| 
23664
 | 
     1  | 
theory ComputeNumeral
  | 
| 
 | 
     2  | 
imports ComputeHOL Float
  | 
| 
 | 
     3  | 
begin
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
(* normalization of bit strings *)
  | 
| 
 | 
     6  | 
lemmas bitnorm = Pls_0_eq Min_1_eq
  | 
| 
 | 
     7  | 
  | 
| 
 | 
     8  | 
(* neg for bit strings *)
  | 
| 
 | 
     9  | 
lemma neg1: "neg Numeral.Pls = False" by (simp add: Numeral.Pls_def)
  | 
| 
 | 
    10  | 
lemma neg2: "neg Numeral.Min = True" apply (subst Numeral.Min_def) by auto
  | 
| 
 | 
    11  | 
lemma neg3: "neg (x BIT Numeral.B0) = neg x" apply (simp add: neg_def) apply (subst Bit_def) by auto
  | 
| 
 | 
    12  | 
lemma neg4: "neg (x BIT Numeral.B1) = neg x" apply (simp add: neg_def) apply (subst Bit_def) by auto  
  | 
| 
 | 
    13  | 
lemmas bitneg = neg1 neg2 neg3 neg4
  | 
| 
 | 
    14  | 
  | 
| 
 | 
    15  | 
(* iszero for bit strings *)
  | 
| 
 | 
    16  | 
lemma iszero1: "iszero Numeral.Pls = True" by (simp add: Numeral.Pls_def iszero_def)
  | 
| 
 | 
    17  | 
lemma iszero2: "iszero Numeral.Min = False" apply (subst Numeral.Min_def) apply (subst iszero_def) by simp
  | 
| 
 | 
    18  | 
lemma iszero3: "iszero (x BIT Numeral.B0) = iszero x" apply (subst Numeral.Bit_def) apply (subst iszero_def)+ by auto
  | 
| 
 | 
    19  | 
lemma iszero4: "iszero (x BIT Numeral.B1) = False" apply (subst Numeral.Bit_def) apply (subst iszero_def)+  apply simp by arith
  | 
| 
 | 
    20  | 
lemmas bitiszero = iszero1 iszero2 iszero3 iszero4
  | 
| 
 | 
    21  | 
  | 
| 
 | 
    22  | 
(* lezero for bit strings *)
  | 
| 
 | 
    23  | 
constdefs
  | 
| 
 | 
    24  | 
  "lezero x == (x \<le> 0)"
  | 
| 
 | 
    25  | 
lemma lezero1: "lezero Numeral.Pls = True" unfolding Numeral.Pls_def lezero_def by auto
  | 
| 
 | 
    26  | 
lemma lezero2: "lezero Numeral.Min = True" unfolding Numeral.Min_def lezero_def by auto
  | 
| 
 | 
    27  | 
lemma lezero3: "lezero (x BIT Numeral.B0) = lezero x" unfolding Numeral.Bit_def lezero_def by auto
  | 
| 
 | 
    28  | 
lemma lezero4: "lezero (x BIT Numeral.B1) = neg x" unfolding Numeral.Bit_def lezero_def neg_def by auto
  | 
| 
 | 
    29  | 
lemmas bitlezero = lezero1 lezero2 lezero3 lezero4
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
(* equality for bit strings *)
  | 
| 
 | 
    32  | 
lemma biteq1: "(Numeral.Pls = Numeral.Pls) = True" by auto
  | 
| 
 | 
    33  | 
lemma biteq2: "(Numeral.Min = Numeral.Min) = True" by auto
  | 
| 
 | 
    34  | 
lemma biteq3: "(Numeral.Pls = Numeral.Min) = False" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    35  | 
lemma biteq4: "(Numeral.Min = Numeral.Pls) = False" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    36  | 
lemma biteq5: "(x BIT Numeral.B0 = y BIT Numeral.B0) = (x = y)" unfolding Bit_def by auto
  | 
| 
 | 
    37  | 
lemma biteq6: "(x BIT Numeral.B1 = y BIT Numeral.B1) = (x = y)" unfolding Bit_def by auto
  | 
| 
 | 
    38  | 
lemma biteq7: "(x BIT Numeral.B0 = y BIT Numeral.B1) = False" unfolding Bit_def by (simp, arith) 
  | 
| 
 | 
    39  | 
