author | traytel |
Tue, 05 Apr 2016 09:54:17 +0200 | |
changeset 62863 | e0b894bba6ff |
parent 62390 | 842917225d56 |
child 67399 | eab6ce8368fa |
permissions | -rw-r--r-- |
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
1 |
(* Title: HOL/Decision_Procs/Polynomial_List.thy |
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
2 |
Author: Amine Chaieb |
33153 | 3 |
*) |
4 |
||
60533 | 5 |
section \<open>Univariate Polynomials as lists\<close> |
33153 | 6 |
|
7 |
theory Polynomial_List |
|
54219 | 8 |
imports Complex_Main |
33153 | 9 |
begin |
10 |
||
60536 | 11 |
text \<open>Application of polynomial as a function.\<close> |
33153 | 12 |
|
54219 | 13 |
primrec (in semiring_0) poly :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a" |
52778 | 14 |
where |
60536 | 15 |
poly_Nil: "poly [] x = 0" |
16 |
| poly_Cons: "poly (h # t) x = h + x * poly t x" |
|
33153 | 17 |
|
18 |
||
60536 | 19 |
subsection \<open>Arithmetic Operations on Polynomials\<close> |
33153 | 20 |
|
60536 | 21 |
text \<open>Addition\<close> |
54219 | 22 |
primrec (in semiring_0) padd :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "+++" 65) |
52778 | 23 |
where |
60536 | 24 |
padd_Nil: "[] +++ l2 = l2" |
25 |
| padd_Cons: "(h # t) +++ l2 = (if l2 = [] then h # t else (h + hd l2) # (t +++ tl l2))" |
|
33153 | 26 |
|
60536 | 27 |
text \<open>Multiplication by a constant\<close> |
54219 | 28 |
primrec (in semiring_0) cmult :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "%*" 70) where |
60536 | 29 |
cmult_Nil: "c %* [] = []" |
54219 | 30 |
| cmult_Cons: "c %* (h#t) = (c * h)#(c %* t)" |
33153 | 31 |
|
60536 | 32 |
text \<open>Multiplication by a polynomial\<close> |
54219 | 33 |
primrec (in semiring_0) pmult :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" (infixl "***" 70) |
52778 | 34 |
where |
60536 | 35 |
pmult_Nil: "[] *** l2 = []" |
36 |
| pmult_Cons: "(h # t) *** l2 = (if t = [] then h %* l2 else (h %* l2) +++ (0 # (t *** l2)))" |
|
33153 | 37 |
|
60536 | 38 |
text \<open>Repeated multiplication by a polynomial\<close> |
39 |
primrec (in semiring_0) mulexp :: "nat \<Rightarrow> 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list" |
|
40 |
where |
|
41 |
mulexp_zero: "mulexp 0 p q = q" |
|
42 |
| mulexp_Suc: "mulexp (Suc n) p q = p *** mulexp n p q" |
|
33153 | 43 |
|
60536 | 44 |
text \<open>Exponential\<close> |
45 |
primrec (in semiring_1) pexp :: "'a list \<Rightarrow> nat \<Rightarrow> 'a list" (infixl "%^" 80) |
|
46 |
where |
|
47 |
pexp_0: "p %^ 0 = [1]" |
|
39246 | 48 |
| pexp_Suc: "p %^ (Suc n) = p *** (p %^ n)" |
33153 | 49 |
|
60536 | 50 |
text \<open>Quotient related value of dividing a polynomial by x + a. |
51 |
Useful for divisor properties in inductive proofs.\<close> |
|
54219 | 52 |
primrec (in field) "pquot" :: "'a list \<Rightarrow> 'a \<Rightarrow> 'a list" |
52778 | 53 |
where |
60536 | 54 |
pquot_Nil: "pquot [] a = []" |
55 |
| pquot_Cons: "pquot (h # t) a = |
|
56 |
(if t = [] then [h] else (inverse a * (h - hd( pquot t a))) # pquot t a)" |
|
33153 | 57 |
|
60536 | 58 |
text \<open>Normalization of polynomials (remove extra 0 coeff).\<close> |
59 |
primrec (in semiring_0) pnormalize :: "'a list \<Rightarrow> 'a list" |
|
60 |
where |
|
61 |
pnormalize_Nil: "pnormalize [] = []" |
|
62 |
| pnormalize_Cons: "pnormalize (h # p) = |
|
54219 | 63 |
(if pnormalize p = [] then (if h = 0 then [] else [h]) else h # pnormalize p)" |
33153 | 64 |
|
60536 | 65 |
definition (in semiring_0) "pnormal p \<longleftrightarrow> pnormalize p = p \<and> p \<noteq> []" |
66 |
definition (in semiring_0) "nonconstant p \<longleftrightarrow> pnormal p \<and> (\<forall>x. p \<noteq> [x])" |
|
67 |
||
68 |
text \<open>Other definitions.\<close> |
|
33153 | 69 |
|
54219 | 70 |
definition (in ring_1) poly_minus :: "'a list \<Rightarrow> 'a list" ("-- _" [80] 80) |
52778 | 71 |
where "-- p = (- 1) %* p" |
33153 | 72 |
|
54219 | 73 |
definition (in semiring_0) divides :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool" (infixl "divides" 70) |
60536 | 74 |
where "p1 divides p2 \<longleftrightarrow> (\<exists>q. poly p2 = poly(p1 *** q))" |
54219 | 75 |
|
60536 | 76 |
lemma (in semiring_0) dividesI: "poly p2 = poly (p1 *** q) \<Longrightarrow> p1 divides p2" |
54219 | 77 |
by (auto simp add: divides_def) |
33153 | 78 |
|
54219 | 79 |
lemma (in semiring_0) dividesE: |
80 |
assumes "p1 divides p2" |
|
81 |
obtains q where "poly p2 = poly (p1 *** q)" |
|
82 |
using assms by (auto simp add: divides_def) |
|
33153 | 83 |
|
61586 | 84 |
\<comment> \<open>order of a polynomial\<close> |
60536 | 85 |
definition (in ring_1) order :: "'a \<Rightarrow> 'a list \<Rightarrow> nat" |
86 |
where "order a p = (SOME n. ([-a, 1] %^ n) divides p \<and> \<not> (([-a, 1] %^ (Suc n)) divides p))" |
|
54219 | 87 |
|
61586 | 88 |
\<comment> \<open>degree of a polynomial\<close> |
54219 | 89 |
definition (in semiring_0) degree :: "'a list \<Rightarrow> nat" |
52778 | 90 |
where "degree p = length (pnormalize p) - 1" |
33153 | 91 |
|
61586 | 92 |
\<comment> \<open>squarefree polynomials --- NB with respect to real roots only\<close> |
54219 | 93 |
definition (in ring_1) rsquarefree :: "'a list \<Rightarrow> bool" |
94 |
where "rsquarefree p \<longleftrightarrow> poly p \<noteq> poly [] \<and> (\<forall>a. order a p = 0 \<or> order a p = 1)" |
|
33153 | 95 |
|
54219 | 96 |
context semiring_0 |
97 |
begin |
|
98 |
||
99 |
lemma padd_Nil2[simp]: "p +++ [] = p" |
|
52778 | 100 |
by (induct p) auto |
33153 | 101 |
|
102 |
lemma padd_Cons_Cons: "(h1 # p1) +++ (h2 # p2) = (h1 + h2) # (p1 +++ p2)" |
|
52778 | 103 |
by auto |
33153 | 104 |
|
54219 | 105 |
lemma pminus_Nil: "-- [] = []" |
52778 | 106 |
by (simp add: poly_minus_def) |
33153 | 107 |
|
54219 | 108 |
lemma pmult_singleton: "[h1] *** p1 = h1 %* p1" by simp |
109 |
||
110 |
end |
|
33153 | 111 |
|
60536 | 112 |
lemma (in semiring_1) poly_ident_mult[simp]: "1 %* t = t" |
113 |
by (induct t) auto |
|
33153 | 114 |
|
60536 | 115 |
lemma (in semiring_0) poly_simple_add_Cons[simp]: "[a] +++ (0 # t) = a # t" |
52778 | 116 |
by simp |
33153 | 117 |
|
60536 | 118 |
|
119 |
text \<open>Handy general properties.\<close> |
|
33153 | 120 |
|
54219 | 121 |
lemma (in comm_semiring_0) padd_commut: "b +++ a = a +++ b" |
122 |
proof (induct b arbitrary: a) |
|
123 |
case Nil |
|
60536 | 124 |
then show ?case |
125 |
by auto |
|
54219 | 126 |
next |
127 |
case (Cons b bs a) |
|
60536 | 128 |
then show ?case |
129 |
by (cases a) (simp_all add: add.commute) |
|
54219 | 130 |
qed |
131 |
||
60698 | 132 |
lemma (in comm_semiring_0) padd_assoc: "(a +++ b) +++ c = a +++ (b +++ c)" |
133 |
proof (induct a arbitrary: b c) |
|
134 |
case Nil |
|
135 |
then show ?case |
|
136 |
by simp |
|
137 |
