author | haftmann |
Thu, 03 Dec 2015 15:33:01 +0100 | |
changeset 61781 | e1e6bb36b27a |
parent 61629 | 90f54d9e63f2 |
child 61799 | 4cf66f21b764 |
permissions | -rw-r--r-- |
21249 | 1 |
(* Title: HOL/Lattices.thy |
2 |
Author: Tobias Nipkow |
|
3 |
*) |
|
4 |
||
60758 | 5 |
section \<open>Abstract lattices\<close> |
21249 | 6 |
|
7 |
theory Lattices |
|
54555 | 8 |
imports Groups |
21249 | 9 |
begin |
10 |
||
60758 | 11 |
subsection \<open>Abstract semilattice\<close> |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
12 |
|
60758 | 13 |
text \<open> |
51487 | 14 |
These locales provide a basic structure for interpretation into |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
15 |
bigger structures; extensions require careful thinking, otherwise |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
16 |
undesired effects may occur due to interpretation. |
60758 | 17 |
\<close> |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
18 |
|
51487 | 19 |
no_notation times (infixl "*" 70) |
20 |
no_notation Groups.one ("1") |
|
21 |
||
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
22 |
locale semilattice = abel_semigroup + |
51487 | 23 |
assumes idem [simp]: "a * a = a" |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
24 |
begin |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
25 |
|
51487 | 26 |
lemma left_idem [simp]: "a * (a * b) = a * b" |
50615 | 27 |
by (simp add: assoc [symmetric]) |
28 |
||
51487 | 29 |
lemma right_idem [simp]: "(a * b) * b = a * b" |
50615 | 30 |
by (simp add: assoc) |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
31 |
|
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
32 |
end |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
33 |
|
51487 | 34 |
locale semilattice_neutr = semilattice + comm_monoid |
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
35 |
|
51487 | 36 |
locale semilattice_order = semilattice + |
37 |
fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<preceq>" 50) |
|
38 |
and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infix "\<prec>" 50) |
|
39 |
assumes order_iff: "a \<preceq> b \<longleftrightarrow> a = a * b" |
|
59545
12a6088ed195
explicit equivalence for strict order on lattices
haftmann
parents:
58889
diff
changeset
|
40 |
and strict_order_iff: "a \<prec> b \<longleftrightarrow> a = a * b \<and> a \<noteq> b" |
51487 | 41 |
begin |
42 |
||
43 |
lemma orderI: |
|
44 |
"a = a * b \<Longrightarrow> a \<preceq> b" |
|
45 |
by (simp add: order_iff) |
|
46 |
||
47 |
lemma orderE: |
|
48 |
assumes "a \<preceq> b" |
|
49 |
obtains "a = a * b" |
|
50 |
using assms by (unfold order_iff) |
|
51 |
||
52152 | 52 |
sublocale ordering less_eq less |
51487 | 53 |
proof |
54 |
fix a b |
|
55 |
show "a \<prec> b \<longleftrightarrow> a \<preceq> b \<and> a \<noteq> b" |
|
59545
12a6088ed195
explicit equivalence for strict order on lattices
haftmann
parents:
58889
diff
changeset
|
56 |
by (simp add: order_iff strict_order_iff) |
51487 | 57 |
next |
58 |
fix a |
|
59 |
show "a \<preceq> a" |
|
60 |
by (simp add: order_iff) |
|
61 |
next |
|
62 |
fix a b |
|
63 |
assume "a \<preceq> b" "b \<preceq> a" |
|
64 |
then have "a = a * b" "a * b = b" |
|
65 |
by (simp_all add: order_iff commute) |
|
66 |
then show "a = b" by simp |
|
67 |
next |
|
68 |
fix a b c |
|
69 |
assume "a \<preceq> b" "b \<preceq> c" |
|
70 |
then have "a = a * b" "b = b * c" |
|
71 |
by (simp_all add: order_iff commute) |
|
72 |
then have "a = a * (b * c)" |
|
73 |
by simp |
|
74 |
then have "a = (a * b) * c" |
|
75 |
by (simp add: assoc) |
|
60758 | 76 |
with \<open>a = a * b\<close> [symmetric] have "a = a * c" by simp |
51487 | 77 |
then show "a \<preceq> c" by (rule orderI) |
78 |
qed |
|
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
79 |
|
51487 | 80 |
lemma cobounded1 [simp]: |
81 |
"a * b \<preceq> a" |
|
82 |
by (simp add: order_iff commute) |
|
83 |
||
84 |
lemma cobounded2 [simp]: |
|
85 |
"a * b \<preceq> b" |
|
86 |
by (simp add: order_iff) |
|
87 |
||
88 |
lemma boundedI: |
|
89 |
assumes "a \<preceq> b" and "a \<preceq> c" |
|
90 |
shows "a \<preceq> b * c" |
|
91 |
proof (rule orderI) |
|
92 |
from assms obtain "a * b = a" and "a * c = a" by (auto elim!: orderE) |
|
93 |
then show "a = a * (b * c)" by (simp add: assoc [symmetric]) |
|
94 |
qed |
|
95 |
||
96 |
lemma boundedE: |
|
97 |
assumes "a \<preceq> b * c" |
|
98 |
obtains "a \<preceq> b" and "a \<preceq> c" |
|
99 |
using assms by (blast intro: trans cobounded1 cobounded2) |
|
100 |
||
54859 | 101 |
lemma bounded_iff [simp]: |
51487 | 102 |
"a \<preceq> b * c \<longleftrightarrow> a \<preceq> b \<and> a \<preceq> c" |
103 |
by (blast intro: boundedI elim: boundedE) |
|
104 |
||
105 |
lemma strict_boundedE: |
|
106 |
assumes "a \<prec> b * c" |
|
107 |
obtains "a \<prec> b" and "a \<prec> c" |
|
54859 | 108 |
using assms by (auto simp add: commute strict_iff_order elim: orderE intro!: that)+ |
51487 | 109 |
|
110 |
lemma coboundedI1: |
|
111 |
"a \<preceq> c \<Longrightarrow> a * b \<preceq> c" |
|
112 |
by (rule trans) auto |
|
113 |
||
114 |
lemma coboundedI2: |
|
115 |
"b \<preceq> c \<Longrightarrow> a * b \<preceq> c" |
|
116 |
by (rule trans) auto |
|
117 |
||
54858 | 118 |
lemma strict_coboundedI1: |
119 |
"a \<prec> c \<Longrightarrow> a * b \<prec> c" |
|
120 |
using irrefl |
|
121 |
by (auto intro: not_eq_order_implies_strict coboundedI1 strict_implies_order elim: strict_boundedE) |
|
122 |
||
123 |
lemma strict_coboundedI2: |
|
124 |
"b \<prec> c \<Longrightarrow> a * b \<prec> c" |
|
125 |
using strict_coboundedI1 [of b c a] by (simp add: commute) |
|
126 |
||
51487 | 127 |
lemma mono: "a \<preceq> c \<Longrightarrow> b \<preceq> d \<Longrightarrow> a * b \<preceq> c * d" |
128 |
by (blast intro: boundedI coboundedI1 coboundedI2) |
|
129 |
||
130 |
lemma absorb1: "a \<preceq> b \<Longrightarrow> a * b = a" |
|
54859 | 131 |
by (rule antisym) (auto simp add: refl) |
51487 | 132 |
|
133 |
lemma absorb2: "b \<preceq> a \<Longrightarrow> a * b = b" |
|
54859 | 134 |
by (rule antisym) (auto simp add: refl) |
54858 | 135 |
|
136 |
lemma absorb_iff1: "a \<preceq> b \<longleftrightarrow> a * b = a" |
|
137 |
using order_iff by auto |
|
138 |
||
139 |
lemma absorb_iff2: "b \<preceq> a \<longleftrightarrow> a * b = b" |
|
140 |
using order_iff by (auto simp add: commute) |
|
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
141 |
|
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
142 |
end |
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
143 |
|
51487 | 144 |
locale semilattice_neutr_order = semilattice_neutr + semilattice_order |
52152 | 145 |
begin |
51487 | 146 |
|
52152 | 147 |
sublocale ordering_top less_eq less 1 |
61169 | 148 |
by standard (simp add: order_iff) |
51487 | 149 |
|
52152 | 150 |
end |
151 |
||
51487 | 152 |
notation times (infixl "*" 70) |
153 |
notation Groups.one ("1") |
|
154 |
||
35301
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
haftmann
parents:
35121
diff
changeset
|
155 |
|
60758 | 156 |
subsection \<open>Syntactic infimum and supremum operations\<close> |
41082 | 157 |
|
44845 | 158 |
class inf = |
159 |
fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) |
|
25206 | 160 |
|
44845 | 161 |
class sup = |
162 |
fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) |
|
163 |
||
46691 | 164 |
|
60758 | 165 |
subsection \<open>Concrete lattices\<close> |
46691 | 166 |
|
167 |
notation |
|
168 |
less_eq (infix "\<sqsubseteq>" 50) and |
|
169 |
less (infix "\<sqsubset>" 50) |
|
170 |
||
44845 | 171 |
