  |    159 |   apply (rule gcd_mult [of k 1, simplified])
 | 
|  |    160 |   done
 | 
|  |    161 | 
 | 
|  |    162 | lemma relprime_dvd_mult: "gcd (k, n) = 1 ==> k dvd m * n ==> k dvd m"
 | 
|  |    163 |   apply (insert gcd_mult_distrib2 [of m k n])
 | 
|  |    164 |   apply simp
 | 
|  |    165 |   apply (erule_tac t = m in ssubst)
 | 
|  |    166 |   apply simp
 | 
|  |    167 |   done
 | 
|  |    168 | 
 | 
|  |    169 | lemma relprime_dvd_mult_iff: "gcd (k, n) = 1 ==> (k dvd m * n) = (k dvd m)"
 | 
|  |    170 |   apply (blast intro: relprime_dvd_mult dvd_trans)
 | 
|  |    171 |   done
 | 
|  |    172 | 
 | 
|  |    173 | lemma gcd_mult_cancel: "gcd (k, n) = 1 ==> gcd (k * m, n) = gcd (m, n)"
 | 
|  |    174 |   apply (rule dvd_anti_sym)
 | 
|  |    175 |    apply (rule gcd_greatest)
 | 
|  |    176 |     apply (rule_tac n = k in relprime_dvd_mult)
 | 
|  |    177 |      apply (simp add: gcd_assoc)
 | 
|  |    178 |      apply (simp add: gcd_commute)
 | 
|  |    179 |     apply (simp_all add: mult_commute)
 | 
|  |    180 |   apply (blast intro: dvd_trans)
 | 
|  |    181 |   done
 | 
|  |    182 | 
 | 
|  |    183 | 
 | 
|  |    184 | text {* \medskip Addition laws *}
 | 
|  |    185 | 
 | 
|  |    186 | lemma gcd_add1 [simp]: "gcd (m + n, n) = gcd (m, n)"
 | 
|  |    187 |   apply (case_tac "n = 0")
 | 
|  |    188 |    apply (simp_all add: gcd_non_0)
 | 
|  |    189 |   done
 | 
|  |    190 | 
 | 
|  |    191 | lemma gcd_add2 [simp]: "gcd (m, m + n) = gcd (m, n)"
 | 
|  |    192 | proof -
 | 
|  |    193 |   have "gcd (m, m + n) = gcd (m + n, m)" by (rule gcd_commute) 
 | 
|  |    194 |   also have "... = gcd (n + m, m)" by (simp add: add_commute)
 | 
|  |    195 |   also have "... = gcd (n, m)" by simp
 | 
|  |    196 |   also have  "... = gcd (m, n)" by (rule gcd_commute) 
 | 
|  |    197 |   finally show ?thesis .
 | 
|  |    198 | qed
 | 
|  |    199 | 
 | 
|  |    200 | lemma gcd_add2' [simp]: "gcd (m, n + m) = gcd (m, n)"
 | 
|  |    201 |   apply (subst add_commute)
 | 
|  |    202 |   apply (rule gcd_add2)
 | 
|  |    203 |   done
 | 
|  |    204 | 
 | 
|  |    205 | lemma gcd_add_mult: "gcd (m, k * m + n) = gcd (m, n)"
 | 
|  |    206 |   apply (induct k)
 | 
|  |    207 |    apply (simp_all add: add_assoc)
 | 
|  |    208 |   done
 | 
|  |    209 | 
 | 
|  |    210 | end
 |