next |
|
138 |
case Cons |
|
139 |
then show ?case |
|
140 |
by (cases b) (simp_all add: ac_simps) |
|
141 |
qed |
|
33153 | 142 |
|
60536 | 143 |
lemma (in semiring_0) poly_cmult_distr: "a %* (p +++ q) = a %* p +++ a %* q" |
60698 | 144 |
proof (induct p arbitrary: q) |
145 |
case Nil |
|
146 |
then show ?case |
|
147 |
by simp |
|
148 |
next |
|
149 |
case Cons |
|
150 |
then show ?case |
|
151 |
by (cases q) (simp_all add: distrib_left) |
|
152 |
qed |
|
33153 | 153 |
|
60536 | 154 |
lemma (in ring_1) pmult_by_x[simp]: "[0, 1] *** t = 0 # t" |
60698 | 155 |
proof (induct t) |
156 |
case Nil |
|
157 |
then show ?case |
|
158 |
by simp |
|
159 |
next |
|
160 |
case (Cons a t) |
|
161 |
then show ?case |
|
162 |
by (cases t) (auto simp add: padd_commut) |
|
163 |
qed |
|
60536 | 164 |
|
165 |
text \<open>Properties of evaluation of polynomials.\<close> |
|
33153 | 166 |
|
54219 | 167 |
lemma (in semiring_0) poly_add: "poly (p1 +++ p2) x = poly p1 x + poly p2 x" |
60536 | 168 |
proof (induct p1 arbitrary: p2) |
54219 | 169 |
case Nil |
60536 | 170 |
then show ?case |
171 |
by simp |
|
54219 | 172 |
next |
173 |
case (Cons a as p2) |
|
60536 | 174 |
then show ?case |
175 |
by (cases p2) (simp_all add: ac_simps distrib_left) |
|
54219 | 176 |
qed |
33153 | 177 |
|
54219 | 178 |
lemma (in comm_semiring_0) poly_cmult: "poly (c %* p) x = c * poly p x" |
60698 | 179 |
proof (induct p) |
180 |
case Nil |
|
181 |
then show ?case |
|
182 |
by simp |
|
183 |
next |
|
184 |
case Cons |
|
185 |
then show ?case |
|
186 |
by (cases "x = zero") (auto simp add: distrib_left ac_simps) |
|
187 |
qed |
|
33153 | 188 |
|
60536 | 189 |
lemma (in comm_semiring_0) poly_cmult_map: "poly (map (op * c) p) x = c * poly p x" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
190 |
by (induct p) (auto simp add: distrib_left ac_simps) |
33153 | 191 |
|
54219 | 192 |
lemma (in comm_ring_1) poly_minus: "poly (-- p) x = - (poly p x)" |
60698 | 193 |
by (simp add: poly_minus_def) (auto simp add: poly_cmult) |
33153 | 194 |
|
54219 | 195 |
lemma (in comm_semiring_0) poly_mult: "poly (p1 *** p2) x = poly p1 x * poly p2 x" |
196 |
proof (induct p1 arbitrary: p2) |
|
197 |
case Nil |
|
60536 | 198 |
then show ?case |
199 |
by simp |
|
54219 | 200 |
next |
60698 | 201 |
case (Cons a as) |
60536 | 202 |
then show ?case |
203 |
by (cases as) (simp_all add: poly_cmult poly_add distrib_right distrib_left ac_simps) |
|
54219 | 204 |
qed |
205 |
||
206 |
class idom_char_0 = idom + ring_char_0 |
|
207 |
||
208 |
subclass (in field_char_0) idom_char_0 .. |
|
209 |
||
210 |
lemma (in comm_ring_1) poly_exp: "poly (p %^ n) x = (poly p x) ^ n" |
|
52881 | 211 |
by (induct n) (auto simp add: poly_cmult poly_mult) |
33153 | 212 |
|
60536 | 213 |
|
214 |
text \<open>More Polynomial Evaluation lemmas.\<close> |
|
33153 | 215 |
|
54219 | 216 |
lemma (in semiring_0) poly_add_rzero[simp]: "poly (a +++ []) x = poly a x" |
52778 | 217 |
by simp |
33153 | 218 |
|
54219 | 219 |
lemma (in comm_semiring_0) poly_mult_assoc: "poly ((a *** b) *** c) x = poly (a *** (b *** c)) x" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55417
diff
changeset
|
220 |
by (simp add: poly_mult mult.assoc) |
33153 | 221 |
|
54219 | 222 |
lemma (in semiring_0) poly_mult_Nil2[simp]: "poly (p *** []) x = 0" |
52881 | 223 |
by (induct p) auto |
33153 | 224 |
|
60536 | 225 |
lemma (in comm_semiring_1) poly_exp_add: "poly (p %^ (n + d)) x = poly (p %^ n *** p %^ d) x" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55417
diff
changeset
|
226 |
by (induct n) (auto simp add: poly_mult mult.assoc) |
33153 | 227 |
|
60536 | 228 |
|
229 |
subsection \<open>Key Property: if @{term "f a = 0"} then @{term "(x - a)"} divides @{term "p(x)"}.\<close> |
|
33153 | 230 |
|
60698 | 231 |
lemma (in comm_ring_1) lemma_poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q" |
232 |
proof (induct t arbitrary: h) |
|
54219 | 233 |
case Nil |
60698 | 234 |
have "[h] = [h] +++ [- a, 1] *** []" by simp |
60536 | 235 |
then show ?case by blast |
54219 | 236 |
next |
237 |
case (Cons x xs) |
|
60698 | 238 |
have "\<exists>q r. h # x # xs = [r] +++ [-a, 1] *** q" |
60536 | 239 |
proof - |
60698 | 240 |
from Cons obtain q r where qr: "x # xs = [r] +++ [- a, 1] *** q" |
60536 | 241 |
by blast |
242 |
have "h # x # xs = [a * r + h] +++ [-a, 1] *** (r # q)" |
|
54219 | 243 |
using qr by (cases q) (simp_all add: algebra_simps) |
60536 | 244 |
then show ?thesis by blast |
245 |
qed |
|
246 |
then show ?case by blast |
|
54219 | 247 |
qed |
248 |
||
249 |
lemma (in comm_ring_1) poly_linear_rem: "\<exists>q r. h#t = [r] +++ [-a, 1] *** q" |
|
250 |
using lemma_poly_linear_rem [where t = t and a = a] by auto |
|
251 |
||
60698 | 252 |
lemma (in comm_ring_1) poly_linear_divides: "poly p a = 0 \<longleftrightarrow> p = [] \<or> (\<exists>q. p = [-a, 1] *** q)" |
60536 | 253 |
proof (cases p) |
254 |
case Nil |
|
255 |
then show ?thesis by simp |
|
256 |
next |
|
257 |
case (Cons x xs) |
|
258 |
have "poly p a = 0" if "p = [-a, 1] *** q" for q |
|
259 |
using that by (simp add: poly_add poly_cmult) |
|
54219 | 260 |
moreover |
60536 | 261 |
have "\<exists>q. p = [- a, 1] *** q" if p0: "poly p a = 0" |
262 |
proof - |
|
263 |
from poly_linear_rem[of x xs a] obtain q r where qr: "x#xs = [r] +++ [- a, 1] *** q" |
|
264 |
by blast |
|
265 |
have "r = 0" |
|
266 |
using p0 by (simp only: Cons qr poly_mult poly_add) simp |
|
267 |
with Cons qr show ?thesis |
|
268 |
apply - |
|
269 |
apply (rule exI[where x = q]) |
|
270 |
apply auto |
|
271 |
apply (cases q) |
|
272 |
apply auto |
|
273 |
done |
|
274 |
qed |
|
275 |
ultimately show ?thesis using Cons by blast |
|
54219 | 276 |
qed |
33153 | 277 |
|
60536 | 278 |
lemma (in semiring_0) lemma_poly_length_mult[simp]: |
60698 | 279 |
"length (k %* p +++ (h # (a %* p))) = Suc (length p)" |
280 |
by (induct p arbitrary: h k a) auto |
|
33153 | 281 |
|
60536 | 282 |
lemma (in semiring_0) lemma_poly_length_mult2[simp]: |
60698 | 283 |
"length (k %* p +++ (h # p)) = Suc (length p)" |
284 |
by (induct p arbitrary: h k) auto |
|
33153 | 285 |
|
54219 | 286 |
lemma (in ring_1) poly_length_mult[simp]: "length([-a,1] *** q) = Suc (length q)" |
52778 | 287 |
by auto |
33153 | 288 |
|
60536 | 289 |
|
290 |
subsection \<open>Polynomial length\<close> |
|
33153 | 291 |
|
54219 | 292 |
lemma (in semiring_0) poly_cmult_length[simp]: "length (a %* p) = length p" |
52778 | 293 |
by (induct p) auto |
33153 | 294 |
|
54219 | 295 |
lemma (in semiring_0) poly_add_length: "length (p1 +++ p2) = max (length p1) (length p2)" |
60698 | 296 |
by (induct p1 arbitrary: p2) auto |
33153 | 297 |
|
60698 | 298 |
lemma (in semiring_0) poly_root_mult_length[simp]: "length ([a, b] *** p) = Suc (length p)" |