class semilattice_inf = order + inf + |
22737 | 172 |
assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" |
173 |
and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" |
|
21733 | 174 |
and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" |
21249 | 175 |
|
44845 | 176 |
class semilattice_sup = order + sup + |
22737 | 177 |
assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" |
178 |
and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" |
|
21733 | 179 |
and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" |
26014 | 180 |
begin |
181 |
||
60758 | 182 |
text \<open>Dual lattice\<close> |
26014 | 183 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
184 |
lemma dual_semilattice: |
44845 | 185 |
"class.semilattice_inf sup greater_eq greater" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
186 |
by (rule class.semilattice_inf.intro, rule dual_order) |
27682 | 187 |
(unfold_locales, simp_all add: sup_least) |
26014 | 188 |
|
189 |
end |
|
21249 | 190 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
191 |
class lattice = semilattice_inf + semilattice_sup |
21249 | 192 |
|
25382 | 193 |
|
60758 | 194 |
subsubsection \<open>Intro and elim rules\<close> |
21733 | 195 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
196 |
context semilattice_inf |
21733 | 197 |
begin |
21249 | 198 |
|
32064 | 199 |
lemma le_infI1: |
200 |
"a \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" |
|
201 |
by (rule order_trans) auto |
|
21249 | 202 |
|
32064 | 203 |
lemma le_infI2: |
204 |
"b \<sqsubseteq> x \<Longrightarrow> a \<sqinter> b \<sqsubseteq> x" |
|
205 |
by (rule order_trans) auto |
|
21733 | 206 |
|
32064 | 207 |
lemma le_infI: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" |
54857 | 208 |
by (fact inf_greatest) (* FIXME: duplicate lemma *) |
21249 | 209 |
|
32064 | 210 |
lemma le_infE: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" |
36008 | 211 |
by (blast intro: order_trans inf_le1 inf_le2) |
21249 | 212 |
|
54859 | 213 |
lemma le_inf_iff: |
32064 | 214 |
"x \<sqsubseteq> y \<sqinter> z \<longleftrightarrow> x \<sqsubseteq> y \<and> x \<sqsubseteq> z" |
215 |
by (blast intro: le_infI elim: le_infE) |
|
21733 | 216 |
|
32064 | 217 |
lemma le_iff_inf: |
218 |
"x \<sqsubseteq> y \<longleftrightarrow> x \<sqinter> y = x" |
|
54859 | 219 |
by (auto intro: le_infI1 antisym dest: eq_iff [THEN iffD1] simp add: le_inf_iff) |
21249 | 220 |
|
43753 | 221 |
lemma inf_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> a \<sqinter> b \<sqsubseteq> c \<sqinter> d" |
36008 | 222 |
by (fast intro: inf_greatest le_infI1 le_infI2) |
223 |
||
25206 | 224 |
lemma mono_inf: |
61076 | 225 |
fixes f :: "'a \<Rightarrow> 'b::semilattice_inf" |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
226 |
shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<sqsubseteq> f A \<sqinter> f B" |
25206 | 227 |
by (auto simp add: mono_def intro: Lattices.inf_greatest) |
21733 | 228 |
|
25206 | 229 |
end |
21733 | 230 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
231 |
context semilattice_sup |
21733 | 232 |
begin |
21249 | 233 |
|
32064 | 234 |
lemma le_supI1: |
235 |
"x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" |
|
25062 | 236 |
by (rule order_trans) auto |
21249 | 237 |
|
32064 | 238 |
lemma le_supI2: |
239 |
"x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" |
|
25062 | 240 |
by (rule order_trans) auto |
21733 | 241 |
|
32064 | 242 |
lemma le_supI: |
243 |
"a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" |
|
54857 | 244 |
by (fact sup_least) (* FIXME: duplicate lemma *) |
21249 | 245 |
|
32064 | 246 |
lemma le_supE: |
247 |
"a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" |
|
36008 | 248 |
by (blast intro: order_trans sup_ge1 sup_ge2) |
22422
ee19cdb07528
stepping towards uniform lattice theory development in HOL
haftmann
parents:
22384
diff
changeset
|
249 |
|
54859 | 250 |
lemma le_sup_iff: |
32064 | 251 |
"x \<squnion> y \<sqsubseteq> z \<longleftrightarrow> x \<sqsubseteq> z \<and> y \<sqsubseteq> z" |
252 |
by (blast intro: le_supI elim: le_supE) |
|
21733 | 253 |
|
32064 | 254 |
lemma le_iff_sup: |
255 |
"x \<sqsubseteq> y \<longleftrightarrow> x \<squnion> y = y" |
|
54859 | 256 |
by (auto intro: le_supI2 antisym dest: eq_iff [THEN iffD1] simp add: le_sup_iff) |
21734 | 257 |
|
43753 | 258 |
lemma sup_mono: "a \<sqsubseteq> c \<Longrightarrow> b \<sqsubseteq> d \<Longrightarrow> a \<squnion> b \<sqsubseteq> c \<squnion> d" |
36008 | 259 |
by (fast intro: sup_least le_supI1 le_supI2) |
260 |
||
25206 | 261 |
lemma mono_sup: |
61076 | 262 |
fixes f :: "'a \<Rightarrow> 'b::semilattice_sup" |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
263 |
shows "mono f \<Longrightarrow> f A \<squnion> f B \<sqsubseteq> f (A \<squnion> B)" |
25206 | 264 |
by (auto simp add: mono_def intro: Lattices.sup_least) |
21733 | 265 |
|
25206 | 266 |
end |
23878 | 267 |
|
21733 | 268 |
|
60758 | 269 |
subsubsection \<open>Equational laws\<close> |
21249 | 270 |
|
52152 | 271 |
context semilattice_inf |
272 |
begin |
|
273 |
||
61605 | 274 |
sublocale inf: semilattice inf |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
275 |
proof |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
276 |
fix a b c |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
277 |
show "(a \<sqinter> b) \<sqinter> c = a \<sqinter> (b \<sqinter> c)" |
54859 | 278 |
by (rule antisym) (auto intro: le_infI1 le_infI2 simp add: le_inf_iff) |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
279 |
show "a \<sqinter> b = b \<sqinter> a" |
54859 | 280 |
by (rule antisym) (auto simp add: le_inf_iff) |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
281 |
show "a \<sqinter> a = a" |
54859 | 282 |
by (rule antisym) (auto simp add: le_inf_iff) |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
283 |
qed |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
284 |
|
61605 | 285 |
sublocale inf: semilattice_order inf less_eq less |
61169 | 286 |
by standard (auto simp add: le_iff_inf less_le) |
51487 | 287 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
288 |
lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
289 |
by (fact inf.assoc) |
21733 | 290 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
291 |
lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
292 |
by (fact inf.commute) |
21733 | 293 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
294 |
lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
295 |
by (fact inf.left_commute) |
21733 | 296 |
|
44921 | 297 |
lemma inf_idem: "x \<sqinter> x = x" |
298 |
by (fact inf.idem) (* already simp *) |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
299 |
|
50615 | 300 |
lemma inf_left_idem: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" |
301 |
by (fact inf.left_idem) (* already simp *) |
|
302 |
||
303 |
lemma inf_right_idem: "(x \<sqinter> y) \<sqinter> y = x \<sqinter> y" |
|
304 |
by (fact inf.right_idem) (* already simp *) |
|
21733 | 305 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
306 |
lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" |
32064 | 307 |
by (rule antisym) auto |
21733 | 308 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
309 |
lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" |
32064 | 310 |
by (rule antisym) auto |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
311 |
|
32064 | 312 |
lemmas inf_aci = inf_commute inf_assoc inf_left_commute inf_left_idem |
21733 | 313 |
|
314 |
end |
|
