author | paulson <lp15@cam.ac.uk> |
Mon, 28 Aug 2017 20:33:08 +0100 | |
changeset 66537 | e2249cd6df67 |
parent 64785 | ae0bbc8e45ad |
child 66582 | 2b49d4888cb8 |
permissions | -rw-r--r-- |
41959 | 1 |
(* Title: HOL/Parity.thy |
2 |
Author: Jeremy Avigad |
|
3 |
Author: Jacques D. Fleuriot |
|
21256 | 4 |
*) |
5 |
||
60758 | 6 |
section \<open>Parity in rings and semirings\<close> |
21256 | 7 |
|
8 |
theory Parity |
|
64785 | 9 |
imports Nat_Transfer Euclidean_Division |
21256 | 10 |
begin |
11 |
||
61799 | 12 |
subsection \<open>Ring structures with parity and \<open>even\<close>/\<open>odd\<close> predicates\<close> |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
13 |
|
60562
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
paulson <lp15@cam.ac.uk>
parents:
60343
diff
changeset
|
14 |
class semiring_parity = comm_semiring_1_cancel + numeral + |
58787 | 15 |
assumes odd_one [simp]: "\<not> 2 dvd 1" |
16 |
assumes odd_even_add: "\<not> 2 dvd a \<Longrightarrow> \<not> 2 dvd b \<Longrightarrow> 2 dvd a + b" |
|
17 |
assumes even_multD: "2 dvd a * b \<Longrightarrow> 2 dvd a \<or> 2 dvd b" |
|
18 |
assumes odd_ex_decrement: "\<not> 2 dvd a \<Longrightarrow> \<exists>b. a = b + 1" |
|
54227
63b441f49645
moving generic lemmas out of theory parity, disregarding some unused auxiliary lemmas;
haftmann
parents:
47225
diff
changeset
|
19 |
begin |
21256 | 20 |
|
59816
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
21 |
subclass semiring_numeral .. |
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
22 |
|
58740 | 23 |
abbreviation even :: "'a \<Rightarrow> bool" |
63654 | 24 |
where "even a \<equiv> 2 dvd a" |
54228 | 25 |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
26 |
abbreviation odd :: "'a \<Rightarrow> bool" |
63654 | 27 |
where "odd a \<equiv> \<not> 2 dvd a" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
28 |
|
63654 | 29 |
lemma even_zero [simp]: "even 0" |
58787 | 30 |
by (fact dvd_0_right) |
31 |
||
63654 | 32 |
lemma even_plus_one_iff [simp]: "even (a + 1) \<longleftrightarrow> odd a" |
58787 | 33 |
by (auto simp add: dvd_add_right_iff intro: odd_even_add) |
34 |
||
58690 | 35 |
lemma evenE [elim?]: |
36 |
assumes "even a" |
|
37 |
obtains b where "a = 2 * b" |
|
58740 | 38 |
using assms by (rule dvdE) |
58690 | 39 |
|
58681 | 40 |
lemma oddE [elim?]: |
58680 | 41 |
assumes "odd a" |
42 |
obtains b where "a = 2 * b + 1" |
|
58787 | 43 |
proof - |
44 |
from assms obtain b where *: "a = b + 1" |
|
45 |
by (blast dest: odd_ex_decrement) |
|
46 |
with assms have "even (b + 2)" by simp |
|
47 |
then have "even b" by simp |
|
48 |
then obtain c where "b = 2 * c" .. |
|
49 |
with * have "a = 2 * c + 1" by simp |
|
50 |
with that show thesis . |
|
51 |
qed |
|
63654 | 52 |
|
53 |
lemma even_times_iff [simp]: "even (a * b) \<longleftrightarrow> even a \<or> even b" |
|
58787 | 54 |
by (auto dest: even_multD) |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
55 |
|
63654 | 56 |
lemma even_numeral [simp]: "even (numeral (Num.Bit0 n))" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
57 |
proof - |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
58 |
have "even (2 * numeral n)" |
58740 | 59 |
unfolding even_times_iff by simp |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
60 |
then have "even (numeral n + numeral n)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
61 |
unfolding mult_2 . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