54219 | 299 |
by (simp add: poly_add_length) |
33153 | 300 |
|
54219 | 301 |
lemma (in idom) poly_mult_not_eq_poly_Nil[simp]: |
302 |
"poly (p *** q) x \<noteq> poly [] x \<longleftrightarrow> poly p x \<noteq> poly [] x \<and> poly q x \<noteq> poly [] x" |
|
52778 | 303 |
by (auto simp add: poly_mult) |
33153 | 304 |
|
54219 | 305 |
lemma (in idom) poly_mult_eq_zero_disj: "poly (p *** q) x = 0 \<longleftrightarrow> poly p x = 0 \<or> poly q x = 0" |
52778 | 306 |
by (auto simp add: poly_mult) |
33153 | 307 |
|
308 |
||
60536 | 309 |
text \<open>Normalisation Properties.\<close> |
310 |
||
311 |
lemma (in semiring_0) poly_normalized_nil: "pnormalize p = [] \<longrightarrow> poly p x = 0" |
|
52778 | 312 |
by (induct p) auto |
33153 | 313 |
|
60536 | 314 |
text \<open>A nontrivial polynomial of degree n has no more than n roots.\<close> |
54219 | 315 |
lemma (in idom) poly_roots_index_lemma: |
60698 | 316 |
assumes "poly p x \<noteq> poly [] x" |
317 |
and "length p = n" |
|
54219 | 318 |
shows "\<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" |
60698 | 319 |
using assms |
54219 | 320 |
proof (induct n arbitrary: p x) |
321 |
case 0 |
|
60536 | 322 |
then show ?case by simp |
54219 | 323 |
next |
60698 | 324 |
case (Suc n) |
60536 | 325 |
have False if C: "\<And>i. \<exists>x. poly p x = 0 \<and> (\<forall>m\<le>Suc n. x \<noteq> i m)" |
326 |
proof - |
|
327 |
from Suc.prems have p0: "poly p x \<noteq> 0" "p \<noteq> []" |
|
328 |
by auto |
|
54219 | 329 |
from p0(1)[unfolded poly_linear_divides[of p x]] |
60536 | 330 |
have "\<forall>q. p \<noteq> [- x, 1] *** q" |
331 |
by blast |
|
332 |
from C obtain a where a: "poly p a = 0" |
|
333 |
by blast |
|
334 |
from a[unfolded poly_linear_divides[of p a]] p0(2) obtain q where q: "p = [-a, 1] *** q" |
|
335 |
by blast |
|
336 |
have lg: "length q = n" |
|
337 |
using q Suc.prems(2) by simp |
|
54219 | 338 |
from q p0 have qx: "poly q x \<noteq> poly [] x" |
339 |
by (auto simp add: poly_mult poly_add poly_cmult) |
|
60698 | 340 |
from Suc.hyps[OF qx lg] obtain i where i: "\<And>x. poly q x = 0 \<longrightarrow> (\<exists>m\<le>n. x = i m)" |
60536 | 341 |
by blast |
54219 | 342 |
let ?i = "\<lambda>m. if m = Suc n then a else i m" |
343 |
from C[of ?i] obtain y where y: "poly p y = 0" "\<forall>m\<le> Suc n. y \<noteq> ?i m" |
|
344 |
by blast |
|
345 |
from y have "y = a \<or> poly q y = 0" |
|
346 |
by (simp only: q poly_mult_eq_zero_disj poly_add) (simp add: algebra_simps) |
|
60698 | 347 |
with i[of y] y(1) y(2) show ?thesis |
54219 | 348 |
apply auto |
349 |
apply (erule_tac x = "m" in allE) |
|
350 |
apply auto |
|
351 |
done |
|
60536 | 352 |
qed |
353 |
then show ?case by blast |
|
54219 | 354 |
qed |
33153 | 355 |
|
356 |
||
54219 | 357 |
lemma (in idom) poly_roots_index_length: |
60698 | 358 |
"poly p x \<noteq> poly [] x \<Longrightarrow> \<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>n. n \<le> length p \<and> x = i n)" |
54219 | 359 |
by (blast intro: poly_roots_index_lemma) |
33153 | 360 |
|
54219 | 361 |
lemma (in idom) poly_roots_finite_lemma1: |
60698 | 362 |
"poly p x \<noteq> poly [] x \<Longrightarrow> \<exists>N i. \<forall>x. poly p x = 0 \<longrightarrow> (\<exists>n::nat. n < N \<and> x = i n)" |
363 |
apply (drule poly_roots_index_length) |
|
364 |
apply safe |
|
52778 | 365 |
apply (rule_tac x = "Suc (length p)" in exI) |
366 |
apply (rule_tac x = i in exI) |
|
367 |
apply (simp add: less_Suc_eq_le) |
|
368 |
done |
|
33153 | 369 |
|
54219 | 370 |
lemma (in idom) idom_finite_lemma: |
60536 | 371 |
assumes "\<forall>x. P x \<longrightarrow> (\<exists>n. n < length j \<and> x = j!n)" |
54219 | 372 |
shows "finite {x. P x}" |
52778 | 373 |
proof - |
60698 | 374 |
from assms have "{x. P x} \<subseteq> set j" |
375 |
by auto |
|
376 |
then show ?thesis |
|
377 |
using finite_subset by auto |
|
33153 | 378 |
qed |
379 |
||
54219 | 380 |
lemma (in idom) poly_roots_finite_lemma2: |
381 |
"poly p x \<noteq> poly [] x \<Longrightarrow> \<exists>i. \<forall>x. poly p x = 0 \<longrightarrow> x \<in> set i" |
|
60536 | 382 |
apply (drule poly_roots_index_length) |
383 |
apply safe |
|
384 |
apply (rule_tac x = "map (\<lambda>n. i n) [0 ..< Suc (length p)]" in exI) |
|
54219 | 385 |
apply (auto simp add: image_iff) |
60536 | 386 |
apply (erule_tac x="x" in allE) |
387 |
apply clarsimp |
|
54219 | 388 |
apply (case_tac "n = length p") |
389 |
apply (auto simp add: order_le_less) |
|
52778 | 390 |
done |
33153 | 391 |
|
60536 | 392 |
lemma (in ring_char_0) UNIV_ring_char_0_infinte: "\<not> finite (UNIV :: 'a set)" |
54219 | 393 |
proof |
394 |
assume F: "finite (UNIV :: 'a set)" |
|
395 |
have "finite (UNIV :: nat set)" |
|
396 |
proof (rule finite_imageD) |
|
60698 | 397 |
have "of_nat ` UNIV \<subseteq> UNIV" |
398 |
by simp |
|
60536 | 399 |
then show "finite (of_nat ` UNIV :: 'a set)" |
400 |
using F by (rule finite_subset) |
|
401 |
show "inj (of_nat :: nat \<Rightarrow> 'a)" |
|
402 |
by (simp add: inj_on_def) |
|
54219 | 403 |
qed |
404 |
with infinite_UNIV_nat show False .. |
|
33153 | 405 |
qed |
406 |
||
54219 | 407 |
lemma (in idom_char_0) poly_roots_finite: "poly p \<noteq> poly [] \<longleftrightarrow> finite {x. poly p x = 0}" |
60536 | 408 |
(is "?lhs \<longleftrightarrow> ?rhs") |
33153 | 409 |
proof |
60536 | 410 |
show ?rhs if ?lhs |
411 |
using that |
|
33153 | 412 |
apply - |
60536 | 413 |
apply (erule contrapos_np) |
414 |
apply (rule ext) |
|
33153 | 415 |
apply (rule ccontr) |
54219 | 416 |
apply (clarify dest!: poly_roots_finite_lemma2) |
33153 | 417 |
using finite_subset |
52778 | 418 |
proof - |
33153 | 419 |
fix x i |
60536 | 420 |
assume F: "\<not> finite {x. poly p x = 0}" |
421 |
and P: "\<forall>x. poly p x = 0 \<longrightarrow> x \<in> set i" |
|
422 |
from P have "{x. poly p x = 0} \<subseteq> set i" |
|
423 |
by auto |
|
424 |
with finite_subset F show False |
|
425 |
by auto |
|
33153 | 426 |
qed |
60536 | 427 |
show ?lhs if ?rhs |
428 |
using UNIV_ring_char_0_infinte that by auto |
|
33153 | 429 |
qed |
430 |
||
60536 | 431 |
|
432 |
text \<open>Entirety and Cancellation for polynomials\<close> |
|
33153 | 433 |
|
54219 | 434 |
lemma (in idom_char_0) poly_entire_lemma2: |
435 |
assumes p0: "poly p \<noteq> poly []" |
|
436 |
and q0: "poly q \<noteq> poly []" |
|
437 |
shows "poly (p***q) \<noteq> poly []" |
|
438 |
proof - |
|
439 |
let ?S = "\<lambda>p. {x. poly p x = 0}" |
|
60536 | 440 |
have "?S (p *** q) = ?S p \<union> ?S q" |
441 |
by (auto simp add: poly_mult) |
|
442 |
with p0 q0 show ?thesis |
|
443 |
unfolding poly_roots_finite by auto |
|
54219 | 444 |
qed |
33153 | 445 |
|
54219 | 446 |
lemma (in idom_char_0) poly_entire: |
447 |
"poly (p *** q) = poly [] \<longleftrightarrow> poly p = poly [] \<or> poly q = poly []" |
