| 0 |      1 | (*  Title: 	ZF/trancl.ML
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author: 	Lawrence C Paulson, Cambridge University Computer Laboratory
 | 
|  |      4 |     Copyright   1992  University of Cambridge
 | 
|  |      5 | 
 | 
|  |      6 | For trancl.thy.  Transitive closure of a relation
 | 
|  |      7 | *)
 | 
|  |      8 | 
 | 
|  |      9 | open Trancl;
 | 
|  |     10 | 
 | 
|  |     11 | val major::prems = goalw Trancl.thy [trans_def]
 | 
|  |     12 |     "[| trans(r);  <a,b>:r;  <b,c>:r |] ==> <a,c>:r";
 | 
|  |     13 | by (rtac (major RS spec RS spec RS spec RS mp RS mp) 1);
 | 
|  |     14 | by (REPEAT (resolve_tac prems 1));
 | 
|  |     15 | val transD = result();
 | 
|  |     16 | 
 | 
|  |     17 | goal Trancl.thy "bnd_mono(field(r)*field(r), %s. id(field(r)) Un (r O s))";
 | 
|  |     18 | by (rtac bnd_monoI 1);
 | 
|  |     19 | by (REPEAT (ares_tac [subset_refl, Un_mono, comp_mono] 2));
 | 
|  |     20 | by (fast_tac comp_cs 1);
 | 
|  |     21 | val rtrancl_bnd_mono = result();
 | 
|  |     22 | 
 | 
|  |     23 | val [prem] = goalw Trancl.thy [rtrancl_def] "r<=s ==> r^* <= s^*";
 | 
|  |     24 | by (rtac lfp_mono 1);
 | 
|  |     25 | by (REPEAT (resolve_tac [rtrancl_bnd_mono, prem, subset_refl, id_mono,
 | 
|  |     26 | 			 comp_mono, Un_mono, field_mono, Sigma_mono] 1));
 | 
|  |     27 | val rtrancl_mono = result();
 | 
|  |     28 | 
 | 
|  |     29 | (* r^* = id(field(r)) Un ( r O r^* )    *)
 | 
|  |     30 | val rtrancl_unfold = rtrancl_bnd_mono RS (rtrancl_def RS def_lfp_Tarski);
 | 
|  |     31 | 
 | 
|  |     32 | (** The relation rtrancl **)
 | 
|  |     33 | 
 | 
|  |     34 | val rtrancl_type = standard (rtrancl_def RS def_lfp_subset);
 | 
|  |     35 | 
 | 
|  |     36 | (*Reflexivity of rtrancl*)
 | 
|  |     37 | val [prem] = goal Trancl.thy "[| a: field(r) |] ==> <a,a> : r^*";
 | 
|  |     38 | by (resolve_tac [rtrancl_unfold RS ssubst] 1);
 | 
|  |     39 | by (rtac (prem RS idI RS UnI1) 1);
 | 
|  |     40 | val rtrancl_refl = result();
 | 
|  |     41 | 
 | 
|  |     42 | (*Closure under composition with r  *)
 | 
|  |     43 | val prems = goal Trancl.thy
 | 
|  |     44 |     "[| <a,b> : r^*;  <b,c> : r |] ==> <a,c> : r^*";
 | 
|  |     45 | by (resolve_tac [rtrancl_unfold RS ssubst] 1);
 | 
|  |     46 | by (rtac (compI RS UnI2) 1);
 | 
|  |     47 | by (resolve_tac prems 1);
 | 
|  |     48 | by (resolve_tac prems 1);
 | 
|  |     49 | val rtrancl_into_rtrancl = result();
 | 
|  |     50 | 
 | 
|  |     51 | (*rtrancl of r contains all pairs in r  *)
 | 
|  |     52 | val prems = goal Trancl.thy "<a,b> : r ==> <a,b> : r^*";
 | 
|  |     53 | by (resolve_tac [rtrancl_refl RS rtrancl_into_rtrancl] 1);
 | 
|  |     54 | by (REPEAT (resolve_tac (prems@[fieldI1]) 1));
 | 
|  |     55 | val r_into_rtrancl = result();
 | 
|  |     56 | 
 | 
|  |     57 | (*The premise ensures that r consists entirely of pairs*)
 | 
|  |     58 | val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^*";
 | 
|  |     59 | by (cut_facts_tac prems 1);
 | 
|  |     60 | by (fast_tac (ZF_cs addIs [r_into_rtrancl]) 1);
 | 
|  |     61 | val r_subset_rtrancl = result();
 | 
|  |     62 | 
 | 
|  |     63 | goal Trancl.thy "field(r^*) = field(r)";
 | 
|  |     64 | by (fast_tac (eq_cs addIs [r_into_rtrancl] 
 | 
|  |     65 | 		    addSDs [rtrancl_type RS subsetD]) 1);
 | 
|  |     66 | val rtrancl_field = result();
 | 
|  |     67 | 
 | 
|  |     68 | 
 | 
|  |     69 | (** standard induction rule **)
 | 
|  |     70 | 
 | 
|  |     71 | val major::prems = goal Trancl.thy
 | 
|  |     72 |   "[| <a,b> : r^*; \
 | 
|  |     73 | \     !!x. x: field(r) ==> P(<x,x>); \
 | 
|  |     74 | \     !!x y z.[| P(<x,y>); <x,y>: r^*; <y,z>: r |]  ==>  P(<x,z>) |] \
 | 
|  |     75 | \  ==>  P(<a,b>)";
 | 
|  |     76 | by (rtac ([rtrancl_def, rtrancl_bnd_mono, major] MRS def_induct) 1);
 | 
|  |     77 | by (fast_tac (ZF_cs addIs prems addSEs [idE,compE]) 1);
 | 
|  |     78 | val rtrancl_full_induct = result();
 | 
|  |     79 | 
 | 
|  |     80 | (*nice induction rule.