62 |
then show ?thesis |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
63 |
unfolding numeral.simps . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
64 |
qed |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
65 |
|
63654 | 66 |
lemma odd_numeral [simp]: "odd (numeral (Num.Bit1 n))" |
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
67 |
proof |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
68 |
assume "even (numeral (num.Bit1 n))" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
69 |
then have "even (numeral n + numeral n + 1)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
70 |
unfolding numeral.simps . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
71 |
then have "even (2 * numeral n + 1)" |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
72 |
unfolding mult_2 . |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
73 |
then have "2 dvd numeral n * 2 + 1" |
58740 | 74 |
by (simp add: ac_simps) |
63654 | 75 |
then have "2 dvd 1" |
76 |
using dvd_add_times_triv_left_iff [of 2 "numeral n" 1] by simp |
|
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
77 |
then show False by simp |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
78 |
qed |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
79 |
|
63654 | 80 |
lemma even_add [simp]: "even (a + b) \<longleftrightarrow> (even a \<longleftrightarrow> even b)" |
58787 | 81 |
by (auto simp add: dvd_add_right_iff dvd_add_left_iff odd_even_add) |
58680 | 82 |
|
63654 | 83 |
lemma odd_add [simp]: "odd (a + b) \<longleftrightarrow> (\<not> (odd a \<longleftrightarrow> odd b))" |
58680 | 84 |
by simp |
85 |
||
63654 | 86 |
lemma even_power [simp]: "even (a ^ n) \<longleftrightarrow> even a \<and> n > 0" |
58680 | 87 |
by (induct n) auto |
88 |
||
58678
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
89 |
end |
398e05aa84d4
purely algebraic characterization of even and odd
haftmann
parents:
58645
diff
changeset
|
90 |
|
59816
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
91 |
class ring_parity = ring + semiring_parity |
58679 | 92 |
begin |
93 |
||
59816
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
94 |
subclass comm_ring_1 .. |
034b13f4efae
distributivity of partial minus establishes desired properties of dvd in semirings
haftmann
parents:
58889
diff
changeset
|
95 |
|
63654 | 96 |
lemma even_minus [simp]: "even (- a) \<longleftrightarrow> even a" |
58740 | 97 |
by (fact dvd_minus_iff) |
58679 | 98 |
|
63654 | 99 |
lemma even_diff [simp]: "even (a - b) \<longleftrightarrow> even (a + b)" |
58680 | 100 |
using even_add [of a "- b"] by simp |
101 |
||
58679 | 102 |
end |
103 |
||
58710
7216a10d69ba
augmented and tuned facts on even/odd and division
haftmann
parents:
58709
diff
changeset
|
104 |
|
60758 | 105 |
subsection \<open>Instances for @{typ nat} and @{typ int}\<close> |
58787 | 106 |
|
63654 | 107 |
lemma even_Suc_Suc_iff [simp]: "2 dvd Suc (Suc n) \<longleftrightarrow> 2 dvd n" |
58787 | 108 |
using dvd_add_triv_right_iff [of 2 n] by simp |
58687 | 109 |
|
63654 | 110 |
lemma even_Suc [simp]: "2 dvd Suc n \<longleftrightarrow> \<not> 2 dvd n" |
58787 | 111 |
by (induct n) auto |
112 |
||
63654 | 113 |
lemma even_diff_nat [simp]: "2 dvd (m - n) \<longleftrightarrow> m < n \<or> 2 dvd (m + n)" |
114 |
for m n :: nat |
|
58787 | 115 |
proof (cases "n \<le> m") |
116 |
case True |
|
117 |
