| author | wenzelm | 
| Tue, 05 Oct 1999 16:55:13 +0200 | |
| changeset 7738 | e17ccb79db68 | 
| parent 70 | 8a29f8b4aca1 | 
| permissions | -rw-r--r-- | 
| 0 | 1 | (* Title: ZF/intr-elim.ML | 
| 2 | ID: $Id$ | |
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | ||
| 6 | Introduction/elimination rule module -- for Inductive/Coinductive Definitions | |
| 7 | ||
| 8 | Features: | |
| 9 | * least or greatest fixedpoints | |
| 10 | * user-specified product and sum constructions | |
| 11 | * mutually recursive definitions | |
| 12 | * definitions involving arbitrary monotone operators | |
| 13 | * automatically proves introduction and elimination rules | |
| 14 | ||
| 15 | The recursive sets must *already* be declared as constants in parent theory! | |
| 16 | ||
| 17 | Introduction rules have the form | |
| 18 | [| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |] | |
| 19 | where M is some monotone operator (usually the identity) | |
| 20 | P(x) is any (non-conjunctive) side condition on the free variables | |
| 21 | ti, t are any terms | |
| 25 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 lcp parents: 
14diff
changeset | 22 | Sj, Sk are two of the sets being defined in mutual recursion | 
| 0 | 23 | |
| 24 | Sums are used only for mutual recursion; | |
| 25 | Products are used only to derive "streamlined" induction rules for relations | |
| 26 | *) | |
| 27 | ||
| 28 | signature FP = (** Description of a fixed point operator **) | |
| 29 | sig | |
| 30 | val oper : term (*fixed point operator*) | |
| 31 | val bnd_mono : term (*monotonicity predicate*) | |
| 32 | val bnd_monoI : thm (*intro rule for bnd_mono*) | |
| 33 | val subs : thm (*subset theorem for fp*) | |
| 34 | val Tarski : thm (*Tarski's fixed point theorem*) | |
| 35 | val induct : thm (*induction/coinduction rule*) | |
| 36 | end; | |
| 37 | ||
| 38 | signature PR = (** Description of a Cartesian product **) | |
| 39 | sig | |
| 40 | val sigma : term (*Cartesian product operator*) | |
| 41 | val pair : term (*pairing operator*) | |
| 42 | val split_const : term (*splitting operator*) | |
| 43 | val fsplit_const : term (*splitting operator for formulae*) | |
| 44 | val pair_iff : thm (*injectivity of pairing, using <->*) | |
| 45 | val split_eq : thm (*equality rule for split*) | |
| 46 | val fsplitI : thm (*intro rule for fsplit*) | |
| 47 | val fsplitD : thm (*destruct rule for fsplit*) | |
| 48 | val fsplitE : thm (*elim rule for fsplit*) | |
| 49 | end; | |
| 50 | ||
| 51 | signature SU = (** Description of a disjoint sum **) | |
| 52 | sig | |
| 53 | val sum : term (*disjoint sum operator*) | |
| 54 | val inl : term (*left injection*) | |
| 55 | val inr : term (*right injection*) | |
| 56 | val elim : term (*case operator*) | |
| 57 | val case_inl : thm (*inl equality rule for case*) | |
| 58 | val case_inr : thm (*inr equality rule for case*) | |
| 59 | val inl_iff : thm (*injectivity of inl, using <->*) | |
| 60 | val inr_iff : thm (*injectivity of inr, using <->*) | |
| 61 | val distinct : thm (*distinctness of inl, inr using <->*) | |
| 62 | val distinct' : thm (*distinctness of inr, inl using <->*) | |
| 63 | end; | |
| 64 | ||
| 65 | signature INDUCTIVE = (** Description of a (co)inductive defn **) | |
| 66 | sig | |
| 67 | val thy : theory (*parent theory*) | |
| 68 | val rec_doms : (string*string) list (*recursion ops and their domains*) | |
| 69 | val sintrs : string list (*desired introduction rules*) | |
| 70 | val monos : thm list (*monotonicity of each M operator*) | |
| 71 | val con_defs : thm list (*definitions of the constructors*) | |
| 72 | val type_intrs : thm list (*type-checking intro rules*) | |
| 73 | val type_elims : thm list (*type-checking elim rules*) | |