|
448 |
using poly_entire_lemma2[of p q] |
|
449 |
by (auto simp add: fun_eq_iff poly_mult) |
|
33153 | 450 |
|
54219 | 451 |
lemma (in idom_char_0) poly_entire_neg: |
452 |
"poly (p *** q) \<noteq> poly [] \<longleftrightarrow> poly p \<noteq> poly [] \<and> poly q \<noteq> poly []" |
|
52778 | 453 |
by (simp add: poly_entire) |
33153 | 454 |
|
54219 | 455 |
lemma (in comm_ring_1) poly_add_minus_zero_iff: |
456 |
"poly (p +++ -- q) = poly [] \<longleftrightarrow> poly p = poly q" |
|
60536 | 457 |
by (auto simp add: algebra_simps poly_add poly_minus_def fun_eq_iff poly_cmult) |
33153 | 458 |
|
54219 | 459 |
lemma (in comm_ring_1) poly_add_minus_mult_eq: |
460 |
"poly (p *** q +++ --(p *** r)) = poly (p *** (q +++ -- r))" |
|
60536 | 461 |
by (auto simp add: poly_add poly_minus_def fun_eq_iff poly_mult poly_cmult algebra_simps) |
33153 | 462 |
|
54219 | 463 |
subclass (in idom_char_0) comm_ring_1 .. |
33153 | 464 |
|
54219 | 465 |
lemma (in idom_char_0) poly_mult_left_cancel: |
466 |
"poly (p *** q) = poly (p *** r) \<longleftrightarrow> poly p = poly [] \<or> poly q = poly r" |
|
467 |
proof - |
|
468 |
have "poly (p *** q) = poly (p *** r) \<longleftrightarrow> poly (p *** q +++ -- (p *** r)) = poly []" |
|
469 |
by (simp only: poly_add_minus_zero_iff) |
|
470 |
also have "\<dots> \<longleftrightarrow> poly p = poly [] \<or> poly q = poly r" |
|
471 |
by (auto intro: simp add: poly_add_minus_mult_eq poly_entire poly_add_minus_zero_iff) |
|
472 |
finally show ?thesis . |
|
473 |
qed |
|
474 |
||
60536 | 475 |
lemma (in idom) poly_exp_eq_zero[simp]: "poly (p %^ n) = poly [] \<longleftrightarrow> poly p = poly [] \<and> n \<noteq> 0" |
476 |
apply (simp only: fun_eq_iff add: HOL.all_simps [symmetric]) |
|
52778 | 477 |
apply (rule arg_cong [where f = All]) |
478 |
apply (rule ext) |
|
54219 | 479 |
apply (induct n) |
480 |
apply (auto simp add: poly_exp poly_mult) |
|
52778 | 481 |
done |
33153 | 482 |
|
60536 | 483 |
lemma (in comm_ring_1) poly_prime_eq_zero[simp]: "poly [a, 1] \<noteq> poly []" |
484 |
apply (simp add: fun_eq_iff) |
|
54219 | 485 |
apply (rule_tac x = "minus one a" in exI) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
55417
diff
changeset
|
486 |
apply (simp add: add.commute [of a]) |
52778 | 487 |
done |
33153 | 488 |
|
54219 | 489 |
lemma (in idom) poly_exp_prime_eq_zero: "poly ([a, 1] %^ n) \<noteq> poly []" |
52778 | 490 |
by auto |
33153 | 491 |
|
60536 | 492 |
|
493 |
text \<open>A more constructive notion of polynomials being trivial.\<close> |
|
33153 | 494 |
|
54219 | 495 |
lemma (in idom_char_0) poly_zero_lemma': "poly (h # t) = poly [] \<Longrightarrow> h = 0 \<and> poly t = poly []" |
60536 | 496 |
apply (simp add: fun_eq_iff) |
54219 | 497 |
apply (case_tac "h = zero") |
60536 | 498 |
apply (drule_tac [2] x = zero in spec) |
499 |
apply auto |
|
500 |
apply (cases "poly t = poly []") |
|
501 |
apply simp |
|
52778 | 502 |
proof - |
33153 | 503 |
fix x |
60536 | 504 |
assume H: "\<forall>x. x = 0 \<or> poly t x = 0" |
505 |
assume pnz: "poly t \<noteq> poly []" |
|
33153 | 506 |
let ?S = "{x. poly t x = 0}" |
60536 | 507 |
from H have "\<forall>x. x \<noteq> 0 \<longrightarrow> poly t x = 0" |
508 |
by blast |
|
509 |
then have th: "?S \<supseteq> UNIV - {0}" |
|
510 |
by auto |
|
511 |
from poly_roots_finite pnz have th': "finite ?S" |
|
512 |
by blast |
|
513 |
from finite_subset[OF th th'] UNIV_ring_char_0_infinte show "poly t x = 0" |
|
54219 | 514 |
by simp |
52778 | 515 |
qed |
33153 | 516 |
|
60537 | 517 |
lemma (in idom_char_0) poly_zero: "poly p = poly [] \<longleftrightarrow> (\<forall>c \<in> set p. c = 0)" |
60698 | 518 |
proof (induct p) |
519 |
case Nil |
|
520 |
then show ?case by simp |
|
521 |
next |
|
522 |
case Cons |
|
523 |
show ?case |
|
524 |
apply (rule iffI) |
|
525 |
apply (drule poly_zero_lemma') |
|
526 |
using Cons |
|
527 |
apply auto |
|
528 |
done |
|
529 |
qed |
|
33153 | 530 |
|
60537 | 531 |
lemma (in idom_char_0) poly_0: "\<forall>c \<in> set p. c = 0 \<Longrightarrow> poly p x = 0" |
54219 | 532 |
unfolding poly_zero[symmetric] by simp |
533 |
||
534 |
||
60536 | 535 |
text \<open>Basics of divisibility.\<close> |
33153 | 536 |
|
60536 | 537 |
lemma (in idom) poly_primes: "[a, 1] divides (p *** q) \<longleftrightarrow> [a, 1] divides p \<or> [a, 1] divides q" |
538 |
apply (auto simp add: divides_def fun_eq_iff poly_mult poly_add poly_cmult distrib_right [symmetric]) |
|
54219 | 539 |
apply (drule_tac x = "uminus a" in spec) |
540 |
apply (simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) |
|
541 |
apply (cases "p = []") |
|
542 |
apply (rule exI[where x="[]"]) |
|
543 |
apply simp |
|
544 |
apply (cases "q = []") |
|
60536 | 545 |
apply (erule allE[where x="[]"]) |
546 |
apply simp |
|
54219 | 547 |
|
548 |
apply clarsimp |
|
60536 | 549 |
apply (cases "\<exists>q. p = a %* q +++ (0 # q)") |
54219 | 550 |
apply (clarsimp simp add: poly_add poly_cmult) |
60536 | 551 |
apply (rule_tac x = qa in exI) |
54219 | 552 |
apply (simp add: distrib_right [symmetric]) |
553 |
apply clarsimp |
|
554 |
||
52778 | 555 |
apply (auto simp add: poly_linear_divides poly_add poly_cmult distrib_right [symmetric]) |
54219 | 556 |
apply (rule_tac x = "pmult qa q" in exI) |
557 |
apply (rule_tac [2] x = "pmult p qa" in exI) |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
558 |
apply (auto simp add: poly_add poly_mult poly_cmult ac_simps) |
52778 | 559 |
done |
33153 | 560 |
|
54219 | 561 |
lemma (in comm_semiring_1) poly_divides_refl[simp]: "p divides p" |
52778 | 562 |
apply (simp add: divides_def) |
54219 | 563 |
apply (rule_tac x = "[one]" in exI) |
60536 | 564 |
apply (auto simp add: poly_mult fun_eq_iff) |
52778 | 565 |
done |
33153 | 566 |
|
54219 | 567 |
lemma (in comm_semiring_1) poly_divides_trans: "p divides q \<Longrightarrow> q divides r \<Longrightarrow> p divides r" |
60536 | 568 |
apply (simp add: divides_def) |
569 |
apply safe |
|
54219 | 570 |
apply (rule_tac x = "pmult qa qaa" in exI) |
60536 | 571 |
apply (auto simp add: poly_mult fun_eq_iff mult.assoc) |
52778 | 572 |
done |
33153 | 573 |
|
54219 | 574 |
lemma (in comm_semiring_1) poly_divides_exp: "m \<le> n \<Longrightarrow> (p %^ m) divides (p %^ n)" |
62378
85ed00c1fe7c
generalize more theorems to support enat and ennreal
hoelzl
parents:
61945
diff
changeset
|
575 |
by (auto simp: le_iff_add divides_def poly_exp_add fun_eq_iff) |
33153 | 576 |
|
60536 | 577 |
lemma (in comm_semiring_1) poly_exp_divides: "(p %^ n) divides q \<Longrightarrow> m \<le> n \<Longrightarrow> (p %^ m) divides q" |
52778 | 578 |
by (blast intro: poly_divides_exp poly_divides_trans) |
33153 | 579 |
|
60536 | 580 |