then have "m - n + n * 2 = m + n" by (simp add: mult_2_right) |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
118 |
moreover have "2 dvd (m - n) \<longleftrightarrow> 2 dvd (m - n + n * 2)" by simp |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
119 |
ultimately have "2 dvd (m - n) \<longleftrightarrow> 2 dvd (m + n)" by (simp only:) |
58787 | 120 |
then show ?thesis by auto |
121 |
next |
|
122 |
case False |
|
123 |
then show ?thesis by simp |
|
63654 | 124 |
qed |
125 |
||
58787 | 126 |
instance nat :: semiring_parity |
127 |
proof |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
128 |
show "\<not> 2 dvd (1 :: nat)" |
58787 | 129 |
by (rule notI, erule dvdE) simp |
130 |
next |
|
131 |
fix m n :: nat |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
132 |
assume "\<not> 2 dvd m" |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
133 |
moreover assume "\<not> 2 dvd n" |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
134 |
ultimately have *: "2 dvd Suc m \<and> 2 dvd Suc n" |
58787 | 135 |
by simp |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
136 |
then have "2 dvd (Suc m + Suc n)" |
58787 | 137 |
by (blast intro: dvd_add) |
138 |
also have "Suc m + Suc n = m + n + 2" |
|
139 |
by simp |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
140 |
finally show "2 dvd (m + n)" |
58787 | 141 |
using dvd_add_triv_right_iff [of 2 "m + n"] by simp |
142 |
next |
|
143 |
fix m n :: nat |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
144 |
assume *: "2 dvd (m * n)" |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
145 |
show "2 dvd m \<or> 2 dvd n" |
58787 | 146 |
proof (rule disjCI) |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
147 |
assume "\<not> 2 dvd n" |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
148 |
then have "2 dvd (Suc n)" by simp |
58787 | 149 |
then obtain r where "Suc n = 2 * r" .. |
150 |
moreover from * obtain s where "m * n = 2 * s" .. |
|
151 |
then have "2 * s + m = m * Suc n" by simp |
|
63654 | 152 |
ultimately have " 2 * s + m = 2 * (m * r)" |
153 |
by (simp add: algebra_simps) |
|
58787 | 154 |
then have "m = 2 * (m * r - s)" by simp |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
155 |
then show "2 dvd m" .. |
58787 | 156 |
qed |
157 |
next |
|
158 |
fix n :: nat |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
159 |
assume "\<not> 2 dvd n" |
58787 | 160 |
then show "\<exists>m. n = m + 1" |
161 |
by (cases n) simp_all |
|
162 |
qed |
|
58687 | 163 |
|
63654 | 164 |
lemma odd_pos: "odd n \<Longrightarrow> 0 < n" |
165 |
for n :: nat |
|
58690 | 166 |
by (auto elim: oddE) |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
167 |
|
63654 | 168 |
lemma Suc_double_not_eq_double: "Suc (2 * m) \<noteq> 2 * n" |
169 |
for m n :: nat |
|
62597 | 170 |
proof |
171 |
assume "Suc (2 * m) = 2 * n" |
|
172 |
moreover have "odd (Suc (2 * m))" and "even (2 * n)" |
|
173 |
by simp_all |
|
174 |
ultimately show False by simp |
|
175 |
qed |
|
176 |
||
63654 | 177 |
lemma double_not_eq_Suc_double: "2 * m \<noteq> Suc (2 * n)" |
178 |
for m n :: nat |
|
62597 | 179 |
using Suc_double_not_eq_double [of n m] by simp |
180 |
||
63654 | 181 |
lemma even_diff_iff [simp]: "2 dvd (k - l) \<longleftrightarrow> 2 dvd (k + l)" |
182 |
for k l :: int |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
183 |
using dvd_add_times_triv_right_iff [of 2 "k - l" l] by (simp add: mult_2_right) |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
184 |
|