315 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
316 |
context semilattice_sup |
21733 | 317 |
begin |
21249 | 318 |
|
61605 | 319 |
sublocale sup: semilattice sup |
52152 | 320 |
proof |
321 |
fix a b c |
|
322 |
show "(a \<squnion> b) \<squnion> c = a \<squnion> (b \<squnion> c)" |
|
54859 | 323 |
by (rule antisym) (auto intro: le_supI1 le_supI2 simp add: le_sup_iff) |
52152 | 324 |
show "a \<squnion> b = b \<squnion> a" |
54859 | 325 |
by (rule antisym) (auto simp add: le_sup_iff) |
52152 | 326 |
show "a \<squnion> a = a" |
54859 | 327 |
by (rule antisym) (auto simp add: le_sup_iff) |
52152 | 328 |
qed |
329 |
||
61605 | 330 |
sublocale sup: semilattice_order sup greater_eq greater |
61169 | 331 |
by standard (auto simp add: le_iff_sup sup.commute less_le) |
52152 | 332 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
333 |
lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
334 |
by (fact sup.assoc) |
21733 | 335 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
336 |
lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
337 |
by (fact sup.commute) |
21733 | 338 |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
339 |
lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" |
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
340 |
by (fact sup.left_commute) |
21733 | 341 |
|
44921 | 342 |
lemma sup_idem: "x \<squnion> x = x" |
343 |
by (fact sup.idem) (* already simp *) |
|
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
344 |
|
44918 | 345 |
lemma sup_left_idem [simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" |
34973
ae634fad947e
dropped mk_left_commute; use interpretation of locale abel_semigroup instead
haftmann
parents:
34209
diff
changeset
|
346 |
by (fact sup.left_idem) |
21733 | 347 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
348 |
lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" |
32064 | 349 |
by (rule antisym) auto |
21733 | 350 |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
351 |
lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" |
32064 | 352 |
by (rule antisym) auto |
21249 | 353 |
|
32064 | 354 |
lemmas sup_aci = sup_commute sup_assoc sup_left_commute sup_left_idem |
21733 | 355 |
|
356 |
end |
|
21249 | 357 |
|
21733 | 358 |
context lattice |
359 |
begin |
|
360 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
361 |
lemma dual_lattice: |
44845 | 362 |
"class.lattice sup (op \<ge>) (op >) inf" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
363 |
by (rule class.lattice.intro, rule dual_semilattice, rule class.semilattice_sup.intro, rule dual_order) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
364 |
(unfold_locales, auto) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
365 |
|
44918 | 366 |
lemma inf_sup_absorb [simp]: "x \<sqinter> (x \<squnion> y) = x" |
25102
db3e412c4cb1
antisymmetry not a default intro rule any longer
haftmann
parents:
25062
diff
changeset
|
367 |
by (blast intro: antisym inf_le1 inf_greatest sup_ge1) |
21733 | 368 |
|
44918 | 369 |
lemma sup_inf_absorb [simp]: "x \<squnion> (x \<sqinter> y) = x" |
25102
db3e412c4cb1
antisymmetry not a default intro rule any longer
haftmann
parents:
25062
diff
changeset
|
370 |
by (blast intro: antisym sup_ge1 sup_least inf_le1) |
21733 | 371 |
|
32064 | 372 |
lemmas inf_sup_aci = inf_aci sup_aci |
21734 | 373 |
|
22454 | 374 |
lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 |
375 |
||
60758 | 376 |
text\<open>Towards distributivity\<close> |
21249 | 377 |
|
21734 | 378 |
lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
32064 | 379 |
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) |
21734 | 380 |
|
381 |
lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" |
|
32064 | 382 |
by (auto intro: le_infI1 le_infI2 le_supI1 le_supI2) |
21734 | 383 |
|
60758 | 384 |
text\<open>If you have one of them, you have them all.\<close> |
21249 | 385 |
|
21733 | 386 |
lemma distrib_imp1: |
21249 | 387 |
assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
388 |
shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
|
389 |
proof- |
|
44918 | 390 |
have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by simp |
391 |
also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" |
|
392 |
by (simp add: D inf_commute sup_assoc del: sup_inf_absorb) |
|
21249 | 393 |
also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" |
44919 | 394 |
by(simp add: inf_commute) |
21249 | 395 |
also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) |
396 |
finally show ?thesis . |
|
397 |
qed |
|
398 |
||
21733 | 399 |
lemma distrib_imp2: |
21249 | 400 |
assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
401 |
shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
|
402 |
proof- |
|
44918 | 403 |
have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by simp |
404 |
also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" |
|
405 |
by (simp add: D sup_commute inf_assoc del: inf_sup_absorb) |
|
21249 | 406 |
also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" |
44919 | 407 |
by(simp add: sup_commute) |
21249 | 408 |
also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) |
409 |
finally show ?thesis . |
|
410 |
qed |
|
411 |
||
21733 | 412 |
end |
21249 | 413 |
|
60758 | 414 |
subsubsection \<open>Strict order\<close> |
32568 | 415 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
416 |
context semilattice_inf |
32568 | 417 |
begin |
418 |
||
419 |
lemma less_infI1: |
|
420 |
"a \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
421 |
by (auto simp add: less_le inf_absorb1 intro: le_infI1) |
32568 | 422 |
|
423 |
lemma less_infI2: |
|
424 |
"b \<sqsubset> x \<Longrightarrow> a \<sqinter> b \<sqsubset> x" |
|
32642
026e7c6a6d08
be more cautious wrt. simp rules: inf_absorb1, inf_absorb2, sup_absorb1, sup_absorb2 are no simp rules by default any longer
haftmann
parents:
32568
diff
changeset
|
425 |
by (auto simp add: less_le inf_absorb2 intro: le_infI2) |
32568 | 426 |
|
427 |
end |
|
428 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
429 |
context semilattice_sup |
32568 | 430 |
begin |
431 |
||
432 |
lemma less_supI1: |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
433 |
"x \<sqsubset> a \<Longrightarrow> x \<sqsubset> a \<squnion> b" |
44921 | 434 |
using dual_semilattice |
435 |
by (rule semilattice_inf.less_infI1) |
|
32568 | 436 |
|
437 |
lemma less_supI2: |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
438 |
"x \<sqsubset> b \<Longrightarrow> x \<sqsubset> a \<squnion> b" |
44921 | 439 |
using dual_semilattice |
440 |
by (rule semilattice_inf.less_infI2) |
|
32568 | 441 |
|
442 |
end |
|
443 |
||
21249 | 444 |
|
60758 | 445 |
subsection \<open>Distributive lattices\<close> |
21249 | 446 |
|
22454 | 447 |
class distrib_lattice = lattice + |
21249 | 448 |
assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" |
449 |
||
21733 | 450 |
context distrib_lattice |
451 |
begin |
|
452 |
||
453 |
lemma sup_inf_distrib2: |
|
44921 | 454 |
"(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" |
455 |
by (simp add: sup_commute sup_inf_distrib1) |
|
21249 | 456 |
|
21733 | 457 |
lemma inf_sup_distrib1: |
44921 | 458 |
"x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" |
459 |
by (rule distrib_imp2 [OF sup_inf_distrib1]) |
|
21249 | 460 |
|
21733 | 461 |
lemma inf_sup_distrib2: |
44921 | 462 |
"(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" |
463 |
by (simp add: inf_commute inf_sup_distrib1) |
|
21249 | 464 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
465 |
lemma dual_distrib_lattice: |
