| author | hoelzl | 
| Wed, 10 Oct 2012 12:12:27 +0200 | |
| changeset 49789 | e0a4cb91a8a9 | 
| parent 48891 | c0eafbd55de3 | 
| child 49989 | 34d0ac1bdac6 | 
| permissions | -rw-r--r-- | 
| 33192 | 1  | 
(* Title: HOL/Nitpick.thy  | 
2  | 
Author: Jasmin Blanchette, TU Muenchen  | 
|
| 
35807
 
e4d1b5cbd429
added support for "specification" and "ax_specification" constructs to Nitpick
 
blanchet 
parents: 
35699 
diff
changeset
 | 
3  | 
Copyright 2008, 2009, 2010  | 
| 33192 | 4  | 
|
5  | 
Nitpick: Yet another counterexample generator for Isabelle/HOL.  | 
|
6  | 
*)  | 
|
7  | 
||
8  | 
header {* Nitpick: Yet Another Counterexample Generator for Isabelle/HOL *}
 | 
|
9  | 
||
10  | 
theory Nitpick  | 
|
| 38393 | 11  | 
imports Map Quotient SAT Record  | 
| 
46950
 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 
wenzelm 
parents: 
46324 
diff
changeset
 | 
12  | 
keywords "nitpick" :: diag and "nitpick_params" :: thy_decl  | 
| 33192 | 13  | 
begin  | 
14  | 
||
15  | 
typedecl bisim_iterator  | 
|
16  | 
||
17  | 
axiomatization unknown :: 'a  | 
|
| 34938 | 18  | 
and is_unknown :: "'a \<Rightarrow> bool"  | 
| 33192 | 19  | 
and bisim :: "bisim_iterator \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"  | 
20  | 
and bisim_iterator_max :: bisim_iterator  | 
|
| 34938 | 21  | 
and Quot :: "'a \<Rightarrow> 'b"  | 
| 
35671
 
ed2c3830d881
improved Nitpick's precision for "card" and "setsum" + fix incorrect outcome code w.r.t. "bisim_depth = -1"
 
blanchet 
parents: 
35665 
diff
changeset
 | 
22  | 
           and safe_The :: "('a \<Rightarrow> bool) \<Rightarrow> 'a"
 | 
| 33192 | 23  | 
|
| 
35665
 
ff2bf50505ab
added "finitize" option to Nitpick + remove dependency on "Coinductive_List"
 
blanchet 
parents: 
35311 
diff
changeset
 | 
24  | 
datatype ('a, 'b) fun_box = FunBox "('a \<Rightarrow> 'b)"
 | 
| 33192 | 25  | 
datatype ('a, 'b) pair_box = PairBox 'a 'b
 | 
| 
34124
 