lemma biteq8: "(x BIT Numeral.B1 = y BIT Numeral.B0) = False" unfolding Bit_def by (simp, arith)
  | 
| 
 | 
    40  | 
lemma biteq9: "(Numeral.Pls = x BIT Numeral.B0) = (Numeral.Pls = x)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    41  | 
lemma biteq10: "(Numeral.Pls = x BIT Numeral.B1) = False" unfolding Bit_def Pls_def by (simp, arith) 
  | 
| 
 | 
    42  | 
lemma biteq11: "(Numeral.Min = x BIT Numeral.B0) = False" unfolding Bit_def Min_def by (simp, arith)
  | 
| 
 | 
    43  | 
lemma biteq12: "(Numeral.Min = x BIT Numeral.B1) = (Numeral.Min = x)" unfolding Bit_def Min_def by auto
  | 
| 
 | 
    44  | 
lemma biteq13: "(x BIT Numeral.B0 = Numeral.Pls) = (x = Numeral.Pls)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    45  | 
lemma biteq14: "(x BIT Numeral.B1 = Numeral.Pls) = False" unfolding Bit_def Pls_def by (simp, arith)
  | 
| 
 | 
    46  | 
lemma biteq15: "(x BIT Numeral.B0 = Numeral.Min) = False" unfolding Bit_def Pls_def Min_def by (simp, arith)
  | 
| 
 | 
    47  | 
lemma biteq16: "(x BIT Numeral.B1 = Numeral.Min) = (x = Numeral.Min)" unfolding Bit_def Min_def by (simp, arith)
  | 
| 
 | 
    48  | 
lemmas biteq = biteq1 biteq2 biteq3 biteq4 biteq5 biteq6 biteq7 biteq8 biteq9 biteq10 biteq11 biteq12 biteq13 biteq14 biteq15 biteq16
  | 
| 
 | 
    49  | 
  | 
| 
 | 
    50  | 
(* x < y for bit strings *)
  | 
| 
 | 
    51  | 
lemma bitless1: "(Numeral.Pls < Numeral.Min) = False" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    52  | 
lemma bitless2: "(Numeral.Pls < Numeral.Pls) = False" by auto
  | 
| 
 | 
    53  | 
lemma bitless3: "(Numeral.Min < Numeral.Pls) = True" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    54  | 
lemma bitless4: "(Numeral.Min < Numeral.Min) = False" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    55  | 
lemma bitless5: "(x BIT Numeral.B0 < y BIT Numeral.B0) = (x < y)" unfolding Bit_def by auto
  | 
| 
 | 
    56  | 
lemma bitless6: "(x BIT Numeral.B1 < y BIT Numeral.B1) = (x < y)" unfolding Bit_def by auto
  | 
| 
 | 
    57  | 
lemma bitless7: "(x BIT Numeral.B0 < y BIT Numeral.B1) = (x \<le> y)" unfolding Bit_def by auto
  | 
| 
 | 
    58  | 
lemma bitless8: "(x BIT Numeral.B1 < y BIT Numeral.B0) = (x < y)" unfolding Bit_def by auto
  | 
| 
 | 
    59  | 
lemma bitless9: "(Numeral.Pls < x BIT Numeral.B0) = (Numeral.Pls < x)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    60  | 
lemma bitless10: "(Numeral.Pls < x BIT Numeral.B1) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    61  | 
lemma bitless11: "(Numeral.Min < x BIT Numeral.B0) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def Min_def by auto
  | 
| 
 | 
    62  | 
lemma bitless12: "(Numeral.Min < x BIT Numeral.B1) = (Numeral.Min < x)" unfolding Bit_def Min_def by auto
  | 
| 
 | 
    63  | 
lemma bitless13: "(x BIT Numeral.B0 < Numeral.Pls) = (x < Numeral.Pls)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    64  | 
lemma bitless14: "(x BIT Numeral.B1 < Numeral.Pls) = (x < Numeral.Pls)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    65  | 
lemma bitless15: "(x BIT Numeral.B0 < Numeral.Min) = (x < Numeral.Pls)" unfolding Bit_def Pls_def Min_def by auto