lemma (in comm_semiring_0) poly_divides_add: "p divides q \<Longrightarrow> p divides r \<Longrightarrow> p divides (q +++ r)" |
581 |
apply (auto simp add: divides_def) |
|
54219 | 582 |
apply (rule_tac x = "padd qa qaa" in exI) |
60536 | 583 |
apply (auto simp add: poly_add fun_eq_iff poly_mult distrib_left) |
52778 | 584 |
done |
33153 | 585 |
|
60536 | 586 |
lemma (in comm_ring_1) poly_divides_diff: "p divides q \<Longrightarrow> p divides (q +++ r) \<Longrightarrow> p divides r" |
587 |
apply (auto simp add: divides_def) |
|
54219 | 588 |
apply (rule_tac x = "padd qaa (poly_minus qa)" in exI) |
60536 | 589 |
apply (auto simp add: poly_add fun_eq_iff poly_mult poly_minus algebra_simps) |
52778 | 590 |
done |
33153 | 591 |
|
60536 | 592 |
lemma (in comm_ring_1) poly_divides_diff2: "p divides r \<Longrightarrow> p divides (q +++ r) \<Longrightarrow> p divides q" |
52778 | 593 |
apply (erule poly_divides_diff) |
60536 | 594 |
apply (auto simp add: poly_add fun_eq_iff poly_mult divides_def ac_simps) |
52778 | 595 |
done |
33153 | 596 |
|
54219 | 597 |
lemma (in semiring_0) poly_divides_zero: "poly p = poly [] \<Longrightarrow> q divides p" |
52778 | 598 |
apply (simp add: divides_def) |
60536 | 599 |
apply (rule exI[where x = "[]"]) |
600 |
apply (auto simp add: fun_eq_iff poly_mult) |
|
52778 | 601 |
done |
33153 | 602 |
|
54219 | 603 |
lemma (in semiring_0) poly_divides_zero2 [simp]: "q divides []" |
52778 | 604 |
apply (simp add: divides_def) |
605 |
apply (rule_tac x = "[]" in exI) |
|
60536 | 606 |
apply (auto simp add: fun_eq_iff) |
52778 | 607 |
done |
33153 | 608 |
|
60536 | 609 |
|
610 |
text \<open>At last, we can consider the order of a root.\<close> |
|
33153 | 611 |
|
54219 | 612 |
lemma (in idom_char_0) poly_order_exists_lemma: |
60698 | 613 |
assumes "length p = d" |
614 |
and "poly p \<noteq> poly []" |
|
54219 | 615 |
shows "\<exists>n q. p = mulexp n [-a, 1] q \<and> poly q a \<noteq> 0" |
60698 | 616 |
using assms |
54219 | 617 |
proof (induct d arbitrary: p) |
618 |
case 0 |
|
60536 | 619 |
then show ?case by simp |
54219 | 620 |
next |
621 |
case (Suc n p) |
|
622 |
show ?case |
|
623 |
proof (cases "poly p a = 0") |
|
624 |
case True |
|
60536 | 625 |
from Suc.prems have h: "length p = Suc n" "poly p \<noteq> poly []" |
626 |
by auto |
|
627 |
then have pN: "p \<noteq> []" |
|
628 |
by auto |
|
54219 | 629 |
from True[unfolded poly_linear_divides] pN obtain q where q: "p = [-a, 1] *** q" |
630 |
by blast |
|
631 |
from q h True have qh: "length q = n" "poly q \<noteq> poly []" |
|
60698 | 632 |
apply simp_all |
60536 | 633 |
apply (simp only: fun_eq_iff) |
54219 | 634 |
apply (rule ccontr) |
60536 | 635 |
apply (simp add: fun_eq_iff poly_add poly_cmult) |
54219 | 636 |
done |
637 |
from Suc.hyps[OF qh] obtain m r where mr: "q = mulexp m [-a,1] r" "poly r a \<noteq> 0" |
|
638 |
by blast |
|
60698 | 639 |
from mr q have "p = mulexp (Suc m) [-a,1] r \<and> poly r a \<noteq> 0" |
640 |
by simp |
|
54219 | 641 |
then show ?thesis by blast |
642 |
next |
|
643 |
case False |
|
644 |
then show ?thesis |
|
645 |
using Suc.prems |
|
646 |
apply simp |
|
647 |
apply (rule exI[where x="0::nat"]) |
|
648 |
apply simp |
|
649 |
done |
|
650 |
qed |
|
651 |
qed |
|
652 |
||
653 |
||
654 |
lemma (in comm_semiring_1) poly_mulexp: "poly (mulexp n p q) x = (poly p x) ^ n * poly q x" |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
655 |
by (induct n) (auto simp add: poly_mult ac_simps) |
54219 | 656 |
|
657 |
lemma (in comm_semiring_1) divides_left_mult: |
|
60536 | 658 |
assumes "(p *** q) divides r" |
659 |
shows "p divides r \<and> q divides r" |
|
54219 | 660 |
proof- |
60536 | 661 |
from assms obtain t where "poly r = poly (p *** q *** t)" |
54219 | 662 |
unfolding divides_def by blast |
60536 | 663 |
then have "poly r = poly (p *** (q *** t))" and "poly r = poly (q *** (p *** t))" |
664 |
by (auto simp add: fun_eq_iff poly_mult ac_simps) |
|
665 |
then show ?thesis |
|
666 |
unfolding divides_def by blast |
|
54219 | 667 |
qed |
668 |
||
33153 | 669 |
|
670 |
(* FIXME: Tidy up *) |
|
54219 | 671 |
|
672 |
lemma (in semiring_1) zero_power_iff: "0 ^ n = (if n = 0 then 1 else 0)" |
|
673 |
by (induct n) simp_all |
|
33153 | 674 |
|
54219 | 675 |
lemma (in idom_char_0) poly_order_exists: |
60536 | 676 |
assumes "length p = d" |
677 |
and "poly p \<noteq> poly []" |
|
54219 | 678 |
shows "\<exists>n. [- a, 1] %^ n divides p \<and> \<not> [- a, 1] %^ Suc n divides p" |
679 |
proof - |
|
680 |
from assms have "\<exists>n q. p = mulexp n [- a, 1] q \<and> poly q a \<noteq> 0" |
|
681 |
by (rule poly_order_exists_lemma) |
|
60536 | 682 |
then obtain n q where p: "p = mulexp n [- a, 1] q" and "poly q a \<noteq> 0" |
683 |
by blast |
|
54219 | 684 |
have "[- a, 1] %^ n divides mulexp n [- a, 1] q" |
685 |
proof (rule dividesI) |
|
686 |
show "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ n *** q)" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
54219
diff
changeset
|
687 |
by (induct n) (simp_all add: poly_add poly_cmult poly_mult algebra_simps) |
54219 | 688 |
qed |
689 |
moreover have "\<not> [- a, 1] %^ Suc n divides mulexp n [- a, 1] q" |
|
690 |
proof |
|
691 |
assume "[- a, 1] %^ Suc n divides mulexp n [- a, 1] q" |
|
692 |
then obtain m where "poly (mulexp n [- a, 1] q) = poly ([- a, 1] %^ Suc n *** m)" |
|
693 |
by (rule dividesE) |
|
694 |
moreover have "poly (mulexp n [- a, 1] q) \<noteq> poly ([- a, 1] %^ Suc n *** m)" |
|
695 |
proof (induct n) |
|
60536 | 696 |
case 0 |
697 |
show ?case |
|
54219 | 698 |
proof (rule ccontr) |
60698 | 699 |
assume "\<not> ?thesis" |
54219 | 700 |
then have "poly q a = 0" |
701 |
by (simp add: poly_add poly_cmult) |
|
60536 | 702 |
with \<open>poly q a \<noteq> 0\<close> show False |
703 |
by simp |
|
54219 | 704 |
qed |
705 |
next |
|
60536 | 706 |
case (Suc n) |
707 |
show ?case |
|
60698 | 708 |
by (rule pexp_Suc [THEN ssubst]) |
54219 | 709 |
(simp add: poly_mult_left_cancel poly_mult_assoc Suc del: pmult_Cons pexp_Suc) |
710 |
qed |
|
711 |
ultimately show False by simp |
|
712 |
qed |
|
60536 | 713 |
ultimately show ?thesis |
714 |
by (auto simp add: p) |
|
54219 | 715 |
qed |
33153 | 716 |
|
54219 | 717 |
lemma (in semiring_1) poly_one_divides[simp]: "[1] divides p" |
718 |
by (auto simp add: divides_def) |
|
719 |
||
720 |
lemma (in idom_char_0) poly_order: |
|
721 |
"poly p \<noteq> poly [] \<Longrightarrow> \<exists>!n. ([-a, 1] %^ n) divides p \<and> \<not> (([-a, 1] %^ Suc n) divides p)" |
|
52778 | 722 |
apply (auto intro: poly_order_exists simp add: less_linear simp del: pmult_Cons pexp_Suc) |
723 |
apply (cut_tac x = y and y = n in less_linear) |
|
724 |
apply (drule_tac m = n in poly_exp_divides) |
|
725 |
apply (auto dest: Suc_le_eq [THEN iffD2, THEN [2] poly_exp_divides] |