c4628a1dcf75
added support for binary nat/int representation to Nitpick
 
blanchet 
parents: 
33747 
diff
changeset
 | 
26  | 
|
| 
 
c4628a1dcf75
added support for binary nat/int representation to Nitpick
 
blanchet 
parents: 
33747 
diff
changeset
 | 
27  | 
typedecl unsigned_bit  | 
| 
 
c4628a1dcf75
added support for binary nat/int representation to Nitpick
 
blanchet 
parents: 
33747 
diff
changeset
 | 
28  | 
typedecl signed_bit  | 
| 
 
c4628a1dcf75
added support for binary nat/int representation to Nitpick
 
blanchet 
parents: 
33747 
diff
changeset
 | 
29  | 
|
| 
 
c4628a1dcf75
added support for binary nat/int representation to Nitpick
 
blanchet 
parents: 
33747 
diff
changeset
 | 
30  | 
datatype 'a word = Word "('a set)"
 | 
| 33192 | 31  | 
|
32  | 
text {*
 | 
|
33  | 
Alternative definitions.  | 
|
34  | 
*}  | 
|
35  | 
||
| 41797 | 36  | 
lemma Ex1_unfold [nitpick_unfold, no_atp]:  | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45140 
diff
changeset
 | 
37  | 
"Ex1 P \<equiv> \<exists>x. {x. P x} = {x}"
 | 
| 33192 | 38  | 
apply (rule eq_reflection)  | 
| 
39302
 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 
nipkow 
parents: 
39223 
diff
changeset
 | 
39  | 
apply (simp add: Ex1_def set_eq_iff)  | 
| 33192 | 40  | 
apply (rule iffI)  | 
41  | 
apply (erule exE)  | 
|
42  | 
apply (erule conjE)  | 
|
43  | 
apply (rule_tac x = x in exI)  | 
|
44  | 
apply (rule allI)  | 
|
45  | 
apply (rename_tac y)  | 
|
46  | 
apply (erule_tac x = y in allE)  | 
|
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45140 
diff
changeset
 | 
47  | 
by auto  | 
| 33192 | 48  | 
|
| 41797 | 49  | 
lemma rtrancl_unfold [nitpick_unfold, no_atp]: "r\<^sup>* \<equiv> (r\<^sup>+)\<^sup>="  | 
| 45140 | 50  | 
by (simp only: rtrancl_trancl_reflcl)  | 
| 33192 | 51  | 
|
| 41797 | 52  | 
lemma rtranclp_unfold [nitpick_unfold, no_atp]:  | 
| 33192 | 53  | 
"rtranclp r a b \<equiv> (a = b \<or> tranclp r a b)"  | 
54  | 
by (rule eq_reflection) (auto dest: rtranclpD)  | 
|
55  | 
||
| 41797 | 56  | 
lemma tranclp_unfold [nitpick_unfold, no_atp]:  | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45140 
diff
changeset
 | 
57  | 
"tranclp r a b \<equiv> (a, b) \<in> trancl {(x, y). r x y}"
 | 
| 
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45140 
diff
changeset
 | 
58  | 
by (simp add: trancl_def)  | 
| 33192 | 59  | 
|
| 
47909
 
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
 
blanchet 
parents: 
46950 
diff
changeset
 | 
60  | 
lemma [nitpick_simp, no_atp]:  | 
| 
 
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
 
blanchet 
parents: 
46950 
diff
changeset
 | 
61  | 
"of_nat n = (if n = 0 then 0 else 1 + of_nat (n - 1))"  | 
| 47988 | 62  | 
by (cases n) auto  | 
| 
47909
 
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
 
blanchet 
parents: 
46950 
diff
changeset
 | 
63  | 
|
| 41046 | 64  | 
definition prod :: "'a set \<Rightarrow> 'b set \<Rightarrow> ('a \<times> 'b) set" where
 | 
65  | 
"prod A B = {(a, b). a \<in> A \<and> b \<in> B}"
 | 
|
66  | 
||
| 
44278
 
1220ecb81e8f
observe distinction between sets and predicates more properly
 
haftmann 
parents: 
44016 
diff
changeset
 | 
67  | 
definition refl' :: "('a \<times> 'a) set \<Rightarrow> bool" where
 | 
| 33192 | 68  | 
"refl' r \<equiv> \<forall>x. (x, x) \<in> r"  | 
69  | 
||
| 
44278
 
1220ecb81e8f
observe distinction between sets and predicates more properly
 
haftmann 
parents: 
44016 
diff
changeset
 | 
70  | 
definition wf' :: "('a \<times> 'a) set \<Rightarrow> bool" where
 | 
| 33192 | 71  | 
"wf' r \<equiv> acyclic r \<and> (finite r \<or> unknown)"  | 
72  | 
||
| 
44278
 
1220ecb81e8f
observe distinction between sets and predicates more properly
 
haftmann 
parents: 
44016 
diff
changeset
 | 
73  | 
definition card' :: "'a set \<Rightarrow> nat" where  | 
| 
39365
 