44845 | 466 |
"class.distrib_lattice sup (op \<ge>) (op >) inf" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
467 |
by (rule class.distrib_lattice.intro, rule dual_lattice) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
468 |
(unfold_locales, fact inf_sup_distrib1) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
469 |
|
36008 | 470 |
lemmas sup_inf_distrib = |
471 |
sup_inf_distrib1 sup_inf_distrib2 |
|
472 |
||
473 |
lemmas inf_sup_distrib = |
|
474 |
inf_sup_distrib1 inf_sup_distrib2 |
|
475 |
||
21733 | 476 |
lemmas distrib = |
21249 | 477 |
sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 |
478 |
||
21733 | 479 |
end |
480 |
||
21249 | 481 |
|
60758 | 482 |
subsection \<open>Bounded lattices and boolean algebras\<close> |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
483 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52152
diff
changeset
|
484 |
class bounded_semilattice_inf_top = semilattice_inf + order_top |
52152 | 485 |
begin |
51487 | 486 |
|
61605 | 487 |
sublocale inf_top: semilattice_neutr inf top |
488 |
+ inf_top: semilattice_neutr_order inf top less_eq less |
|
51487 | 489 |
proof |
490 |
fix x |
|
491 |
show "x \<sqinter> \<top> = x" |
|
492 |
by (rule inf_absorb1) simp |
|
493 |
qed |
|
494 |
||
52152 | 495 |
end |
51487 | 496 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52152
diff
changeset
|
497 |
class bounded_semilattice_sup_bot = semilattice_sup + order_bot |
52152 | 498 |
begin |
499 |
||
61605 | 500 |
sublocale sup_bot: semilattice_neutr sup bot |
501 |
+ sup_bot: semilattice_neutr_order sup bot greater_eq greater |
|
51487 | 502 |
proof |
503 |
fix x |
|
504 |
show "x \<squnion> \<bottom> = x" |
|
505 |
by (rule sup_absorb1) simp |
|
506 |
qed |
|
507 |
||
52152 | 508 |
end |
509 |
||
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52152
diff
changeset
|
510 |
class bounded_lattice_bot = lattice + order_bot |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
511 |
begin |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
512 |
|
51487 | 513 |
subclass bounded_semilattice_sup_bot .. |
514 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
515 |
lemma inf_bot_left [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
516 |
"\<bottom> \<sqinter> x = \<bottom>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
517 |
by (rule inf_absorb1) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
518 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
519 |
lemma inf_bot_right [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
520 |
"x \<sqinter> \<bottom> = \<bottom>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
521 |
by (rule inf_absorb2) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
522 |
|
51487 | 523 |
lemma sup_bot_left: |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
524 |
"\<bottom> \<squnion> x = x" |
51487 | 525 |
by (fact sup_bot.left_neutral) |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
526 |
|
51487 | 527 |
lemma sup_bot_right: |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
528 |
"x \<squnion> \<bottom> = x" |
51487 | 529 |
by (fact sup_bot.right_neutral) |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
530 |
|
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
531 |
lemma sup_eq_bot_iff [simp]: |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
532 |
"x \<squnion> y = \<bottom> \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
533 |
by (simp add: eq_iff) |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
534 |
|
51593 | 535 |
lemma bot_eq_sup_iff [simp]: |
536 |
"\<bottom> = x \<squnion> y \<longleftrightarrow> x = \<bottom> \<and> y = \<bottom>" |
|
537 |
by (simp add: eq_iff) |
|
538 |
||
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
539 |
end |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
540 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52152
diff
changeset
|
541 |
class bounded_lattice_top = lattice + order_top |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
542 |
begin |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
543 |
|
51487 | 544 |
subclass bounded_semilattice_inf_top .. |
545 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
546 |
lemma sup_top_left [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
547 |
"\<top> \<squnion> x = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
548 |
by (rule sup_absorb1) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
549 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
550 |
lemma sup_top_right [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
551 |
"x \<squnion> \<top> = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
552 |
by (rule sup_absorb2) simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
553 |
|
51487 | 554 |
lemma inf_top_left: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
555 |
"\<top> \<sqinter> x = x" |
51487 | 556 |
by (fact inf_top.left_neutral) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
557 |
|
51487 | 558 |
lemma inf_top_right: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
559 |
"x \<sqinter> \<top> = x" |
51487 | 560 |
by (fact inf_top.right_neutral) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
561 |
|
36008 | 562 |
lemma inf_eq_top_iff [simp]: |
563 |
"x \<sqinter> y = \<top> \<longleftrightarrow> x = \<top> \<and> y = \<top>" |
|
564 |
by (simp add: eq_iff) |
|
32568 | 565 |
|
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
566 |
end |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
567 |
|
52729
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
haftmann
parents:
52152
diff
changeset
|
568 |
class bounded_lattice = lattice + order_bot + order_top |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
569 |
begin |
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
570 |
|
51487 | 571 |
subclass bounded_lattice_bot .. |
572 |
subclass bounded_lattice_top .. |
|
573 |
||
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
574 |
lemma dual_bounded_lattice: |
44845 | 575 |
"class.bounded_lattice sup greater_eq greater inf \<top> \<bottom>" |
36352
f71978e47cd5
add bounded_lattice_bot and bounded_lattice_top type classes
Cezary Kaliszyk <kaliszyk@in.tum.de>
parents:
36096
diff
changeset
|
576 |
by unfold_locales (auto simp add: less_le_not_le) |
32568 | 577 |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
578 |
end |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
579 |
|
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
580 |
class boolean_algebra = distrib_lattice + bounded_lattice + minus + uminus + |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
581 |
assumes inf_compl_bot: "x \<sqinter> - x = \<bottom>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
582 |
and sup_compl_top: "x \<squnion> - x = \<top>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
583 |
assumes diff_eq: "x - y = x \<sqinter> - y" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
584 |
begin |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
585 |
|
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
586 |
lemma dual_boolean_algebra: |
44845 | 587 |
"class.boolean_algebra (\<lambda>x y. x \<squnion> - y) uminus sup greater_eq greater inf \<top> \<bottom>" |
36635
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
haftmann
parents:
36352
diff
changeset
|
588 |
by (rule class.boolean_algebra.intro, rule dual_bounded_lattice, rule dual_distrib_lattice) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
589 |