|
60536 | 726 |
simp del: pmult_Cons pexp_Suc) |
52778 | 727 |
done |
33153 | 728 |
|
60536 | 729 |
|
730 |
text \<open>Order\<close> |
|
33153 | 731 |
|
54219 | 732 |
lemma some1_equalityD: "n = (SOME n. P n) \<Longrightarrow> \<exists>!n. P n \<Longrightarrow> P n" |
52778 | 733 |
by (blast intro: someI2) |
33153 | 734 |
|
54219 | 735 |
lemma (in idom_char_0) order: |
60536 | 736 |
"([-a, 1] %^ n) divides p \<and> \<not> (([-a, 1] %^ Suc n) divides p) \<longleftrightarrow> |
737 |
n = order a p \<and> poly p \<noteq> poly []" |
|
738 |
unfolding order_def |
|
52778 | 739 |
apply (rule iffI) |
740 |
apply (blast dest: poly_divides_zero intro!: some1_equality [symmetric] poly_order) |
|
741 |
apply (blast intro!: poly_order [THEN [2] some1_equalityD]) |
|
742 |
done |
|
33153 | 743 |
|
54219 | 744 |
lemma (in idom_char_0) order2: |
745 |
"poly p \<noteq> poly [] \<Longrightarrow> |
|
60536 | 746 |
([-a, 1] %^ (order a p)) divides p \<and> \<not> ([-a, 1] %^ Suc (order a p)) divides p" |
52778 | 747 |
by (simp add: order del: pexp_Suc) |
33153 | 748 |
|
54219 | 749 |
lemma (in idom_char_0) order_unique: |
60536 | 750 |
"poly p \<noteq> poly [] \<Longrightarrow> ([-a, 1] %^ n) divides p \<Longrightarrow> \<not> ([-a, 1] %^ (Suc n)) divides p \<Longrightarrow> |
54219 | 751 |
n = order a p" |
52778 | 752 |
using order [of a n p] by auto |
33153 | 753 |
|
54219 | 754 |
lemma (in idom_char_0) order_unique_lemma: |
60536 | 755 |
"poly p \<noteq> poly [] \<and> ([-a, 1] %^ n) divides p \<and> \<not> ([-a, 1] %^ (Suc n)) divides p \<Longrightarrow> |
52881 | 756 |
n = order a p" |
52778 | 757 |
by (blast intro: order_unique) |
33153 | 758 |
|
54219 | 759 |
lemma (in ring_1) order_poly: "poly p = poly q \<Longrightarrow> order a p = order a q" |
60536 | 760 |
by (auto simp add: fun_eq_iff divides_def poly_mult order_def) |
33153 | 761 |
|
54219 | 762 |
lemma (in semiring_1) pexp_one[simp]: "p %^ (Suc 0) = p" |
60536 | 763 |
by (induct p) auto |
54219 | 764 |
|
765 |
lemma (in comm_ring_1) lemma_order_root: |
|
60536 | 766 |
"0 < n \<and> [- a, 1] %^ n divides p \<and> \<not> [- a, 1] %^ (Suc n) divides p \<Longrightarrow> poly p a = 0" |
54219 | 767 |
by (induct n arbitrary: a p) (auto simp add: divides_def poly_mult simp del: pmult_Cons) |
33153 | 768 |
|
60536 | 769 |
lemma (in idom_char_0) order_root: "poly p a = 0 \<longleftrightarrow> poly p = poly [] \<or> order a p \<noteq> 0" |
54219 | 770 |
apply (cases "poly p = poly []") |
771 |
apply auto |
|
60536 | 772 |
apply (simp add: poly_linear_divides del: pmult_Cons) |
773 |
apply safe |
|
54219 | 774 |
apply (drule_tac [!] a = a in order2) |
775 |
apply (rule ccontr) |
|
60536 | 776 |
apply (simp add: divides_def poly_mult fun_eq_iff del: pmult_Cons) |
777 |
apply blast |
|
778 |
using neq0_conv apply (blast intro: lemma_order_root) |
|
52778 | 779 |
done |
33153 | 780 |
|
54219 | 781 |
lemma (in idom_char_0) order_divides: |
782 |
"([-a, 1] %^ n) divides p \<longleftrightarrow> poly p = poly [] \<or> n \<le> order a p" |
|
52881 | 783 |
apply (cases "poly p = poly []") |
784 |
apply auto |
|
60536 | 785 |
apply (simp add: divides_def fun_eq_iff poly_mult) |
52778 | 786 |
apply (rule_tac x = "[]" in exI) |
54219 | 787 |
apply (auto dest!: order2 [where a=a] intro: poly_exp_divides simp del: pexp_Suc) |
52778 | 788 |
done |
33153 | 789 |
|
54219 | 790 |
lemma (in idom_char_0) order_decomp: |
60536 | 791 |
"poly p \<noteq> poly [] \<Longrightarrow> \<exists>q. poly p = poly (([-a, 1] %^ order a p) *** q) \<and> \<not> [-a, 1] divides q" |
792 |
unfolding divides_def |
|
52778 | 793 |
apply (drule order2 [where a = a]) |
60536 | 794 |
apply (simp add: divides_def del: pexp_Suc pmult_Cons) |
795 |
apply safe |
|
796 |
apply (rule_tac x = q in exI) |
|
797 |
apply safe |
|
52778 | 798 |
apply (drule_tac x = qa in spec) |
60536 | 799 |
apply (auto simp add: poly_mult fun_eq_iff poly_exp ac_simps simp del: pmult_Cons) |
52778 | 800 |
done |
33153 | 801 |
|
60536 | 802 |
text \<open>Important composition properties of orders.\<close> |
54219 | 803 |
lemma order_mult: |
60536 | 804 |
fixes a :: "'a::idom_char_0" |
805 |
shows "poly (p *** q) \<noteq> poly [] \<Longrightarrow> order a (p *** q) = order a p + order a q" |
|
54219 | 806 |
apply (cut_tac a = a and p = "p *** q" and n = "order a p + order a q" in order) |
52778 | 807 |
apply (auto simp add: poly_entire simp del: pmult_Cons) |
808 |
apply (drule_tac a = a in order2)+ |
|
809 |
apply safe |
|
60536 | 810 |
apply (simp add: divides_def fun_eq_iff poly_exp_add poly_mult del: pmult_Cons, safe) |
52778 | 811 |
apply (rule_tac x = "qa *** qaa" in exI) |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
812 |
apply (simp add: poly_mult ac_simps del: pmult_Cons) |
52778 | 813 |
apply (drule_tac a = a in order_decomp)+ |
814 |
apply safe |
|
60536 | 815 |
apply (subgoal_tac "[-a, 1] divides (qa *** qaa) ") |
52778 | 816 |
apply (simp add: poly_primes del: pmult_Cons) |
817 |
apply (auto simp add: divides_def simp del: pmult_Cons) |
|
818 |
apply (rule_tac x = qb in exI) |
|
60536 | 819 |
apply (subgoal_tac "poly ([-a, 1] %^ (order a p) *** (qa *** qaa)) = |
820 |
poly ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))") |
|
821 |
apply (drule poly_mult_left_cancel [THEN iffD1]) |
|
822 |
apply force |
|
823 |
apply (subgoal_tac "poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** (qa *** qaa))) = |
|
824 |
poly ([-a, 1] %^ (order a q) *** ([-a, 1] %^ (order a p) *** ([-a, 1] *** qb))) ") |
|
825 |
apply (drule poly_mult_left_cancel [THEN iffD1]) |
|
826 |
apply force |
|
827 |
apply (simp add: fun_eq_iff poly_exp_add poly_mult ac_simps del: pmult_Cons) |
|
52778 | 828 |
done |
33153 | 829 |
|
54219 | 830 |
lemma (in idom_char_0) order_mult: |
831 |
assumes "poly (p *** q) \<noteq> poly []" |
|
832 |
shows "order a (p *** q) = order a p + order a q" |
|
833 |
using assms |
|
834 |
apply (cut_tac a = a and p = "pmult p q" and n = "order a p + order a q" in order) |
|
835 |
apply (auto simp add: poly_entire simp del: pmult_Cons) |
|
836 |
apply (drule_tac a = a in order2)+ |
|
837 |
apply safe |
|
60536 | 838 |
apply (simp add: divides_def fun_eq_iff poly_exp_add poly_mult del: pmult_Cons) |
839 |
apply safe |
|
54219 | 840 |
apply (rule_tac x = "pmult qa qaa" in exI) |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
841 |
apply (simp add: poly_mult ac_simps del: pmult_Cons) |
54219 | 842 |
apply (drule_tac a = a in order_decomp)+ |
843 |
apply safe |
|
844 |
apply (subgoal_tac "[uminus a, one] divides pmult qa qaa") |
|
845 |
apply (simp add: poly_primes del: pmult_Cons) |
|
846 |
apply (auto simp add: divides_def simp del: pmult_Cons) |
|
847 |
apply (rule_tac x = qb in exI) |