9cab71c20613
remove more clutter related to old "fast_descrs" optimization
 
blanchet 
parents: 
39302 
diff
changeset
 | 
74  | 
"card' A \<equiv> if finite A then length (SOME xs. set xs = A \<and> distinct xs) else 0"  | 
| 33192 | 75  | 
|
| 
44278
 
1220ecb81e8f
observe distinction between sets and predicates more properly
 
haftmann 
parents: 
44016 
diff
changeset
 | 
76  | 
definition setsum' :: "('a \<Rightarrow> 'b\<Colon>comm_monoid_add) \<Rightarrow> 'a set \<Rightarrow> 'b" where
 | 
| 
39365
 
9cab71c20613
remove more clutter related to old "fast_descrs" optimization
 
blanchet 
parents: 
39302 
diff
changeset
 | 
77  | 
"setsum' f A \<equiv> if finite A then listsum (map f (SOME xs. set xs = A \<and> distinct xs)) else 0"  | 
| 33192 | 78  | 
|
| 
44278
 
1220ecb81e8f
observe distinction between sets and predicates more properly
 
haftmann 
parents: 
44016 
diff
changeset
 | 
79  | 
inductive fold_graph' :: "('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a set \<Rightarrow> 'b \<Rightarrow> bool" where
 | 
| 33192 | 80  | 
"fold_graph' f z {} z" |
 | 
81  | 
"\<lbrakk>x \<in> A; fold_graph' f z (A - {x}) y\<rbrakk> \<Longrightarrow> fold_graph' f z A (f x y)"
 | 
|
82  | 
||
83  | 
text {*
 | 
|
84  | 
The following lemmas are not strictly necessary but they help the  | 
|
| 
47909
 
5f1afeebafbc
fixed "real" after they were redefined as a 'quotient_type'
 
blanchet 
parents: 
46950 
diff
changeset
 | 
85  | 
\textit{specialize} optimization.
 | 
| 33192 | 86  | 
*}  | 
87  | 
||
| 36918 | 88  | 
lemma The_psimp [nitpick_psimp, no_atp]:  | 
| 
45970
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45140 
diff
changeset
 | 
89  | 
"P = (op =) x \<Longrightarrow> The P = x"  | 
| 
 
b6d0cff57d96
adjusted to set/pred distinction by means of type constructor `set`
 
haftmann 
parents: 
45140 
diff
changeset
 | 
90  | 
by auto  | 
| 33192 | 91  | 
|
| 36918 | 92  | 
lemma Eps_psimp [nitpick_psimp, no_atp]:  | 
| 33192 | 93  | 
"\<lbrakk>P x; \<not> P y; Eps P = y\<rbrakk> \<Longrightarrow> Eps P = x"  | 
| 47988 | 94  | 
apply (cases "P (Eps P)")  | 
| 33192 | 95  | 
apply auto  | 
96  | 
apply (erule contrapos_np)  | 
|
97  | 
by (rule someI)  | 
|
98  | 
||
| 41797 | 99  | 
lemma unit_case_unfold [nitpick_unfold, no_atp]:  | 
| 33192 | 100  | 
"unit_case x u \<equiv> x"  | 
101  | 
apply (subgoal_tac "u = ()")  | 
|
102  | 
apply (simp only: unit.cases)  | 
|
103  | 
by simp  | 
|
104  | 
||
| 
33556
 
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
 
blanchet 
parents: 
33192 
diff
changeset
 | 
105  | 
declare unit.cases [nitpick_simp del]  | 
| 
 
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
 
blanchet 
parents: 
33192 
diff
changeset
 | 
106  | 
|
| 41797 | 107  | 
lemma nat_case_unfold [nitpick_unfold, no_atp]:  | 
| 33192 | 108  | 
"nat_case x f n \<equiv> if n = 0 then x else f (n - 1)"  | 
109  | 
apply (rule eq_reflection)  | 
|
| 47988 | 110  | 
by (cases n) auto  | 
| 33192 | 111  | 
|
| 
33556
 