| 74 | end; | |
| 75 | ||
| 76 | signature INTR_ELIM = | |
| 77 | sig | |
| 78 | val thy : theory (*new theory*) | |
| 79 | val defs : thm list (*definitions made in thy*) | |
| 80 | val bnd_mono : thm (*monotonicity for the lfp definition*) | |
| 81 | val unfold : thm (*fixed-point equation*) | |
| 82 | val dom_subset : thm (*inclusion of recursive set in dom*) | |
| 83 | val intrs : thm list (*introduction rules*) | |
| 84 | val elim : thm (*case analysis theorem*) | |
| 85 | val raw_induct : thm (*raw induction rule from Fp.induct*) | |
| 86 | val mk_cases : thm list -> string -> thm (*generates case theorems*) | |
| 87 | (*internal items...*) | |
| 88 | val big_rec_tm : term (*the lhs of the fixedpoint defn*) | |
| 89 | val rec_tms : term list (*the mutually recursive sets*) | |
| 90 | val domts : term list (*domains of the recursive sets*) | |
| 91 | val intr_tms : term list (*terms for the introduction rules*) | |
| 92 | val rec_params : term list (*parameters of the recursion*) | |
| 93 | val sumprod_free_SEs : thm list (*destruct rules for Su and Pr*) | |
| 94 | end; | |
| 95 | ||
| 96 | ||
| 97 | functor Intr_elim_Fun (structure Ind: INDUCTIVE and | |
| 98 | Fp: FP and Pr : PR and Su : SU) : INTR_ELIM = | |
| 99 | struct | |
| 100 | open Logic Ind; | |
| 101 | ||
| 102 | (*** Extract basic information from arguments ***) | |
| 103 | ||
| 104 | val sign = sign_of Ind.thy; | |
| 105 | ||
| 106 | fun rd T a = | |
| 107 | Sign.read_cterm sign (a,T) | |
| 108 |     handle ERROR => error ("The error above occurred for " ^ a);
 | |
| 109 | ||
| 110 | val rec_names = map #1 rec_doms | |
| 111 | and domts = map (Sign.term_of o rd iT o #2) rec_doms; | |
| 112 | ||
| 113 | val dummy = assert_all Syntax.is_identifier rec_names | |
| 114 | (fn a => "Name of recursive set not an identifier: " ^ a); | |
| 115 | ||
| 116 | val dummy = assert_all (is_some o lookup_const sign) rec_names | |
| 117 | (fn a => "Name of recursive set not declared as constant: " ^ a); | |
| 118 | ||
| 119 | val intr_tms = map (Sign.term_of o rd propT) sintrs; | |
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 120 | |
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 121 | local (*Checking the introduction rules*) | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 122 | val intr_sets = map (#2 o rule_concl) intr_tms; | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 123 | |
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 124 | fun intr_ok set = | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 125 | case head_of set of Const(a,recT) => a mem rec_names | _ => false; | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 126 | |
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 127 | val dummy = assert_all intr_ok intr_sets | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 128 | (fn t => "Conclusion of rule does not name a recursive set: " ^ | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 129 | Sign.string_of_term sign t); | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 130 | in | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 131 | val (Const(_,recT),rec_params) = strip_comb (hd intr_sets) | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 132 | end; | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 133 | |
| 0 | 134 | val rec_hds = map (fn a=> Const(a,recT)) rec_names; | 
| 135 | val rec_tms = map (fn rec_hd=> list_comb(rec_hd,rec_params)) rec_hds; | |
| 136 | ||
| 137 | val dummy = assert_all is_Free rec_params | |
| 138 | (fn t => "Param in recursion term not a free variable: " ^ | |
| 139 | Sign.string_of_term sign t); | |
| 140 | ||
| 141 | (*** Construct the lfp definition ***) | |
| 142 | ||