|
848 |
apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa)) = |
|
59807 | 849 |
poly (pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb))") |
54219 | 850 |
apply (drule poly_mult_left_cancel [THEN iffD1], force) |
851 |
apply (subgoal_tac "poly (pmult (pexp [uminus a, one] (order a q)) |
|
852 |
(pmult (pexp [uminus a, one] (order a p)) (pmult qa qaa))) = |
|
853 |
poly (pmult (pexp [uminus a, one] (order a q)) |
|
854 |
(pmult (pexp [uminus a, one] (order a p)) (pmult [uminus a, one] qb)))") |
|
855 |
apply (drule poly_mult_left_cancel [THEN iffD1], force) |
|
60536 | 856 |
apply (simp add: fun_eq_iff poly_exp_add poly_mult ac_simps del: pmult_Cons) |
54219 | 857 |
done |
858 |
||
859 |
lemma (in idom_char_0) order_root2: "poly p \<noteq> poly [] \<Longrightarrow> poly p a = 0 \<longleftrightarrow> order a p \<noteq> 0" |
|
52881 | 860 |
by (rule order_root [THEN ssubst]) auto |
33153 | 861 |
|
60536 | 862 |
lemma (in semiring_1) pmult_one[simp]: "[1] *** p = p" |
863 |
by auto |
|
33153 | 864 |
|
54219 | 865 |
lemma (in semiring_0) poly_Nil_zero: "poly [] = poly [0]" |
60536 | 866 |
by (simp add: fun_eq_iff) |
33153 | 867 |
|
54219 | 868 |
lemma (in idom_char_0) rsquarefree_decomp: |
60536 | 869 |
"rsquarefree p \<Longrightarrow> poly p a = 0 \<Longrightarrow> \<exists>q. poly p = poly ([-a, 1] *** q) \<and> poly q a \<noteq> 0" |
870 |
apply (simp add: rsquarefree_def) |
|
871 |
apply safe |
|
52778 | 872 |
apply (frule_tac a = a in order_decomp) |
873 |
apply (drule_tac x = a in spec) |
|
874 |
apply (drule_tac a = a in order_root2 [symmetric]) |
|
875 |
apply (auto simp del: pmult_Cons) |
|
54219 | 876 |
apply (rule_tac x = q in exI, safe) |
60536 | 877 |
apply (simp add: poly_mult fun_eq_iff) |
52778 | 878 |
apply (drule_tac p1 = q in poly_linear_divides [THEN iffD1]) |
54219 | 879 |
apply (simp add: divides_def del: pmult_Cons, safe) |
52778 | 880 |
apply (drule_tac x = "[]" in spec) |
60536 | 881 |
apply (auto simp add: fun_eq_iff) |
52778 | 882 |
done |
33153 | 883 |
|
884 |
||
60536 | 885 |
text \<open>Normalization of a polynomial.\<close> |
33153 | 886 |
|
54219 | 887 |
lemma (in semiring_0) poly_normalize[simp]: "poly (pnormalize p) = poly p" |
60536 | 888 |
by (induct p) (auto simp add: fun_eq_iff) |
33153 | 889 |
|
60536 | 890 |
text \<open>The degree of a polynomial.\<close> |
33153 | 891 |
|
60537 | 892 |
lemma (in semiring_0) lemma_degree_zero: "(\<forall>c \<in> set p. c = 0) \<longleftrightarrow> pnormalize p = []" |
52778 | 893 |
by (induct p) auto |
33153 | 894 |
|
54219 | 895 |
lemma (in idom_char_0) degree_zero: |
896 |
assumes "poly p = poly []" |
|
897 |
shows "degree p = 0" |
|
898 |
using assms |
|
899 |
by (cases "pnormalize p = []") (auto simp add: degree_def poly_zero lemma_degree_zero) |
|
33153 | 900 |
|
60536 | 901 |
lemma (in semiring_0) pnormalize_sing: "pnormalize [x] = [x] \<longleftrightarrow> x \<noteq> 0" |
54219 | 902 |
by simp |
903 |
||
60536 | 904 |
lemma (in semiring_0) pnormalize_pair: "y \<noteq> 0 \<longleftrightarrow> pnormalize [x, y] = [x, y]" |
52881 | 905 |
by simp |
52778 | 906 |
|
60536 | 907 |
lemma (in semiring_0) pnormal_cons: "pnormal p \<Longrightarrow> pnormal (c # p)" |
33153 | 908 |
unfolding pnormal_def by simp |
52778 | 909 |
|
60536 | 910 |
lemma (in semiring_0) pnormal_tail: "p \<noteq> [] \<Longrightarrow> pnormal (c # p) \<Longrightarrow> pnormal p" |
62390 | 911 |
unfolding pnormal_def by (auto split: if_split_asm) |
54219 | 912 |
|
913 |
lemma (in semiring_0) pnormal_last_nonzero: "pnormal p \<Longrightarrow> last p \<noteq> 0" |
|
62390 | 914 |
by (induct p) (simp_all add: pnormal_def split: if_split_asm) |
54219 | 915 |
|
916 |
lemma (in semiring_0) pnormal_length: "pnormal p \<Longrightarrow> 0 < length p" |
|
917 |
unfolding pnormal_def length_greater_0_conv by blast |
|
918 |
||
919 |
lemma (in semiring_0) pnormal_last_length: "0 < length p \<Longrightarrow> last p \<noteq> 0 \<Longrightarrow> pnormal p" |
|
62390 | 920 |
by (induct p) (auto simp: pnormal_def split: if_split_asm) |
54219 | 921 |
|
922 |
lemma (in semiring_0) pnormal_id: "pnormal p \<longleftrightarrow> 0 < length p \<and> last p \<noteq> 0" |
|
923 |
using pnormal_last_length pnormal_length pnormal_last_nonzero by blast |
|
924 |
||
60698 | 925 |
lemma (in idom_char_0) poly_Cons_eq: "poly (c # cs) = poly (d # ds) \<longleftrightarrow> c = d \<and> poly cs = poly ds" |
54219 | 926 |
(is "?lhs \<longleftrightarrow> ?rhs") |
927 |
proof |
|
60536 | 928 |
show ?rhs if ?lhs |
929 |
proof - |
|
930 |
from that have "poly ((c # cs) +++ -- (d # ds)) x = 0" for x |
|
931 |
by (simp only: poly_minus poly_add algebra_simps) (simp add: algebra_simps) |
|
932 |
then have "poly ((c # cs) +++ -- (d # ds)) = poly []" |
|
933 |
by (simp add: fun_eq_iff) |
|
60537 | 934 |
then have "c = d" and "\<forall>x \<in> set (cs +++ -- ds). x = 0" |
60536 | 935 |
unfolding poly_zero by (simp_all add: poly_minus_def algebra_simps) |
936 |
from this(2) have "poly (cs +++ -- ds) x = 0" for x |
|
937 |
unfolding poly_zero[symmetric] by simp |
|
938 |
with \<open>c = d\<close> show ?thesis |
|
939 |
by (simp add: poly_minus poly_add algebra_simps fun_eq_iff) |
|
940 |
qed |
|
941 |
show ?lhs if ?rhs |
|
942 |
using that by (simp add:fun_eq_iff) |
|
54219 | 943 |
qed |
944 |
||
945 |
lemma (in idom_char_0) pnormalize_unique: "poly p = poly q \<Longrightarrow> pnormalize p = pnormalize q" |
|
946 |
proof (induct q arbitrary: p) |
|
947 |
case Nil |
|
60536 | 948 |
then show ?case |
949 |
by (simp only: poly_zero lemma_degree_zero) simp |
|
54219 | 950 |
next |
951 |
case (Cons c cs p) |
|
60536 | 952 |
then show ?case |
54219 | 953 |
proof (induct p) |
954 |
case Nil |
|
60536 | 955 |
then have "poly [] = poly (c # cs)" |
956 |
by blast |
|
957 |
then have "poly (c#cs) = poly []" |
|
958 |
by simp |
|
959 |
then show ?case |
|
960 |
by (simp only: poly_zero lemma_degree_zero) simp |
|
54219 | 961 |
next |
962 |
case (Cons d ds) |
|
60536 | 963 |
then have eq: "poly (d # ds) = poly (c # cs)" |
964 |
by blast |
|
965 |
then have eq': "\<And>x. poly (d # ds) x = poly (c # cs) x" |
|
966 |
by simp |
|
967 |
then have "poly (d # ds) 0 = poly (c # cs) 0" |
|
968 |
by blast |
|
969 |
then have dc: "d = c" |
|
970 |
by auto |
|
54219 | 971 |
with eq have "poly ds = poly cs" |
972 |
unfolding poly_Cons_eq by simp |
|
60536 | 973 |
with Cons.prems have "pnormalize ds = pnormalize cs" |
974 |
by blast |
|
975 |
with dc show ?case |
|
976 |
by simp |
|
54219 | 977 |
qed |
978 |
qed |
|
979 |
||
980 |
lemma (in idom_char_0) degree_unique: |
|
981 |
assumes pq: "poly p = poly q" |
|
982 |
shows "degree p = degree q" |
|
983 |
using pnormalize_unique[OF pq] unfolding degree_def by simp |
