| 
72807
 | 
     1  | 
(* Title:      Examples using Hoare Logic for Total Correctness
  | 
| 
 | 
     2  | 
   Author:     Walter Guttmann
  | 
| 
 | 
     3  | 
*)
  | 
| 
 | 
     4  | 
  | 
| 
 | 
     5  | 
section \<open>Examples using Hoare Logic for Total Correctness\<close>
  | 
| 
 | 
     6  | 
  | 
| 
 | 
     7  | 
theory ExamplesTC
  | 
| 
72990
 | 
     8  | 
  imports Hoare_Logic
  | 
| 
72807
 | 
     9  | 
begin
  | 
| 
 | 
    10  | 
  | 
| 
 | 
    11  | 
text \<open>
  | 
| 
 | 
    12  | 
This theory demonstrates a few simple partial- and total-correctness proofs.
  | 
| 
 | 
    13  | 
The first example is taken from HOL/Hoare/Examples.thy written by N. Galm.
  | 
| 
 | 
    14  | 
We have added the invariant \<open>m \<le> a\<close>.
  | 
| 
 | 
    15  | 
\<close>
  | 
| 
 | 
    16  | 
  | 
| 
 | 
    17  | 
lemma multiply_by_add: "VARS m s a b
  | 
| 
 | 
    18  | 
  {a=A \<and> b=B}
 | 
| 
 | 
    19  | 
  m := 0; s := 0;
  | 
| 
 | 
    20  | 
  WHILE m\<noteq>a
  | 
| 
 | 
    21  | 
  INV {s=m*b \<and> a=A \<and> b=B \<and> m\<le>a}
 | 
| 
 | 
    22  | 
  DO s := s+b; m := m+(1::nat) OD
  | 
| 
 | 
    23  | 
  {s = A*B}"
 | 
| 
 | 
    24  | 
  by vcg_simp
  | 
| 
 | 
    25  | 
  | 
| 
 | 
    26  | 
text \<open>
  | 
| 
 | 
    27  | 
Here is the total-correctness proof for the same program.
  | 
| 
 | 
    28  | 
It needs the additional invariant \<open>m \<le> a\<close>.
  | 
| 
 | 
    29  | 
\<close>
  | 
| 
 | 
    30  | 
  | 
| 
 | 
    31  | 
lemma multiply_by_add_tc: "VARS m s a b
  | 
| 
 | 
    32  | 
  [a=A \<and> b=B]
  | 
| 
 | 
    33  | 
  m := 0; s := 0;
  | 
| 
 | 
    34  | 
  WHILE m\<noteq>a
  | 
| 
 | 
    35  | 
  INV {s=m*b \<and> a=A \<and> b=B \<and> m\<le>a}
 | 
| 
 | 
    36  | 
  VAR {a-m}
 | 
| 
 | 
    37  | 
  DO s := s+b; m := m+(1::nat) OD
  | 
| 
 | 
    38  | 
  [s = A*B]"
  | 
| 
 | 
    39  | 
  apply vcg_tc_simp
  | 
| 
 | 
    40  | 
  by auto
  | 
| 
 | 
    41  | 
  | 
| 
 | 
    42  | 
text \<open>
  | 
| 
 | 
    43  | 
Next, we prove partial correctness of a program that computes powers.
  | 
| 
 | 
    44  | 
\<close>
  | 
| 
 | 
    45  | 
  | 
| 
 | 
    46  | 
lemma power: "VARS (p::int) i
  | 
| 
 | 
    47  | 
  { True }
 | 
| 
 | 
    48  | 
  p := 1;
  | 
| 
 | 
    49  | 
  i := 0;
  | 
| 
 | 
    50  | 
  WHILE i < n
  | 
| 
 | 
    51  | 
    INV { p = x^i \<and> i \<le> n }
 | 
| 
 | 
    52  | 
     DO p := p * x;
  | 
| 
 | 
    53  | 
        i := i + 1
  | 
| 
 | 
    54  | 
     OD
  | 
| 
 | 
    55  | 
  { p = x^n }"
 | 
| 
 | 
    56  | 
  apply vcg_simp
  | 
| 
 | 
    57  | 
  by auto
  | 
| 
 | 
    58  | 
  | 
| 
 | 
    59  | 
text \<open>
  | 
| 
 | 
    60  | 
Here is its total-correctness proof.