(unfold_locales, auto simp add: inf_compl_bot sup_compl_top diff_eq) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
590 |
|
44918 | 591 |
lemma compl_inf_bot [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
592 |
"- x \<sqinter> x = \<bottom>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
593 |
by (simp add: inf_commute inf_compl_bot) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
594 |
|
44918 | 595 |
lemma compl_sup_top [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
596 |
"- x \<squnion> x = \<top>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
597 |
by (simp add: sup_commute sup_compl_top) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
598 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
599 |
lemma compl_unique: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
600 |
assumes "x \<sqinter> y = \<bottom>" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
601 |
and "x \<squnion> y = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
602 |
shows "- x = y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
603 |
proof - |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
604 |
have "(x \<sqinter> - x) \<squnion> (- x \<sqinter> y) = (x \<sqinter> y) \<squnion> (- x \<sqinter> y)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
605 |
using inf_compl_bot assms(1) by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
606 |
then have "(- x \<sqinter> x) \<squnion> (- x \<sqinter> y) = (y \<sqinter> x) \<squnion> (y \<sqinter> - x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
607 |
by (simp add: inf_commute) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
608 |
then have "- x \<sqinter> (x \<squnion> y) = y \<sqinter> (x \<squnion> - x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
609 |
by (simp add: inf_sup_distrib1) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
610 |
then have "- x \<sqinter> \<top> = y \<sqinter> \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
611 |
using sup_compl_top assms(2) by simp |
34209 | 612 |
then show "- x = y" by simp |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
613 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
614 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
615 |
lemma double_compl [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
616 |
"- (- x) = x" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
617 |
using compl_inf_bot compl_sup_top by (rule compl_unique) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
618 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
619 |
lemma compl_eq_compl_iff [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
620 |
"- x = - y \<longleftrightarrow> x = y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
621 |
proof |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
622 |
assume "- x = - y" |
36008 | 623 |
then have "- (- x) = - (- y)" by (rule arg_cong) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
624 |
then show "x = y" by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
625 |
next |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
626 |
assume "x = y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
627 |
then show "- x = - y" by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
628 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
629 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
630 |
lemma compl_bot_eq [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
631 |
"- \<bottom> = \<top>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
632 |
proof - |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
633 |
from sup_compl_top have "\<bottom> \<squnion> - \<bottom> = \<top>" . |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
634 |
then show ?thesis by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
635 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
636 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
637 |
lemma compl_top_eq [simp]: |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
638 |
"- \<top> = \<bottom>" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
639 |
proof - |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
640 |
from inf_compl_bot have "\<top> \<sqinter> - \<top> = \<bottom>" . |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
641 |
then show ?thesis by simp |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
642 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
643 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
644 |
lemma compl_inf [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
645 |
"- (x \<sqinter> y) = - x \<squnion> - y" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
646 |
proof (rule compl_unique) |
36008 | 647 |
have "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = (y \<sqinter> (x \<sqinter> - x)) \<squnion> (x \<sqinter> (y \<sqinter> - y))" |
648 |
by (simp only: inf_sup_distrib inf_aci) |
|
649 |
then show "(x \<sqinter> y) \<sqinter> (- x \<squnion> - y) = \<bottom>" |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
650 |
by (simp add: inf_compl_bot) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
651 |
next |
36008 | 652 |
have "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = (- y \<squnion> (x \<squnion> - x)) \<sqinter> (- x \<squnion> (y \<squnion> - y))" |
653 |
by (simp only: sup_inf_distrib sup_aci) |
|
654 |
then show "(x \<sqinter> y) \<squnion> (- x \<squnion> - y) = \<top>" |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
655 |
by (simp add: sup_compl_top) |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
656 |
qed |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
657 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
658 |
lemma compl_sup [simp]: |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
659 |
"- (x \<squnion> y) = - x \<sqinter> - y" |
44921 | 660 |
using dual_boolean_algebra |
661 |
by (rule boolean_algebra.compl_inf) |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
662 |
|
36008 | 663 |
lemma compl_mono: |
664 |
"x \<sqsubseteq> y \<Longrightarrow> - y \<sqsubseteq> - x" |
|
665 |
proof - |
|
666 |
assume "x \<sqsubseteq> y" |
|
667 |
then have "x \<squnion> y = y" by (simp only: le_iff_sup) |
|
668 |
then have "- (x \<squnion> y) = - y" by simp |
|
669 |
then have "- x \<sqinter> - y = - y" by simp |
|
670 |
then have "- y \<sqinter> - x = - y" by (simp only: inf_commute) |
|
671 |
then show "- y \<sqsubseteq> - x" by (simp only: le_iff_inf) |
|
672 |
qed |
|
673 |
||
44918 | 674 |
lemma compl_le_compl_iff [simp]: |
43753 | 675 |
"- x \<sqsubseteq> - y \<longleftrightarrow> y \<sqsubseteq> x" |
43873 | 676 |
by (auto dest: compl_mono) |
677 |
||
678 |
lemma compl_le_swap1: |
|
679 |
assumes "y \<sqsubseteq> - x" shows "x \<sqsubseteq> -y" |
|
680 |
proof - |
|
681 |
from assms have "- (- x) \<sqsubseteq> - y" by (simp only: compl_le_compl_iff) |
|
682 |
then show ?thesis by simp |
|
683 |
qed |
|
684 |
||
685 |
lemma compl_le_swap2: |
|
686 |
assumes "- y \<sqsubseteq> x" shows "- x \<sqsubseteq> y" |
|
687 |
proof - |
|
688 |
from assms have "- x \<sqsubseteq> - (- y)" by (simp only: compl_le_compl_iff) |
|
689 |
then show ?thesis by simp |
|
690 |
qed |
|
691 |
||
692 |
lemma compl_less_compl_iff: (* TODO: declare [simp] ? *) |
|
693 |
"- x \<sqsubset> - y \<longleftrightarrow> y \<sqsubset> x" |
|
44919 | 694 |
by (auto simp add: less_le) |
43873 | 695 |
|
696 |
lemma compl_less_swap1: |
|
697 |
assumes "y \<sqsubset> - x" shows "x \<sqsubset> - y" |
|
698 |
proof - |
|
699 |