|
984 |
||
60536 | 985 |
lemma (in semiring_0) pnormalize_length: "length (pnormalize p) \<le> length p" |
986 |
by (induct p) auto |
|
54219 | 987 |
|
988 |
lemma (in semiring_0) last_linear_mul_lemma: |
|
60536 | 989 |
"last ((a %* p) +++ (x # (b %* p))) = (if p = [] then x else b * last p)" |
54219 | 990 |
apply (induct p arbitrary: a x b) |
52881 | 991 |
apply auto |
60698 | 992 |
subgoal for a p c x b |
993 |
apply (subgoal_tac "padd (cmult c p) (times b a # cmult b p) \<noteq> []") |
|
994 |
apply simp |
|
995 |
apply (induct p) |
|
996 |
apply auto |
|
997 |
done |
|
52778 | 998 |
done |
999 |
||
54219 | 1000 |
lemma (in semiring_1) last_linear_mul: |
1001 |
assumes p: "p \<noteq> []" |
|
60536 | 1002 |
shows "last ([a, 1] *** p) = last p" |
54219 | 1003 |
proof - |
60536 | 1004 |
from p obtain c cs where cs: "p = c # cs" |
1005 |
by (cases p) auto |
|
1006 |
from cs have eq: "[a, 1] *** p = (a %* (c # cs)) +++ (0 # (1 %* (c # cs)))" |
|
54219 | 1007 |
by (simp add: poly_cmult_distr) |
60536 | 1008 |
show ?thesis |
1009 |
using cs unfolding eq last_linear_mul_lemma by simp |
|
54219 | 1010 |
qed |
1011 |
||
1012 |
lemma (in semiring_0) pnormalize_eq: "last p \<noteq> 0 \<Longrightarrow> pnormalize p = p" |
|
62390 | 1013 |
by (induct p) (auto split: if_split_asm) |
54219 | 1014 |
|
1015 |
lemma (in semiring_0) last_pnormalize: "pnormalize p \<noteq> [] \<Longrightarrow> last (pnormalize p) \<noteq> 0" |
|
1016 |
by (induct p) auto |
|
1017 |
||
1018 |
lemma (in semiring_0) pnormal_degree: "last p \<noteq> 0 \<Longrightarrow> degree p = length p - 1" |
|
1019 |
using pnormalize_eq[of p] unfolding degree_def by simp |
|
52778 | 1020 |
|
54219 | 1021 |
lemma (in semiring_0) poly_Nil_ext: "poly [] = (\<lambda>x. 0)" |
60536 | 1022 |
by auto |
54219 | 1023 |
|
1024 |
lemma (in idom_char_0) linear_mul_degree: |
|
1025 |
assumes p: "poly p \<noteq> poly []" |
|
60536 | 1026 |
shows "degree ([a, 1] *** p) = degree p + 1" |
54219 | 1027 |
proof - |
1028 |
from p have pnz: "pnormalize p \<noteq> []" |
|
1029 |
unfolding poly_zero lemma_degree_zero . |
|
1030 |
||
1031 |
from last_linear_mul[OF pnz, of a] last_pnormalize[OF pnz] |
|
1032 |
have l0: "last ([a, 1] *** pnormalize p) \<noteq> 0" by simp |
|
60536 | 1033 |
|
54219 | 1034 |
from last_pnormalize[OF pnz] last_linear_mul[OF pnz, of a] |
1035 |
pnormal_degree[OF l0] pnormal_degree[OF last_pnormalize[OF pnz]] pnz |
|
1036 |
have th: "degree ([a,1] *** pnormalize p) = degree (pnormalize p) + 1" |
|
1037 |
by simp |
|
1038 |
||
1039 |
have eqs: "poly ([a,1] *** pnormalize p) = poly ([a,1] *** p)" |
|
1040 |
by (rule ext) (simp add: poly_mult poly_add poly_cmult) |
|
60536 | 1041 |
from degree_unique[OF eqs] th show ?thesis |
1042 |
by (simp add: degree_unique[OF poly_normalize]) |
|
54219 | 1043 |
qed |
52778 | 1044 |
|
54219 | 1045 |
lemma (in idom_char_0) linear_pow_mul_degree: |
1046 |
"degree([a,1] %^n *** p) = (if poly p = poly [] then 0 else degree p + n)" |
|
1047 |
proof (induct n arbitrary: a p) |
|
1048 |
case (0 a p) |
|
1049 |
show ?case |
|
1050 |
proof (cases "poly p = poly []") |
|
1051 |
case True |
|
1052 |
then show ?thesis |
|
1053 |
using degree_unique[OF True] by (simp add: degree_def) |
|
1054 |
next |
|
1055 |
case False |
|
60536 | 1056 |
then show ?thesis |
1057 |
by (auto simp add: poly_Nil_ext) |
|
54219 | 1058 |
qed |
1059 |
next |
|
1060 |
case (Suc n a p) |
|
60536 | 1061 |
have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1] %^ n *** ([a, 1] *** p))" |
54219 | 1062 |
apply (rule ext) |
1063 |
apply (simp add: poly_mult poly_add poly_cmult) |
|
60536 | 1064 |
apply (simp add: ac_simps distrib_left) |
54219 | 1065 |
done |
1066 |
note deq = degree_unique[OF eq] |
|
1067 |
show ?case |
|
1068 |
proof (cases "poly p = poly []") |
|
1069 |
case True |
|
60536 | 1070 |
with eq have eq': "poly ([a, 1] %^(Suc n) *** p) = poly []" |
1071 |
by (auto simp add: poly_mult poly_cmult poly_add) |
|
54219 | 1072 |
from degree_unique[OF eq'] True show ?thesis |
1073 |
by (simp add: degree_def) |
|
1074 |
next |
|
1075 |
case False |
|
1076 |
then have ap: "poly ([a,1] *** p) \<noteq> poly []" |
|
1077 |
using poly_mult_not_eq_poly_Nil unfolding poly_entire by auto |
|
60536 | 1078 |
have eq: "poly ([a, 1] %^(Suc n) *** p) = poly ([a, 1]%^n *** ([a, 1] *** p))" |
1079 |
by (auto simp add: poly_mult poly_add poly_exp poly_cmult algebra_simps) |
|
1080 |
from ap have ap': "poly ([a, 1] *** p) = poly [] \<longleftrightarrow> False" |
|
54219 | 1081 |
by blast |
60536 | 1082 |
have th0: "degree ([a, 1]%^n *** ([a, 1] *** p)) = degree ([a, 1] *** p) + n" |
54219 | 1083 |
apply (simp only: Suc.hyps[of a "pmult [a,one] p"] ap') |
1084 |
apply simp |
|
1085 |
done |
|
1086 |
from degree_unique[OF eq] ap False th0 linear_mul_degree[OF False, of a] |
|
60536 | 1087 |
show ?thesis |
1088 |
by (auto simp del: poly.simps) |
|
54219 | 1089 |
qed |
1090 |
qed |
|
52778 | 1091 |
|
54219 | 1092 |
lemma (in idom_char_0) order_degree: |
1093 |
assumes p0: "poly p \<noteq> poly []" |
|
1094 |
shows "order a p \<le> degree p" |
|
1095 |
proof - |
|
1096 |
from order2[OF p0, unfolded divides_def] |
|
60536 | 1097 |
obtain q where q: "poly p = poly ([- a, 1]%^ (order a p) *** q)" |
1098 |
by blast |
|
1099 |
with q p0 have "poly q \<noteq> poly []" |
|
1100 |
by (simp add: poly_mult poly_entire) |
|
54219 | 1101 |
with degree_unique[OF q, unfolded linear_pow_mul_degree] show ?thesis |
1102 |
by auto |
|
1103 |
qed |
|
33153 | 1104 |
|
1105 |
||
60536 | 1106 |
text \<open>Tidier versions of finiteness of roots.\<close> |
54219 | 1107 |
lemma (in idom_char_0) poly_roots_finite_set: |
1108 |
"poly p \<noteq> poly [] \<Longrightarrow> finite {x. poly p x = 0}" |
|
52778 | 1109 |
unfolding poly_roots_finite . |
33153 | 1110 |
|
1111 |
||
60536 | 1112 |
text \<open>Bound for polynomial.\<close> |
1113 |
lemma poly_mono: |
|
1114 |
fixes x :: "'a::linordered_idom" |
|
61945 | 1115 |
shows "\<bar>x\<bar> \<le> k \<Longrightarrow> \<bar>poly p x\<bar> \<le> poly (map abs p) k" |
60698 | 1116 |
proof (induct p) |
1117 |
case Nil |
|
1118 |
then show ?case by simp |
|
1119 |
next |
|
1120 |
case (Cons a p) |
|
1121 |
then show ?case |
|
1122 |
apply auto |
|
61945 | 1123 |
apply (rule_tac y = "\<bar>a\<bar> + \<bar>x * poly p x\<bar>" in order_trans) |
60698 | 1124 |
apply (rule abs_triangle_ineq) |
1125 |
apply (auto intro!: mult_mono simp add: abs_mult) |
|
1126 |
done |
|
1127 |
qed |
|
33153 | 1128 |
|
60536 | 1129 |
lemma (in semiring_0) poly_Sing: "poly [c] x = c" |
1130 |
by simp |
|
33268
02de0317f66f
eliminated hard tabulators, guessing at each author's individual tab-width;
wenzelm
parents:
33153
diff
changeset
|
1131 |
|
33153 | 1132 |
end |