  | 
| 
 | 
    61  | 
\<close>
  | 
| 
 | 
    62  | 
  | 
| 
 | 
    63  | 
lemma power_tc: "VARS (p::int) i
  | 
| 
 | 
    64  | 
  [ True ]
  | 
| 
 | 
    65  | 
  p := 1;
  | 
| 
 | 
    66  | 
  i := 0;
  | 
| 
 | 
    67  | 
  WHILE i < n
  | 
| 
 | 
    68  | 
    INV { p = x^i \<and> i \<le> n }
 | 
| 
 | 
    69  | 
    VAR { n - i }
 | 
| 
 | 
    70  | 
     DO p := p * x;
  | 
| 
 | 
    71  | 
        i := i + 1
  | 
| 
 | 
    72  | 
     OD
  | 
| 
 | 
    73  | 
  [ p = x^n ]"
  | 
| 
 | 
    74  | 
  apply vcg_tc
  | 
| 
 | 
    75  | 
  by auto
  | 
| 
 | 
    76  | 
  | 
| 
 | 
    77  | 
text \<open>
  | 
| 
 | 
    78  | 
The last example is again taken from HOL/Hoare/Examples.thy.
  | 
| 
 | 
    79  | 
We have modified it to integers so it requires precondition \<open>0 \<le> x\<close>.
  | 
| 
 | 
    80  | 
\<close>
  | 
| 
 | 
    81  | 
  | 
| 
 | 
    82  | 
lemma sqrt_tc: "VARS r
  | 
| 
 | 
    83  | 
  [0 \<le> (x::int)]
  | 
| 
 | 
    84  | 
  r := 0;
  | 
| 
 | 
    85  | 
  WHILE (r+1)*(r+1) <= x
  | 
| 
 | 
    86  | 
  INV {r*r \<le> x}
 | 
| 
 | 
    87  | 
  VAR {nat (x-r)}
 | 
| 
 | 
    88  | 
  DO r := r+1 OD
  | 
| 
 | 
    89  | 
  [r*r \<le> x \<and> x < (r+1)*(r+1)]"
  | 
| 
 | 
    90  | 
  apply vcg_tc_simp
  | 
| 
 | 
    91  | 
  by (smt (verit) div_pos_pos_trivial mult_less_0_iff nonzero_mult_div_cancel_left)
  | 
| 
 | 
    92  | 
  | 
| 
 | 
    93  | 
text \<open>
  | 
| 
 | 
    94  | 
A total-correctness proof allows us to extract a function for further use.
  | 
| 
 | 
    95  | 
For every input satisfying the precondition the function returns an output satisfying the postcondition.
  | 
| 
 | 
    96  | 
\<close>
  | 
| 
 | 
    97  | 
  | 
| 
 | 
    98  | 
lemma sqrt_exists:
  | 
| 
 | 
    99  | 
  "0 \<le> (x::int) \<Longrightarrow> \<exists>r' . r'*r' \<le> x \<and> x < (r'+1)*(r'+1)"
  | 
| 
 | 
   100  | 
  using tc_extract_function sqrt_tc by blast
  | 
| 
 | 
   101  | 
  | 
| 
 | 
   102  | 
definition "sqrt (x::int) \<equiv> (SOME r' . r'*r' \<le> x \<and> x < (r'+1)*(r'+1))"
  | 
| 
 | 
   103  | 
  | 
| 
 | 
   104  | 
lemma sqrt_function:
  | 
| 
 | 
   105  | 
  assumes "0 \<le> (x::int)"
  | 
| 
 | 
   106  | 
    and "r' = sqrt x"
  | 
| 
 | 
   107  | 
  shows "r'*r' \<le> x \<and> x < (r'+1)*(r'+1)"
  | 
| 
 | 
   108  | 
proof -
  | 
| 
 | 
   109  | 
  let ?P = "\<lambda>r' . r'*r' \<le> x \<and> x < (r'+1)*(r'+1)"
  | 
| 
 | 
   110  | 
  have "?P (SOME z . ?P z)"
  | 
| 
 | 
   111  | 
    by (metis (mono_tags, lifting) assms(1) sqrt_exists some_eq_imp)
  | 
| 
 | 
   112  | 
  thus ?thesis
  | 
| 
 | 
   113  | 
    using assms(2) sqrt_def by auto
  | 
| 
 | 
   114  | 
qed
  | 
| 
 | 
   115  | 
  | 
| 
 | 
   116  | 
end
  |