 | 
|  |     81 |   Tried adding the typing hypotheses y,z:field(r), but these
 | 
|  |     82 |   caused expensive case splits!*)
 | 
|  |     83 | val major::prems = goal Trancl.thy
 | 
|  |     84 |   "[| <a,b> : r^*;   						\
 | 
|  |     85 | \     P(a); 							\
 | 
|  |     86 | \     !!y z.[| <a,y> : r^*;  <y,z> : r;  P(y) |] ==> P(z) 	\
 | 
|  |     87 | \  |] ==> P(b)";
 | 
|  |     88 | (*by induction on this formula*)
 | 
|  |     89 | by (subgoal_tac "ALL y. <a,b> = <a,y> --> P(y)" 1);
 | 
|  |     90 | (*now solve first subgoal: this formula is sufficient*)
 | 
|  |     91 | by (EVERY1 [etac (spec RS mp), rtac refl]);
 | 
|  |     92 | (*now do the induction*)
 | 
|  |     93 | by (resolve_tac [major RS rtrancl_full_induct] 1);
 | 
|  |     94 | by (ALLGOALS (fast_tac (ZF_cs addIs prems)));
 | 
|  |     95 | val rtrancl_induct = result();
 | 
|  |     96 | 
 | 
|  |     97 | (*transitivity of transitive closure!! -- by induction.*)
 | 
|  |     98 | goalw Trancl.thy [trans_def] "trans(r^*)";
 | 
|  |     99 | by (REPEAT (resolve_tac [allI,impI] 1));
 | 
|  |    100 | by (eres_inst_tac [("b","z")] rtrancl_induct 1);
 | 
|  |    101 | by (DEPTH_SOLVE (eresolve_tac [asm_rl, rtrancl_into_rtrancl] 1));
 | 
|  |    102 | val trans_rtrancl = result();
 | 
|  |    103 | 
 | 
|  |    104 | (*elimination of rtrancl -- by induction on a special formula*)
 | 
|  |    105 | val major::prems = goal Trancl.thy
 | 
|  |    106 |     "[| <a,b> : r^*;  (a=b) ==> P;			 \
 | 
|  |    107 | \	!!y.[| <a,y> : r^*;   <y,b> : r |] ==> P |]	 \
 | 
|  |    108 | \    ==> P";
 | 
|  |    109 | by (subgoal_tac "a = b  | (EX y. <a,y> : r^* & <y,b> : r)" 1);
 | 
|  |    110 | (*see HOL/trancl*)
 | 
|  |    111 | by (rtac (major RS rtrancl_induct) 2);
 | 
|  |    112 | by (ALLGOALS (fast_tac (ZF_cs addSEs prems)));
 | 
|  |    113 | val rtranclE = result();
 | 
|  |    114 | 
 | 
|  |    115 | 
 | 
|  |    116 | (**** The relation trancl ****)
 | 
|  |    117 | 
 | 
|  |    118 | (*Transitivity of r^+ is proved by transitivity of r^*  *)
 | 
|  |    119 | goalw Trancl.thy [trans_def,trancl_def] "trans(r^+)";
 | 
|  |    120 | by (safe_tac comp_cs);
 | 
|  |    121 | by (rtac (rtrancl_into_rtrancl RS (trans_rtrancl RS transD RS compI)) 1);
 | 
|  |    122 | by (REPEAT (assume_tac 1));
 | 
|  |    123 | val trans_trancl = result();
 | 
|  |    124 | 
 | 
|  |    125 | (** Conversions between trancl and rtrancl **)
 | 
|  |    126 | 
 | 
|  |    127 | val [major] = goalw Trancl.thy [trancl_def] "<a,b> : r^+ ==> <a,b> : r^*";
 | 
|  |    128 | by (resolve_tac [major RS compEpair] 1);
 | 
|  |    129 | by (REPEAT (ares_tac [rtrancl_into_rtrancl] 1));
 | 
|  |    130 | val trancl_into_rtrancl = result();
 | 
|  |    131 | 
 | 
|  |    132 | (*r^+ contains all pairs in r  *)
 | 
|  |    133 | val [prem] = goalw Trancl.thy [trancl_def] "<a,b> : r ==> <a,b> : r^+";
 | 
|  |    134 | by (REPEAT (ares_tac [prem,compI,rtrancl_refl,fieldI1] 1));
 | 
|  |    135 | val r_into_trancl = result();
 | 
|  |    136 | 
 | 
|  |    137 | (*The premise ensures that r consists entirely of pairs*)