from assms have "- (- x) \<sqsubset> - y" by (simp only: compl_less_compl_iff) |
|
700 |
then show ?thesis by simp |
|
701 |
qed |
|
702 |
||
703 |
lemma compl_less_swap2: |
|
704 |
assumes "- y \<sqsubset> x" shows "- x \<sqsubset> y" |
|
705 |
proof - |
|
706 |
from assms have "- x \<sqsubset> - (- y)" by (simp only: compl_less_compl_iff) |
|
707 |
then show ?thesis by simp |
|
708 |
qed |
|
36008 | 709 |
|
61629
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
710 |
lemma sup_cancel_left1: "sup (sup x a) (sup (- x) b) = top" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
711 |
by(simp add: inf_sup_aci sup_compl_top) |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
712 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
713 |
lemma sup_cancel_left2: "sup (sup (- x) a) (sup x b) = top" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
714 |
by(simp add: inf_sup_aci sup_compl_top) |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
715 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
716 |
lemma inf_cancel_left1: "inf (inf x a) (inf (- x) b) = bot" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
717 |
by(simp add: inf_sup_aci inf_compl_bot) |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
718 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
719 |
lemma inf_cancel_left2: "inf (inf (- x) a) (inf x b) = bot" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
720 |
by(simp add: inf_sup_aci inf_compl_bot) |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
721 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
722 |
declare inf_compl_bot [simp] sup_compl_top [simp] |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
723 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
724 |
lemma sup_compl_top_left1 [simp]: "sup (- x) (sup x y) = top" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
725 |
by(simp add: sup_assoc[symmetric]) |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
726 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
727 |
lemma sup_compl_top_left2 [simp]: "sup x (sup (- x) y) = top" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
728 |
using sup_compl_top_left1[of "- x" y] by simp |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
729 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
730 |
lemma inf_compl_bot_left1 [simp]: "inf (- x) (inf x y) = bot" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
731 |
by(simp add: inf_assoc[symmetric]) |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
732 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
733 |
lemma inf_compl_bot_left2 [simp]: "inf x (inf (- x) y) = bot" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
734 |
using inf_compl_bot_left1[of "- x" y] by simp |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
735 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
736 |
lemma inf_compl_bot_right [simp]: "inf x (inf y (- x)) = bot" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
737 |
by(subst inf_left_commute) simp |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
738 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
739 |
end |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
740 |
|
61629
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
741 |
ML_file "Tools/boolean_algebra_cancel.ML" |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
742 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
743 |
simproc_setup boolean_algebra_cancel_sup ("sup a b::'a::boolean_algebra") = |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
744 |
{* fn phi => fn ss => try Boolean_Algebra_Cancel.cancel_sup_conv *} |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
745 |
|
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
746 |
simproc_setup boolean_algebra_cancel_inf ("inf a b::'a::boolean_algebra") = |
90f54d9e63f2
cancel complementary terms as arguments to sup/inf in boolean algebras
Andreas Lochbihler
parents:
61605
diff
changeset
|
747 |
{* fn phi => fn ss => try Boolean_Algebra_Cancel.cancel_inf_conv *} |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
748 |
|
60758 | 749 |
subsection \<open>@{text "min/max"} as special case of lattice\<close> |
51540
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
750 |
|
54861
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
751 |
context linorder |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
752 |
begin |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
753 |
|
61605 | 754 |
sublocale min: semilattice_order min less_eq less |
755 |
+ max: semilattice_order max greater_eq greater |
|
61169 | 756 |
by standard (auto simp add: min_def max_def) |
51540
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
757 |
|
54861
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
758 |
lemma min_le_iff_disj: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
759 |
"min x y \<le> z \<longleftrightarrow> x \<le> z \<or> y \<le> z" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
760 |
unfolding min_def using linear by (auto intro: order_trans) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
761 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
762 |
lemma le_max_iff_disj: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
763 |
"z \<le> max x y \<longleftrightarrow> z \<le> x \<or> z \<le> y" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
764 |
unfolding max_def using linear by (auto intro: order_trans) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
765 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
766 |
lemma min_less_iff_disj: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
767 |
"min x y < z \<longleftrightarrow> x < z \<or> y < z" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
768 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
769 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
770 |
lemma less_max_iff_disj: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
771 |
"z < max x y \<longleftrightarrow> z < x \<or> z < y" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
772 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
773 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
774 |
lemma min_less_iff_conj [simp]: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
775 |
"z < min x y \<longleftrightarrow> z < x \<and> z < y" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
776 |
unfolding min_def le_less using less_linear by (auto intro: less_trans) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
777 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
778 |
lemma max_less_iff_conj [simp]: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
779 |
"max x y < z \<longleftrightarrow> x < z \<and> y < z" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
780 |
unfolding max_def le_less using less_linear by (auto intro: less_trans) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
781 |
|
54862 | 782 |
lemma min_max_distrib1: |
783 |
"min (max b c) a = max (min b a) (min c a)" |
|
784 |
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym) |
|
785 |
||
786 |
lemma min_max_distrib2: |
|
787 |
"min a (max b c) = max (min a b) (min a c)" |
|
788 |
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym) |
|
789 |
||
790 |
lemma max_min_distrib1: |
|
791 |
"max (min b c) a = min (max b a) (max c a)" |
|
792 |
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym) |
|
793 |
||
794 |
lemma max_min_distrib2: |
|
795 |
"max a (min b c) = min (max a b) (max a c)" |
|
796 |