  | 
| 
 | 
    66  | 
lemma bitless16: "(x BIT Numeral.B1 < Numeral.Min) = (x < Numeral.Min)" unfolding Bit_def Min_def by auto
  | 
| 
 | 
    67  | 
lemmas bitless = bitless1 bitless2 bitless3 bitless4 bitless5 bitless6 bitless7 bitless8 
  | 
| 
 | 
    68  | 
                 bitless9 bitless10 bitless11 bitless12 bitless13 bitless14 bitless15 bitless16
  | 
| 
 | 
    69  | 
  | 
| 
 | 
    70  | 
(* x \<le> y for bit strings *)
  | 
| 
 | 
    71  | 
lemma bitle1: "(Numeral.Pls \<le> Numeral.Min) = False" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    72  | 
lemma bitle2: "(Numeral.Pls \<le> Numeral.Pls) = True" by auto
  | 
| 
 | 
    73  | 
lemma bitle3: "(Numeral.Min \<le> Numeral.Pls) = True" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    74  | 
lemma bitle4: "(Numeral.Min \<le> Numeral.Min) = True" unfolding Pls_def Min_def by auto
  | 
| 
 | 
    75  | 
lemma bitle5: "(x BIT Numeral.B0 \<le> y BIT Numeral.B0) = (x \<le> y)" unfolding Bit_def by auto
  | 
| 
 | 
    76  | 
lemma bitle6: "(x BIT Numeral.B1 \<le> y BIT Numeral.B1) = (x \<le> y)" unfolding Bit_def by auto
  | 
| 
 | 
    77  | 
lemma bitle7: "(x BIT Numeral.B0 \<le> y BIT Numeral.B1) = (x \<le> y)" unfolding Bit_def by auto
  | 
| 
 | 
    78  | 
lemma bitle8: "(x BIT Numeral.B1 \<le> y BIT Numeral.B0) = (x < y)" unfolding Bit_def by auto
  | 
| 
 | 
    79  | 
lemma bitle9: "(Numeral.Pls \<le> x BIT Numeral.B0) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    80  | 
lemma bitle10: "(Numeral.Pls \<le> x BIT Numeral.B1) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    81  | 
lemma bitle11: "(Numeral.Min \<le> x BIT Numeral.B0) = (Numeral.Pls \<le> x)" unfolding Bit_def Pls_def Min_def by auto
  | 
| 
 | 
    82  | 
lemma bitle12: "(Numeral.Min \<le> x BIT Numeral.B1) = (Numeral.Min \<le> x)" unfolding Bit_def Min_def by auto
  | 
| 
 | 
    83  | 
lemma bitle13: "(x BIT Numeral.B0 \<le> Numeral.Pls) = (x \<le> Numeral.Pls)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    84  | 
lemma bitle14: "(x BIT Numeral.B1 \<le> Numeral.Pls) = (x < Numeral.Pls)" unfolding Bit_def Pls_def by auto
  | 
| 
 | 
    85  | 
lemma bitle15: "(x BIT Numeral.B0 \<le> Numeral.Min) = (x < Numeral.Pls)" unfolding Bit_def Pls_def Min_def by auto
  | 
| 
 | 
    86  | 
lemma bitle16: "(x BIT Numeral.B1 \<le> Numeral.Min) = (x \<le> Numeral.Min)" unfolding Bit_def Min_def by auto
  | 
| 
 | 
    87  | 
lemmas bitle = bitle1 bitle2 bitle3 bitle4 bitle5 bitle6 bitle7 bitle8 
  | 
| 
 | 
    88  | 
                 bitle9 bitle10 bitle11 bitle12 bitle13 bitle14 bitle15 bitle16
  | 
| 
 | 
    89  | 
  | 
| 
 | 
    90  | 
(* succ for bit strings *)
  | 
| 
 | 
    91  | 
lemmas bitsucc = succ_Pls succ_Min succ_1 succ_0
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
(* pred for bit strings *)
  | 
| 
 | 
    94  | 
lemmas bitpred = pred_Pls pred_Min pred_1 pred_0
  | 
| 
 | 
    95  | 
  | 
| 
 | 
    96  | 
(* unary minus for bit strings *)
  | 
| 
 | 
    97  | 
lemmas bituminus = minus_Pls minus_Min minus_1 minus_0 
  | 
| 
 | 
    98  | 
  | 
| 
 | 
    99  | 