| 143 | val mk_variant = variant (foldr add_term_names (intr_tms,[])); | |
| 144 | ||
| 145 | val z' = mk_variant"z" | |
| 146 | and X' = mk_variant"X" | |
| 147 | and w' = mk_variant"w"; | |
| 148 | ||
| 149 | (*simple error-checking in the premises*) | |
| 150 | fun chk_prem rec_hd (Const("op &",_) $ _ $ _) =
 | |
| 151 | error"Premises may not be conjuctive" | |
| 152 |   | chk_prem rec_hd (Const("op :",_) $ t $ X) = 
 | |
| 153 | deny (rec_hd occs t) "Recursion term on left of member symbol" | |
| 154 | | chk_prem rec_hd t = | |
| 155 | deny (rec_hd occs t) "Recursion term in side formula"; | |
| 156 | ||
| 157 | (*Makes a disjunct from an introduction rule*) | |
| 158 | fun lfp_part intr = (*quantify over rule's free vars except parameters*) | |
| 159 | let val prems = map dest_tprop (strip_imp_prems intr) | |
| 160 | val dummy = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds | |
| 161 | val exfrees = term_frees intr \\ rec_params | |
| 162 | val zeq = eq_const $ (Free(z',iT)) $ (#1 (rule_concl intr)) | |
| 163 | in foldr mk_exists (exfrees, fold_bal (app conj) (zeq::prems)) end; | |
| 164 | ||
| 165 | val dom_sum = fold_bal (app Su.sum) domts; | |
| 166 | ||
| 167 | (*The Part(A,h) terms -- compose injections to make h*) | |
| 168 | fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*) | |
| 169 | | mk_Part h = Part_const $ Free(X',iT) $ Abs(w',iT,h); | |
| 170 | ||
| 171 | (*Access to balanced disjoint sums via injections*) | |
| 172 | val parts = | |
| 173 | map mk_Part (accesses_bal (ap Su.inl, ap Su.inr, Bound 0) | |
| 174 | (length rec_doms)); | |
| 175 | ||
| 176 | (*replace each set by the corresponding Part(A,h)*) | |
| 177 | val part_intrs = map (subst_free (rec_tms ~~ parts) o lfp_part) intr_tms; | |
| 178 | ||
| 179 | val lfp_abs = absfree(X', iT, | |
| 180 | mk_Collect(z', dom_sum, fold_bal (app disj) part_intrs)); | |
| 181 | ||
| 182 | val lfp_rhs = Fp.oper $ dom_sum $ lfp_abs | |
| 183 | ||
| 184 | val dummy = seq (fn rec_hd => deny (rec_hd occs lfp_rhs) | |
| 185 | "Illegal occurrence of recursion operator") | |
| 186 | rec_hds; | |
| 187 | ||
| 188 | (*** Make the new theory ***) | |
| 189 | ||
| 190 | (*A key definition: | |
| 191 | If no mutual recursion then it equals the one recursive set. | |
| 192 | If mutual recursion then it differs from all the recursive sets. *) | |
| 193 | val big_rec_name = space_implode "_" rec_names; | |
| 194 | ||
| 195 | (*Big_rec... is the union of the mutually recursive sets*) | |
| 196 | val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params); | |
| 197 | ||
| 198 | (*The individual sets must already be declared*) | |
| 199 | val axpairs = map (mk_defpair sign) | |
| 200 | ((big_rec_tm, lfp_rhs) :: | |
| 201 | (case parts of | |
| 202 | [_] => [] (*no mutual recursion*) | |
| 203 | | _ => rec_tms ~~ (*define the sets as Parts*) | |
| 204 | map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts)); | |
| 205 | ||
| 206 | val thy = extend_theory Ind.thy (big_rec_name ^ "_Inductive") | |
| 207 | ([], [], [], [], [], None) axpairs; | |
| 208 | ||
| 209 | val defs = map (get_axiom thy o #1) axpairs; | |
| 210 | ||
| 211 | val big_rec_def::part_rec_defs = defs; | |
| 212 | ||
| 213 | val prove = prove_term (sign_of thy); | |
| 214 | ||
| 215 | (********) | |
| 216 | val dummy = writeln "Proving monotonocity..."; | |
| 217 | ||
| 218 | val bnd_mono = | |
| 219 | prove [] (mk_tprop (Fp.bnd_mono $ dom_sum $ lfp_abs), | |
| 220 | fn _ => | |
| 221 | [rtac (Collect_subset RS bnd_monoI) 1, | |
| 222 | REPEAT (ares_tac (basic_monos @ monos) 1)]); | |
| 223 | ||
| 224 | val dom_subset = standard (big_rec_def RS Fp.subs); | |
| 225 | ||
| 226 | val unfold = standard (bnd_mono RS (big_rec_def RS Fp.Tarski)); | |