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
 
blanchet 
parents: 
33192 
diff
changeset
 | 
112  | 
declare nat.cases [nitpick_simp del]  | 
| 
 
cba22e2999d5
renamed Nitpick option "coalesce_type_vars" to "merge_type_vars" (shorter) and cleaned up old hacks that are no longer necessary
 
blanchet 
parents: 
33192 
diff
changeset
 | 
113  | 
|
| 36918 | 114  | 
lemma list_size_simp [nitpick_simp, no_atp]:  | 
| 33192 | 115  | 
"list_size f xs = (if xs = [] then 0  | 
116  | 
else Suc (f (hd xs) + list_size f (tl xs)))"  | 
|
117  | 
"size xs = (if xs = [] then 0 else Suc (size (tl xs)))"  | 
|
| 47988 | 118  | 
by (cases xs) auto  | 
| 33192 | 119  | 
|
120  | 
text {*
 | 
|
121  | 
Auxiliary definitions used to provide an alternative representation for  | 
|
122  | 
@{text rat} and @{text real}.
 | 
|
123  | 
*}  | 
|
124  | 
||
125  | 
function nat_gcd :: "nat \<Rightarrow> nat \<Rightarrow> nat" where  | 
|
126  | 
[simp del]: "nat_gcd x y = (if y = 0 then x else nat_gcd y (x mod y))"  | 
|
127  | 
by auto  | 
|
128  | 
termination  | 
|
129  | 
apply (relation "measure (\<lambda>(x, y). x + y + (if y > x then 1 else 0))")  | 
|
130  | 
apply auto  | 
|
131  | 
apply (metis mod_less_divisor xt1(9))  | 
|
132  | 
by (metis mod_mod_trivial mod_self nat_neq_iff xt1(10))  | 
|
133  | 
||
134  | 
definition nat_lcm :: "nat \<Rightarrow> nat \<Rightarrow> nat" where  | 
|
135  | 
"nat_lcm x y = x * y div (nat_gcd x y)"  | 
|
136  | 
||
137  | 
definition int_gcd :: "int \<Rightarrow> int \<Rightarrow> int" where  | 
|
138  | 
"int_gcd x y = int (nat_gcd (nat (abs x)) (nat (abs y)))"  | 
|
139  | 
||
140  | 
definition int_lcm :: "int \<Rightarrow> int \<Rightarrow> int" where  | 
|
141  | 
"int_lcm x y = int (nat_lcm (nat (abs x)) (nat (abs y)))"  | 
|
142  | 
||
143  | 
definition Frac :: "int \<times> int \<Rightarrow> bool" where  | 
|
144  | 
"Frac \<equiv> \<lambda>(a, b). b > 0 \<and> int_gcd a b = 1"  | 
|
145  | 
||
146  | 
axiomatization Abs_Frac :: "int \<times> int \<Rightarrow> 'a"  | 
|
147  | 
and Rep_Frac :: "'a \<Rightarrow> int \<times> int"  | 
|
148  | 
||
149  | 
definition zero_frac :: 'a where  | 
|
150  | 
"zero_frac \<equiv> Abs_Frac (0, 1)"  | 
|
151  | 
||
152  | 
definition one_frac :: 'a where  | 
|
153  | 
"one_frac \<equiv> Abs_Frac (1, 1)"  | 
|
154  | 
||
155  | 
definition num :: "'a \<Rightarrow> int" where  | 
|
156  | 
"num \<equiv> fst o Rep_Frac"  | 
|
157  | 
||
158  | 
definition denom :: "'a \<Rightarrow> int" where  | 
|
159  | 
"denom \<equiv> snd o Rep_Frac"  | 
|
160  | 
||
161  | 
function norm_frac :: "int \<Rightarrow> int \<Rightarrow> int \<times> int" where  | 
|
162  | 
[simp del]: "norm_frac a b = (if b < 0 then norm_frac (- a) (- b)  | 
|
163  | 
else if a = 0 \<or> b = 0 then (0, 1)  | 
|
164  | 
else let c = int_gcd a b in (a div c, b div c))"  | 
|
165  | 
by pat_completeness auto  | 
|
166  | 
termination by (relation "measure (\<lambda>(_, b). if b < 0 then 1 else 0)") auto  | 
|
167  | 
||
168  | 
definition frac :: "int \<Rightarrow> int \<Rightarrow> 'a" where  | 
|
169  | 
"frac a b \<equiv> Abs_Frac (norm_frac a b)"  | 
|
170  | 
||
171  | 
definition plus_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where  | 
|
172  | 
[nitpick_simp]:  | 
|
173  | 
"plus_frac q r = (let d = int_lcm (denom q) (denom r) in  | 
|
174  | 
frac (num q * (d div denom q) + num r * (d div denom r)) d)"  | 
|
175  | 
||
176  | 
definition times_frac :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where  | 
|
177  | 
[nitpick_simp]:  | 
|
178  | 
"times_frac q r = frac (num q * num r) (denom q * denom r)"  | 
|
179  | 
||
180  | 
definition uminus_frac :: "'a \<Rightarrow> 'a" where  | 
|
181  | 
"uminus_frac q \<equiv> Abs_Frac (- num q, denom q)"  | 
|
182  | 
||
183  | 
definition number_of_frac :: "int \<Rightarrow> 'a" where  | 
|
184  | 
"number_of_frac n \<equiv> Abs_Frac (n, 1)"  | 
|
185  | 
||
186  | 
definition inverse_frac :: "'a \<Rightarrow> 'a" where  | 
|
187  | 
"inverse_frac q \<equiv> frac (denom q) (num q)"  | 
|
188  | 
||
| 
37397
 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 
blanchet 
parents: 
37213 
diff
changeset
 | 
189  | 
definition less_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where  | 
| 
 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 
blanchet 
parents: 
37213 
diff
changeset
 | 
190  | 
[nitpick_simp]:  | 
| 
 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 
blanchet 
parents: 
37213 
diff
changeset
 | 
191  | 
"less_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) < 0"  | 
| 
 