by (auto simp add: min_def max_def not_le dest: le_less_trans less_trans intro: antisym) |
|
797 |
||
798 |
lemmas min_max_distribs = min_max_distrib1 min_max_distrib2 max_min_distrib1 max_min_distrib2 |
|
799 |
||
54861
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
800 |
lemma split_min [no_atp]: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
801 |
"P (min i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P i) \<and> (\<not> i \<le> j \<longrightarrow> P j)" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
802 |
by (simp add: min_def) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
803 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
804 |
lemma split_max [no_atp]: |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
805 |
"P (max i j) \<longleftrightarrow> (i \<le> j \<longrightarrow> P j) \<and> (\<not> i \<le> j \<longrightarrow> P i)" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
806 |
by (simp add: max_def) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
807 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
808 |
lemma min_of_mono: |
61076 | 809 |
fixes f :: "'a \<Rightarrow> 'b::linorder" |
54861
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
810 |
shows "mono f \<Longrightarrow> min (f m) (f n) = f (min m n)" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
811 |
by (auto simp: mono_def Orderings.min_def min_def intro: Orderings.antisym) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
812 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
813 |
lemma max_of_mono: |
61076 | 814 |
fixes f :: "'a \<Rightarrow> 'b::linorder" |
54861
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
815 |
shows "mono f \<Longrightarrow> max (f m) (f n) = f (max m n)" |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
816 |
by (auto simp: mono_def Orderings.max_def max_def intro: Orderings.antisym) |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
817 |
|
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
818 |
end |
00d551179872
postponed min/max lemmas until abstract lattice is available
haftmann
parents:
54859
diff
changeset
|
819 |
|
61076 | 820 |
lemma inf_min: "inf = (min :: 'a::{semilattice_inf,linorder} \<Rightarrow> 'a \<Rightarrow> 'a)" |
51540
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
821 |
by (auto intro: antisym simp add: min_def fun_eq_iff) |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
822 |
|
61076 | 823 |
lemma sup_max: "sup = (max :: 'a::{semilattice_sup,linorder} \<Rightarrow> 'a \<Rightarrow> 'a)" |
51540
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
824 |
by (auto intro: antisym simp add: max_def fun_eq_iff) |
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
825 |
|
eea5c4ca4a0e
explicit sublocale dependency for Min/Max yields more appropriate Min/Max prefix for a couple of facts
haftmann
parents:
51489
diff
changeset
|
826 |
|
60758 | 827 |
subsection \<open>Uniqueness of inf and sup\<close> |
22454 | 828 |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
829 |
lemma (in semilattice_inf) inf_unique: |
22454 | 830 |
fixes f (infixl "\<triangle>" 70) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
831 |
assumes le1: "\<And>x y. x \<triangle> y \<sqsubseteq> x" and le2: "\<And>x y. x \<triangle> y \<sqsubseteq> y" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
832 |
and greatest: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" |
22737 | 833 |
shows "x \<sqinter> y = x \<triangle> y" |
22454 | 834 |
proof (rule antisym) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
835 |
show "x \<triangle> y \<sqsubseteq> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) |
22454 | 836 |
next |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
837 |
have leI: "\<And>x y z. x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<triangle> z" by (blast intro: greatest) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
838 |
show "x \<sqinter> y \<sqsubseteq> x \<triangle> y" by (rule leI) simp_all |
22454 | 839 |
qed |
840 |
||
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
34973
diff
changeset
|
841 |
lemma (in semilattice_sup) sup_unique: |
22454 | 842 |
fixes f (infixl "\<nabla>" 70) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
843 |
assumes ge1 [simp]: "\<And>x y. x \<sqsubseteq> x \<nabla> y" and ge2: "\<And>x y. y \<sqsubseteq> x \<nabla> y" |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
844 |
and least: "\<And>x y z. y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<nabla> z \<sqsubseteq> x" |
22737 | 845 |
shows "x \<squnion> y = x \<nabla> y" |
22454 | 846 |
proof (rule antisym) |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
847 |
show "x \<squnion> y \<sqsubseteq> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) |
22454 | 848 |
next |
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
849 |
have leI: "\<And>x y z. x \<sqsubseteq> z \<Longrightarrow> y \<sqsubseteq> z \<Longrightarrow> x \<nabla> y \<sqsubseteq> z" by (blast intro: least) |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
850 |
show "x \<nabla> y \<sqsubseteq> x \<squnion> y" by (rule leI) simp_all |
22454 | 851 |
qed |
36008 | 852 |
|
22454 | 853 |
|
60758 | 854 |
subsection \<open>Lattice on @{typ bool}\<close> |
22454 | 855 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
856 |
instantiation bool :: boolean_algebra |
25510 | 857 |
begin |
858 |
||
859 |
definition |
|
41080 | 860 |
bool_Compl_def [simp]: "uminus = Not" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
861 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
862 |
definition |
41080 | 863 |
bool_diff_def [simp]: "A - B \<longleftrightarrow> A \<and> \<not> B" |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
864 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
865 |
definition |
41080 | 866 |
[simp]: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q" |
25510 | 867 |
|
868 |
definition |
|
41080 | 869 |
[simp]: "P \<squnion> Q \<longleftrightarrow> P \<or> Q" |
25510 | 870 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
871 |
instance proof |
41080 | 872 |
qed auto |
22454 | 873 |
|
25510 | 874 |
end |
875 |
||
32781 | 876 |
lemma sup_boolI1: |
877 |
"P \<Longrightarrow> P \<squnion> Q" |
|
41080 | 878 |
by simp |
32781 | 879 |
|
880 |
lemma sup_boolI2: |
|
881 |
"Q \<Longrightarrow> P \<squnion> Q" |
|
41080 | 882 |
by simp |
32781 | 883 |
|
884 |
lemma sup_boolE: |
|
885 |
"P \<squnion> Q \<Longrightarrow> (P \<Longrightarrow> R) \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" |
|
41080 | 886 |
by auto |
32781 | 887 |
|
23878 | 888 |
|
60758 | 889 |
subsection \<open>Lattice on @{typ "_ \<Rightarrow> _"}\<close> |
23878 | 890 |
|
51387 | 891 |
instantiation "fun" :: (type, semilattice_sup) semilattice_sup |
25510 | 892 |
begin |
893 |
||
894 |
definition |
|
41080 | 895 |
"f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" |
896 |
||
49769 | 897 |
lemma sup_apply [simp, code]: |
41080 | 898 |
"(f \<squnion> g) x = f x \<squnion> g x" |
899 |
by (simp add: sup_fun_def) |
|
25510 | 900 |
|
32780 | 901 |
instance proof |
46884 | 902 |
qed (simp_all add: le_fun_def) |
23878 | 903 |
|
25510 | 904 |
end |
23878 | 905 |
|
51387 | 906 |
instantiation "fun" :: (type, semilattice_inf) semilattice_inf |
907 |
begin |
|
908 |
||
909 |
definition |
|
910 |
"f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" |
|
911 |
||
912 |
lemma inf_apply [simp, code]: |
|
913 |
"(f \<sqinter> g) x = f x \<sqinter> g x" |
|
914 |