| 227 | ||
| 228 | (********) | |
| 229 | val dummy = writeln "Proving the introduction rules..."; | |
| 230 | ||
| 231 | (*Mutual recursion: Needs subset rules for the individual sets???*) | |
| 232 | val rec_typechecks = [dom_subset] RL (asm_rl::monos) RL [subsetD]; | |
| 233 | ||
| 234 | (*Type-checking is hardest aspect of proof; | |
| 235 | disjIn selects the correct disjunct after unfolding*) | |
| 236 | fun intro_tacsf disjIn prems = | |
| 237 | [(*insert prems and underlying sets*) | |
| 55 | 238 | cut_facts_tac prems 1, | 
| 0 | 239 | rtac (unfold RS ssubst) 1, | 
| 240 | REPEAT (resolve_tac [Part_eqI,CollectI] 1), | |
| 241 | (*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*) | |
| 242 | rtac disjIn 2, | |
| 243 | REPEAT (ares_tac [refl,exI,conjI] 2), | |
| 244 | rewrite_goals_tac con_defs, | |
| 245 | (*Now can solve the trivial equation*) | |
| 246 | REPEAT (rtac refl 2), | |
| 55 | 247 | REPEAT (FIRSTGOAL (eresolve_tac (asm_rl::PartE::type_elims) | 
| 248 | ORELSE' hyp_subst_tac | |
| 0 | 249 | ORELSE' dresolve_tac rec_typechecks)), | 
| 55 | 250 | DEPTH_SOLVE (swap_res_tac type_intrs 1)]; | 
| 0 | 251 | |
| 252 | (*combines disjI1 and disjI2 to access the corresponding nested disjunct...*) | |
| 253 | val mk_disj_rls = | |
| 254 | let fun f rl = rl RS disjI1 | |
| 255 | and g rl = rl RS disjI2 | |
| 256 | in accesses_bal(f, g, asm_rl) end; | |
| 257 | ||
| 258 | val intrs = map (prove part_rec_defs) | |
| 259 | (intr_tms ~~ map intro_tacsf (mk_disj_rls(length intr_tms))); | |
| 260 | ||
| 261 | (********) | |
| 262 | val dummy = writeln "Proving the elimination rule..."; | |
| 263 | ||
| 55 | 264 | (*Includes rules for succ and Pair since they are common constructions*) | 
| 265 | val elim_rls = [asm_rl, FalseE, succ_neq_0, sym RS succ_neq_0, | |
| 70 
8a29f8b4aca1
ZF/ind-syntax/fold_con_tac: deleted, since fold_tac now works
 lcp parents: 
55diff
changeset | 266 | Pair_neq_0, sym RS Pair_neq_0, make_elim succ_inject, | 
| 
8a29f8b4aca1
ZF/ind-syntax/fold_con_tac: deleted, since fold_tac now works
 lcp parents: 
55diff
changeset | 267 | refl_thin, conjE, exE, disjE]; | 
| 0 | 268 | |
| 269 | val sumprod_free_SEs = | |
| 270 | map (gen_make_elim [conjE,FalseE]) | |
| 271 | ([Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff] | |
| 272 | RL [iffD1]); | |
| 273 | ||
| 274 | (*Breaks down logical connectives in the monotonic function*) | |
| 275 | val basic_elim_tac = | |
| 276 | REPEAT (SOMEGOAL (eresolve_tac (elim_rls@sumprod_free_SEs) | |
| 277 | ORELSE' bound_hyp_subst_tac)) | |
| 278 | THEN prune_params_tac; | |
| 279 | ||
| 280 | val elim = rule_by_tactic basic_elim_tac (unfold RS equals_CollectD); | |
| 281 | ||
| 14 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 282 | (*Applies freeness of the given constructors, which *must* be unfolded by | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 283 | the given defs. Cannot simply use the local con_defs because con_defs=[] | 
| 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 lcp parents: 
0diff
changeset | 284 | for inference systems. *) | 
| 0 | 285 | fun con_elim_tac defs = | 
| 70 
8a29f8b4aca1
ZF/ind-syntax/fold_con_tac: deleted, since fold_tac now works
 lcp parents: 
55diff
changeset | 286 | rewrite_goals_tac defs THEN basic_elim_tac THEN fold_tac defs; | 
| 0 | 287 | |
| 288 | (*String s should have the form t:Si where Si is an inductive set*) | |
| 289 | fun mk_cases defs s = | |
| 290 | rule_by_tactic (con_elim_tac defs) | |
| 291 | (assume_read thy s RS elim); | |
| 292 | ||
| 293 | val defs = big_rec_def::part_rec_defs; | |
| 294 | ||
| 295 | val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct); | |
| 296 | ||
| 297 | end; |