(* addition for bit strings *)
  | 
| 
 | 
   100  | 
lemmas bitadd = add_Pls add_Pls_right add_Min add_Min_right add_BIT_11 add_BIT_10 add_BIT_0[where b="Numeral.B0"] add_BIT_0[where b="Numeral.B1"]
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
(* multiplication for bit strings *) 
  | 
| 
 | 
   103  | 
lemma mult_Pls_right: "x * Numeral.Pls = Numeral.Pls" by (simp add: Pls_def)
  | 
| 
 | 
   104  | 
lemma mult_Min_right: "x * Numeral.Min = - x" by (subst mult_commute, simp add: mult_Min)
  | 
| 
 | 
   105  | 
lemma multb0x: "(x BIT Numeral.B0) * y = (x * y) BIT Numeral.B0" unfolding Bit_def by simp
  | 
| 
 | 
   106  | 
lemma multxb0: "x * (y BIT Numeral.B0) = (x * y) BIT Numeral.B0" unfolding Bit_def by simp
  | 
| 
 | 
   107  | 
lemma multb1: "(x BIT Numeral.B1) * (y BIT Numeral.B1) = (((x * y) BIT Numeral.B0) + x + y) BIT Numeral.B1"
  | 
| 
 | 
   108  | 
  unfolding Bit_def by (simp add: ring_simps)
  | 
| 
 | 
   109  | 
lemmas bitmul = mult_Pls mult_Min mult_Pls_right mult_Min_right multb0x multxb0 multb1
  | 
| 
 | 
   110  | 
  | 
| 
 | 
   111  | 
lemmas bitarith = bitnorm bitiszero bitneg bitlezero biteq bitless bitle bitsucc bitpred bituminus bitadd bitmul 
  | 
| 
 | 
   112  | 
  | 
| 
 | 
   113  | 
constdefs 
  | 
| 
 | 
   114  | 
  "nat_norm_number_of (x::nat) == x"
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
lemma nat_norm_number_of: "nat_norm_number_of (number_of w) = (if lezero w then 0 else number_of w)"
  | 
| 
 | 
   117  | 
  apply (simp add: nat_norm_number_of_def)
  | 
| 
 | 
   118  | 
  unfolding lezero_def iszero_def neg_def
  | 
| 
 | 
   119  | 
  apply (simp add: number_of_is_id)
  | 
| 
 | 
   120  | 
  done
  | 
| 
 | 
   121  | 
  | 
| 
 | 
   122  | 
(* Normalization of nat literals *)
  | 
| 
 | 
   123  | 
lemma natnorm0: "(0::nat) = number_of (Numeral.Pls)" by auto
  | 
| 
 | 
   124  | 
lemma natnorm1: "(1 :: nat) = number_of (Numeral.Pls BIT Numeral.B1)"  by auto 
  | 
| 
 | 
   125  | 
lemmas natnorm = natnorm0 natnorm1 nat_norm_number_of
  | 
| 
 | 
   126  | 
  | 
| 
 | 
   127  | 
(* Suc *)
  | 
| 
 | 
   128  | 
lemma natsuc: "Suc (number_of x) = (if neg x then 1 else number_of (Numeral.succ x))" by (auto simp add: number_of_is_id)
  | 
| 
 | 
   129  | 
  | 
| 
 | 
   130  | 
(* Addition for nat *)
  | 
| 
 | 
   131  | 
lemma natadd: "number_of x + ((number_of y)::nat) = (if neg x then (number_of y) else (if neg y then number_of x else (number_of (x + y))))"
  | 
| 
 | 
   132  | 
  by (auto simp add: number_of_is_id)
  | 
| 
 | 
   133  | 
  | 
| 
 | 
   134  | 
(* Subtraction for nat *)
  | 
| 
 | 
   135  | 
lemma natsub: "(number_of x) - ((number_of y)::nat) = 
  | 
| 
 | 
   136  | 
  (if neg x then 0 else (if neg y then number_of x else (nat_norm_number_of (number_of (x + (- y))))))"
  | 
| 
 | 
   137  | 
  unfolding nat_norm_number_of
  | 
| 
 | 
   138  | 
  by (auto simp add: number_of_is_id neg_def lezero_def iszero_def Let_def nat_number_of_def)
  | 
| 
 | 
   139  | 
  | 
| 
 | 
   140  | 
(* Multiplication for nat *)
  | 
| 
 | 
   141  | 
lemma natmul: "(number_of x) * ((number_of y)::nat) = 