18000f9d783e
adjust Nitpick's handling of "<" on "rat"s and "reals"
 
blanchet 
parents: 
37213 
diff
changeset
 | 
192  | 
|
| 33192 | 193  | 
definition less_eq_frac :: "'a \<Rightarrow> 'a \<Rightarrow> bool" where  | 
194  | 
[nitpick_simp]:  | 
|
195  | 
"less_eq_frac q r \<longleftrightarrow> num (plus_frac q (uminus_frac r)) \<le> 0"  | 
|
196  | 
||
197  | 
definition of_frac :: "'a \<Rightarrow> 'b\<Colon>{inverse,ring_1}" where
 | 
|
198  | 
"of_frac q \<equiv> of_int (num q) / of_int (denom q)"  | 
|
199  | 
||
| 48891 | 200  | 
ML_file "Tools/Nitpick/kodkod.ML"  | 
201  | 
ML_file "Tools/Nitpick/kodkod_sat.ML"  | 
|
202  | 
ML_file "Tools/Nitpick/nitpick_util.ML"  | 
|
203  | 
ML_file "Tools/Nitpick/nitpick_hol.ML"  | 
|
204  | 
ML_file "Tools/Nitpick/nitpick_mono.ML"  | 
|
205  | 
ML_file "Tools/Nitpick/nitpick_preproc.ML"  | 
|
206  | 
ML_file "Tools/Nitpick/nitpick_scope.ML"  | 
|
207  | 
ML_file "Tools/Nitpick/nitpick_peephole.ML"  | 
|
208  | 
ML_file "Tools/Nitpick/nitpick_rep.ML"  | 
|
209  | 
ML_file "Tools/Nitpick/nitpick_nut.ML"  | 
|
210  | 
ML_file "Tools/Nitpick/nitpick_kodkod.ML"  | 
|
211  | 
ML_file "Tools/Nitpick/nitpick_model.ML"  | 
|
212  | 
ML_file "Tools/Nitpick/nitpick.ML"  | 
|
213  | 
ML_file "Tools/Nitpick/nitpick_isar.ML"  | 
|
214  | 
ML_file "Tools/Nitpick/nitpick_tests.ML"  | 
|
| 33192 | 215  | 
|
| 
44016
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
216  | 
setup {*
 | 
| 
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
217  | 
Nitpick_Isar.setup #>  | 
| 
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
218  | 
Nitpick_HOL.register_ersatz_global  | 
| 
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
219  | 
    [(@{const_name card}, @{const_name card'}),
 | 
| 
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
220  | 
     (@{const_name setsum}, @{const_name setsum'}),
 | 
| 
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
221  | 
     (@{const_name fold_graph}, @{const_name fold_graph'}),
 | 
| 
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
222  | 
     (@{const_name wf}, @{const_name wf'})]
 | 
| 
 