by (simp add: inf_fun_def) |
|
915 |
||
916 |
instance proof |
|
917 |
qed (simp_all add: le_fun_def) |
|
918 |
||
919 |
end |
|
920 |
||
921 |
instance "fun" :: (type, lattice) lattice .. |
|
922 |
||
41080 | 923 |
instance "fun" :: (type, distrib_lattice) distrib_lattice proof |
46884 | 924 |
qed (rule ext, simp add: sup_inf_distrib1) |
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
925 |
|
34007
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
926 |
instance "fun" :: (type, bounded_lattice) bounded_lattice .. |
aea892559fc5
tuned lattices theory fragements; generlized some lemmas from sets to lattices
haftmann
parents:
32781
diff
changeset
|
927 |
|
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
928 |
instantiation "fun" :: (type, uminus) uminus |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
929 |
begin |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
930 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
931 |
definition |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
932 |
fun_Compl_def: "- A = (\<lambda>x. - A x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
933 |
|
49769 | 934 |
lemma uminus_apply [simp, code]: |
41080 | 935 |
"(- A) x = - (A x)" |
936 |
by (simp add: fun_Compl_def) |
|
937 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
938 |
instance .. |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
939 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
940 |
end |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
941 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
942 |
instantiation "fun" :: (type, minus) minus |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
943 |
begin |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
944 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
945 |
definition |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
946 |
fun_diff_def: "A - B = (\<lambda>x. A x - B x)" |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
947 |
|
49769 | 948 |
lemma minus_apply [simp, code]: |
41080 | 949 |
"(A - B) x = A x - B x" |
950 |
by (simp add: fun_diff_def) |
|
951 |
||
31991
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
952 |
instance .. |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
953 |
|
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
954 |
end |
37390299214a
added boolean_algebra type class; tuned lattice duals
haftmann
parents:
30729
diff
changeset
|
955 |
|
41080 | 956 |
instance "fun" :: (type, boolean_algebra) boolean_algebra proof |
46884 | 957 |
qed (rule ext, simp_all add: inf_compl_bot sup_compl_top diff_eq)+ |
26794 | 958 |
|
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
959 |
|
60758 | 960 |
subsection \<open>Lattice on unary and binary predicates\<close> |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
961 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
962 |
lemma inf1I: "A x \<Longrightarrow> B x \<Longrightarrow> (A \<sqinter> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
963 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
964 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
965 |
lemma inf2I: "A x y \<Longrightarrow> B x y \<Longrightarrow> (A \<sqinter> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
966 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
967 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
968 |
lemma inf1E: "(A \<sqinter> B) x \<Longrightarrow> (A x \<Longrightarrow> B x \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
969 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
970 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
971 |
lemma inf2E: "(A \<sqinter> B) x y \<Longrightarrow> (A x y \<Longrightarrow> B x y \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
972 |
by (simp add: inf_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
973 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
974 |
lemma inf1D1: "(A \<sqinter> B) x \<Longrightarrow> A x" |
54857 | 975 |
by (rule inf1E) |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
976 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
977 |
lemma inf2D1: "(A \<sqinter> B) x y \<Longrightarrow> A x y" |
54857 | 978 |
by (rule inf2E) |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
979 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
980 |
lemma inf1D2: "(A \<sqinter> B) x \<Longrightarrow> B x" |
54857 | 981 |
by (rule inf1E) |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
982 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
983 |
lemma inf2D2: "(A \<sqinter> B) x y \<Longrightarrow> B x y" |
54857 | 984 |
by (rule inf2E) |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
985 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
986 |
lemma sup1I1: "A x \<Longrightarrow> (A \<squnion> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
987 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
988 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
989 |
lemma sup2I1: "A x y \<Longrightarrow> (A \<squnion> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
990 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
991 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
992 |
lemma sup1I2: "B x \<Longrightarrow> (A \<squnion> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
993 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
994 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
995 |
lemma sup2I2: "B x y \<Longrightarrow> (A \<squnion> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
996 |
by (simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
997 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
998 |
lemma sup1E: "(A \<squnion> B) x \<Longrightarrow> (A x \<Longrightarrow> P) \<Longrightarrow> (B x \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
999 |
by (simp add: sup_fun_def) iprover |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1000 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1001 |
lemma sup2E: "(A \<squnion> B) x y \<Longrightarrow> (A x y \<Longrightarrow> P) \<Longrightarrow> (B x y \<Longrightarrow> P) \<Longrightarrow> P" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1002 |
by (simp add: sup_fun_def) iprover |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1003 |
|
60758 | 1004 |
text \<open> |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1005 |
\medskip Classical introduction rule: no commitment to @{text A} vs |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1006 |
@{text B}. |
60758 | 1007 |
\<close> |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1008 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1009 |
lemma sup1CI: "(\<not> B x \<Longrightarrow> A x) \<Longrightarrow> (A \<squnion> B) x" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1010 |
by (auto simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1011 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1012 |
lemma sup2CI: "(\<not> B x y \<Longrightarrow> A x y) \<Longrightarrow> (A \<squnion> B) x y" |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1013 |
by (auto simp add: sup_fun_def) |
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1014 |
|
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1015 |
|
25062 | 1016 |
no_notation |
46691 | 1017 |
less_eq (infix "\<sqsubseteq>" 50) and |
1018 |
less (infix "\<sqsubset>" 50) |
|
25062 | 1019 |
|
21249 | 1020 |
end |
46631
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
haftmann
parents:
46557
diff
changeset
|
1021 |