  | 
| 
 | 
   142  | 
  (if neg x then 0 else (if neg y then 0 else number_of (x * y)))"
  | 
| 
 | 
   143  | 
  apply (auto simp add: number_of_is_id neg_def iszero_def)
  | 
| 
 | 
   144  | 
  apply (case_tac "x > 0")
  | 
| 
 | 
   145  | 
  apply auto
  | 
| 
 | 
   146  | 
  apply (simp add: mult_strict_left_mono[where a=y and b=0 and c=x, simplified])
  | 
| 
 | 
   147  | 
  done
  | 
| 
 | 
   148  | 
  | 
| 
 | 
   149  | 
lemma nateq: "(((number_of x)::nat) = (number_of y)) = ((lezero x \<and> lezero y) \<or> (x = y))"
  | 
| 
 | 
   150  | 
  by (auto simp add: iszero_def lezero_def neg_def number_of_is_id)
  | 
| 
 | 
   151  | 
  | 
| 
 | 
   152  | 
lemma natless: "(((number_of x)::nat) < (number_of y)) = ((x < y) \<and> (\<not> (lezero y)))"
  | 
| 
 | 
   153  | 
  by (auto simp add: number_of_is_id neg_def lezero_def)
  | 
| 
 | 
   154  | 
  | 
| 
 | 
   155  | 
lemma natle: "(((number_of x)::nat) \<le> (number_of y)) = (y < x \<longrightarrow> lezero x)"
  | 
| 
 | 
   156  | 
  by (auto simp add: number_of_is_id lezero_def nat_number_of_def)
  | 
| 
 | 
   157  | 
  | 
| 
 | 
   158  | 
fun natfac :: "nat \<Rightarrow> nat"
  | 
| 
 | 
   159  | 
where
  | 
| 
 | 
   160  | 
   "natfac n = (if n = 0 then 1 else n * (natfac (n - 1)))"
  | 
| 
 | 
   161  | 
  | 
| 
 | 
   162  | 
lemmas compute_natarith = bitarith natnorm natsuc natadd natsub natmul nateq natless natle natfac.simps
  | 
| 
 | 
   163  | 
  | 
| 
 | 
   164  | 
lemma number_eq: "(((number_of x)::'a::{number_ring, ordered_idom}) = (number_of y)) = (x = y)"
 | 
| 
 | 
   165  | 
  unfolding number_of_eq
  | 
| 
 | 
   166  | 
  apply simp
  | 
| 
 | 
   167  | 
  done
  | 
| 
 | 
   168  | 
  | 
| 
 | 
   169  | 
lemma number_le: "(((number_of x)::'a::{number_ring, ordered_idom}) \<le>  (number_of y)) = (x \<le> y)"
 | 
| 
 | 
   170  | 
  unfolding number_of_eq
  | 
| 
 | 
   171  | 
  apply simp
  | 
| 
 | 
   172  | 
  done
  | 
| 
 | 
   173  | 
  | 
| 
 | 
   174  | 
lemma number_less: "(((number_of x)::'a::{number_ring, ordered_idom}) <  (number_of y)) = (x < y)"
 | 
| 
 | 
   175  | 
  unfolding number_of_eq 
  | 
| 
 | 
   176  | 
  apply simp
  | 
| 
 | 
   177  | 
  done
  | 
| 
 | 
   178  | 
  | 
| 
 | 
   179  | 
lemma number_diff: "((number_of x)::'a::{number_ring, ordered_idom}) - number_of y = number_of (x + (- y))"
 | 
| 
 | 
   180  | 
  apply (subst diff_number_of_eq)
  | 
| 
 | 
   181  | 
  apply simp
  | 
| 
 | 
   182  | 
  done
  | 
| 
 | 
   183  | 
  | 
| 
 | 
   184  | 
lemmas number_norm = number_of_Pls[symmetric] numeral_1_eq_1[symmetric]
  | 
| 
 | 
   185  | 
  | 
| 
 | 
   186  | 
lemmas compute_numberarith = number_of_minus[symmetric] number_of_add[symmetric] number_diff number_of_mult[symmetric] number_norm number_eq number_le number_less
  | 
| 
 | 
   187  | 
  | 
| 
 | 
   188  | 
lemma compute_real_of_nat_number_of: "real ((number_of v)::nat) = (if neg v then 0 else number_of v)"
  | 
| 
 | 
   189  | 
  by (simp only: real_of_nat_number_of number_of_is_id)
  | 
| 
 | 
   190  | 
  | 
| 
 | 
   191  | 