51184010c609
replaced Nitpick's hardwired basic_ersatz_table by context data
 
krauss 
parents: 
44013 
diff
changeset
 | 
223  | 
*}  | 
| 
33561
 
ab01b72715ef
introduced Auto Nitpick in addition to Auto Quickcheck;
 
blanchet 
parents: 
33556 
diff
changeset
 | 
224  | 
|
| 
39365
 
9cab71c20613
remove more clutter related to old "fast_descrs" optimization
 
blanchet 
parents: 
39302 
diff
changeset
 | 
225  | 
hide_const (open) unknown is_unknown bisim bisim_iterator_max Quot safe_The  | 
| 
44013
 
5cfc1c36ae97
moved recdef package to HOL/Library/Old_Recdef.thy
 
krauss 
parents: 
42064 
diff
changeset
 | 
226  | 
FunBox PairBox Word prod refl' wf' card' setsum'  | 
| 
41052
 
3db267a01c1d
remove the "fin_fun" optimization in Nitpick -- it was always a hack and didn't help much
 
blanchet 
parents: 
41046 
diff
changeset
 | 
227  | 
fold_graph' nat_gcd nat_lcm int_gcd int_lcm Frac Abs_Frac Rep_Frac zero_frac  | 
| 
 
3db267a01c1d
remove the "fin_fun" optimization in Nitpick -- it was always a hack and didn't help much
 
blanchet 
parents: 
41046 
diff
changeset
 | 
228  | 
one_frac num denom norm_frac frac plus_frac times_frac uminus_frac  | 
| 
39365
 
9cab71c20613
remove more clutter related to old "fast_descrs" optimization
 
blanchet 
parents: 
39302 
diff
changeset
 | 
229  | 
number_of_frac inverse_frac less_frac less_eq_frac of_frac  | 
| 46324 | 230  | 
hide_type (open) bisim_iterator fun_box pair_box unsigned_bit signed_bit word  | 
| 41797 | 231  | 
hide_fact (open) Ex1_unfold rtrancl_unfold rtranclp_unfold tranclp_unfold  | 
| 
44013
 
5cfc1c36ae97
moved recdef package to HOL/Library/Old_Recdef.thy
 
krauss 
parents: 
42064 
diff
changeset
 | 
232  | 
prod_def refl'_def wf'_def card'_def setsum'_def  | 
| 41797 | 233  | 
fold_graph'_def The_psimp Eps_psimp unit_case_unfold nat_case_unfold  | 
| 41046 | 234  | 
list_size_simp nat_gcd_def nat_lcm_def int_gcd_def int_lcm_def Frac_def  | 
235  | 
zero_frac_def one_frac_def num_def denom_def norm_frac_def frac_def  | 
|
236  | 
plus_frac_def times_frac_def uminus_frac_def number_of_frac_def  | 
|
237  | 
inverse_frac_def less_frac_def less_eq_frac_def of_frac_def  | 
|
| 33192 | 238  | 
|
239  | 
end  |