 | 
|  |    138 | val prems = goal Trancl.thy "r <= Sigma(A,B) ==> r <= r^+";
 | 
|  |    139 | by (cut_facts_tac prems 1);
 | 
|  |    140 | by (fast_tac (ZF_cs addIs [r_into_trancl]) 1);
 | 
|  |    141 | val r_subset_trancl = result();
 | 
|  |    142 | 
 | 
|  |    143 | (*intro rule by definition: from r^* and r  *)
 | 
|  |    144 | val prems = goalw Trancl.thy [trancl_def]
 | 
|  |    145 |     "[| <a,b> : r^*;  <b,c> : r |]   ==>  <a,c> : r^+";
 | 
|  |    146 | by (REPEAT (resolve_tac ([compI]@prems) 1));
 | 
|  |    147 | val rtrancl_into_trancl1 = result();
 | 
|  |    148 | 
 | 
|  |    149 | (*intro rule from r and r^*  *)
 | 
|  |    150 | val prems = goal Trancl.thy
 | 
|  |    151 |     "[| <a,b> : r;  <b,c> : r^* |]   ==>  <a,c> : r^+";
 | 
|  |    152 | by (resolve_tac (prems RL [rtrancl_induct]) 1);
 | 
|  |    153 | by (resolve_tac (prems RL [r_into_trancl]) 1);
 | 
|  |    154 | by (etac (trans_trancl RS transD) 1);
 | 
|  |    155 | by (etac r_into_trancl 1);
 | 
|  |    156 | val rtrancl_into_trancl2 = result();
 | 
|  |    157 | 
 | 
|  |    158 | (*Nice induction rule for trancl*)
 | 
|  |    159 | val major::prems = goal Trancl.thy
 | 
|  |    160 |   "[| <a,b> : r^+;    					\
 | 
|  |    161 | \     !!y.  [| <a,y> : r |] ==> P(y); 			\
 | 
|  |    162 | \     !!y z.[| <a,y> : r^+;  <y,z> : r;  P(y) |] ==> P(z) 	\
 | 
|  |    163 | \  |] ==> P(b)";
 | 
|  |    164 | by (rtac (rewrite_rule [trancl_def] major  RS  compEpair) 1);
 | 
|  |    165 | (*by induction on this formula*)
 | 
|  |    166 | by (subgoal_tac "ALL z. <y,z> : r --> P(z)" 1);
 | 
|  |    167 | (*now solve first subgoal: this formula is sufficient*)
 | 
|  |    168 | by (fast_tac ZF_cs 1);
 | 
|  |    169 | by (etac rtrancl_induct 1);
 | 
|  |    170 | by (ALLGOALS (fast_tac (ZF_cs addIs (rtrancl_into_trancl1::prems))));
 | 
|  |    171 | val trancl_induct = result();
 | 
|  |    172 | 
 | 
|  |    173 | (*elimination of r^+ -- NOT an induction rule*)
 | 
|  |    174 | val major::prems = goal Trancl.thy
 | 
|  |    175 |     "[| <a,b> : r^+;  \
 | 
|  |    176 | \       <a,b> : r ==> P; \
 | 
|  |    177 | \	!!y.[| <a,y> : r^+; <y,b> : r |] ==> P  \
 | 
|  |    178 | \    |] ==> P";
 | 
|  |    179 | by (subgoal_tac "<a,b> : r | (EX y. <a,y> : r^+  &  <y,b> : r)" 1);
 | 
|  |    180 | by (fast_tac (ZF_cs addIs prems) 1);
 | 
|  |    181 | by (rtac (rewrite_rule [trancl_def] major RS compEpair) 1);
 | 
|  |    182 | by (etac rtranclE 1);
 | 
|  |    183 | by (ALLGOALS (fast_tac (ZF_cs addIs [rtrancl_into_trancl1])));
 | 
|  |    184 | val tranclE = result();
 | 
|  |    185 | 
 | 
|  |    186 | goalw Trancl.thy [trancl_def] "r^+ <= field(r)*field(r)";
 | 
|  |    187 | by (fast_tac (ZF_cs addEs [compE, rtrancl_type RS subsetD RS SigmaE2]) 1);
 | 
|  |    188 | val trancl_type = result();
 | 
|  |    189 | 
 | 
|  |    190 | val [prem] = goalw Trancl.thy [trancl_def] "r<=s ==> r^+ <= s^+";
 | 
|  |    191 | by (REPEAT (resolve_tac [prem, comp_mono, rtrancl_mono] 1));
 | 
|  |    192 | val trancl_mono = result();
 | 
|  |    193 | 
 |