lemma compute_nat_of_int_number_of: "nat ((number_of v)::int) = (number_of v)"
  | 
| 
 | 
   192  | 
  by simp
  | 
| 
 | 
   193  | 
  | 
| 
 | 
   194  | 
lemmas compute_num_conversions = compute_real_of_nat_number_of compute_nat_of_int_number_of real_number_of
  | 
| 
 | 
   195  | 
  | 
| 
 | 
   196  | 
lemmas zpowerarith = zpower_number_of_even
  | 
| 
 | 
   197  | 
  zpower_number_of_odd[simplified zero_eq_Numeral0_nring one_eq_Numeral1_nring]
  | 
| 
 | 
   198  | 
  zpower_Pls zpower_Min
  | 
| 
 | 
   199  | 
  | 
| 
 | 
   200  | 
(* div, mod *)
  | 
| 
 | 
   201  | 
  | 
| 
 | 
   202  | 
lemma adjust: "adjust b (q, r) = (if 0 \<le> r - b then (2 * q + 1, r - b) else (2 * q, r))"
  | 
| 
 | 
   203  | 
  by (auto simp only: adjust_def)
  | 
| 
 | 
   204  | 
  | 
| 
 | 
   205  | 
lemma negateSnd: "negateSnd (q, r) = (q, -r)" 
  | 
| 
 | 
   206  | 
  by (auto simp only: negateSnd_def)
  | 
| 
 | 
   207  | 
  | 
| 
 | 
   208  | 
lemma divAlg: "divAlg (a, b) = (if 0\<le>a then
  | 
| 
 | 
   209  | 
                  if 0\<le>b then posDivAlg a b
  | 
| 
 | 
   210  | 
                  else if a=0 then (0, 0)
  | 
| 
 | 
   211  | 
                       else negateSnd (negDivAlg (-a) (-b))
  | 
| 
 | 
   212  | 
               else 
  | 
| 
 | 
   213  | 
                  if 0<b then negDivAlg a b
  | 
| 
 | 
   214  | 
                  else negateSnd (posDivAlg (-a) (-b)))"
  | 
| 
 | 
   215  | 
  by (auto simp only: divAlg_def)
  | 
| 
 | 
   216  | 
  | 
| 
 | 
   217  | 
lemmas compute_div_mod = div_def mod_def divAlg adjust negateSnd posDivAlg.simps negDivAlg.simps
  | 
| 
 | 
   218  | 
  | 
| 
 | 
   219  | 
  | 
| 
 | 
   220  | 
  | 
| 
 | 
   221  | 
(* collecting all the theorems *)
  | 
| 
 | 
   222  | 
  | 
| 
 | 
   223  | 
lemma even_Pls: "even (Numeral.Pls) = True"
  | 
| 
 | 
   224  | 
  apply (unfold Pls_def even_def)
  | 
| 
 | 
   225  | 
  by simp
  | 
| 
 | 
   226  | 
  | 
| 
 | 
   227  | 
lemma even_Min: "even (Numeral.Min) = False"
  | 
| 
 | 
   228  | 
  apply (unfold Min_def even_def)
  | 
| 
 | 
   229  | 
  by simp
  | 
| 
 | 
   230  | 
  | 
| 
 | 
   231  | 
lemma even_B0: "even (x BIT Numeral.B0) = True"
  | 
| 
 | 
   232  | 
  apply (unfold Bit_def)
  | 
| 
 | 
   233  | 
  by simp
  | 
| 
 | 
   234  | 
  | 
| 
 | 
   235  | 
lemma even_B1: "even (x BIT Numeral.B1) = False"
  | 
| 
 | 
   236  | 
  apply (unfold Bit_def)
  | 
| 
 | 
   237  | 
  by simp
  | 
| 
 | 
   238  | 
  | 
| 
 | 
   239  | 
lemma even_number_of: "even ((number_of w)::int) = even w"
  | 
| 
 | 
   240  | 
  by (simp only: number_of_is_id)
  | 
| 
 | 
   241  | 
  | 
| 
 | 
   242  | 
lemmas compute_even = even_Pls even_Min even_B0 even_B1 even_number_of
  | 
| 
 | 
   243  | 
  | 
| 
 | 
   244  | 
lemmas compute_numeral = compute_if compute_let compute_pair compute_bool 
  | 
| 
 | 
   245  | 
                         compute_natarith compute_numberarith max_def min_def compute_num_conversions zpowerarith compute_div_mod compute_even
  | 
| 
 | 
   246  | 
  | 
| 
 | 
   247  | 
end
  | 
| 
 | 
   248  | 
  | 
| 
 | 
   249  | 
  | 
| 
 | 
   250  | 
  |