63654 | 185 |
lemma even_abs_add_iff [simp]: "2 dvd (\<bar>k\<bar> + l) \<longleftrightarrow> 2 dvd (k + l)" |
186 |
for k l :: int |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
187 |
by (cases "k \<ge> 0") (simp_all add: ac_simps) |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
188 |
|
63654 | 189 |
lemma even_add_abs_iff [simp]: "2 dvd (k + \<bar>l\<bar>) \<longleftrightarrow> 2 dvd (k + l)" |
190 |
for k l :: int |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
191 |
using even_abs_add_iff [of l k] by (simp add: ac_simps) |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
192 |
|
63654 | 193 |
lemma odd_Suc_minus_one [simp]: "odd n \<Longrightarrow> Suc (n - Suc 0) = n" |
60867 | 194 |
by (auto elim: oddE) |
195 |
||
58787 | 196 |
instance int :: ring_parity |
197 |
proof |
|
63654 | 198 |
show "\<not> 2 dvd (1 :: int)" |
199 |
by (simp add: dvd_int_unfold_dvd_nat) |
|
200 |
next |
|
58787 | 201 |
fix k l :: int |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
202 |
assume "\<not> 2 dvd k" |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
203 |
moreover assume "\<not> 2 dvd l" |
63654 | 204 |
ultimately have "2 dvd (nat \<bar>k\<bar> + nat \<bar>l\<bar>)" |
58787 | 205 |
by (auto simp add: dvd_int_unfold_dvd_nat intro: odd_even_add) |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
206 |
then have "2 dvd (\<bar>k\<bar> + \<bar>l\<bar>)" |
58787 | 207 |
by (simp add: dvd_int_unfold_dvd_nat nat_add_distrib) |
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
208 |
then show "2 dvd (k + l)" |
58787 | 209 |
by simp |
210 |
next |
|
211 |
fix k l :: int |
|
60343
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
212 |
assume "2 dvd (k * l)" |
063698416239
correct sort constraints for abbreviations in type classes
haftmann
parents:
59816
diff
changeset
|
213 |
then show "2 dvd k \<or> 2 dvd l" |
58787 | 214 |
by (simp add: dvd_int_unfold_dvd_nat even_multD nat_abs_mult_distrib) |
215 |
next |
|
216 |
fix k :: int |
|
217 |
have "k = (k - 1) + 1" by simp |
|
218 |
then show "\<exists>l. k = l + 1" .. |
|
219 |
qed |
|
58680 | 220 |
|
63654 | 221 |
lemma even_int_iff [simp]: "even (int n) \<longleftrightarrow> even n" |
58740 | 222 |
by (simp add: dvd_int_iff) |
33318
ddd97d9dfbfb
moved Nat_Transfer before Divides; distributed Nat_Transfer setup accordingly
haftmann
parents:
31718
diff
changeset
|
223 |
|
63654 | 224 |
lemma even_nat_iff: "0 \<le> k \<Longrightarrow> even (nat k) \<longleftrightarrow> even k" |
58687 | 225 |
by (simp add: even_int_iff [symmetric]) |
226 |
||
227 |
||
60758 | 228 |
subsection \<open>Parity and powers\<close> |
58689 | 229 |
|
61531
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents:
60867
diff
changeset
|
230 |
context ring_1 |
58689 | 231 |
begin |
232 |
||
63654 | 233 |
lemma power_minus_even [simp]: "even n \<Longrightarrow> (- a) ^ n = a ^ n" |
58690 | 234 |
by (auto elim: evenE) |
58689 | 235 |
|
63654 | 236 |
lemma power_minus_odd [simp]: "odd n \<Longrightarrow> (- a) ^ n = - (a ^ n)" |
58690 | 237 |
by (auto elim: oddE) |
238 |
||
63654 | 239 |
lemma neg_one_even_power [simp]: "even n \<Longrightarrow> (- 1) ^ n = 1" |
58690 | 240 |
by simp |
58689 | 241 |
|
63654 | 242 |
lemma neg_one_odd_power [simp]: "odd n \<Longrightarrow> (- 1) ^ n = - 1" |
58690 | 243 |
by simp |
58689 | 244 |
|
63654 | 245 |
end |
58689 | 246 |
|
247 |
context linordered_idom |
|
248 |
begin |
|
249 |
||
63654 | 250 |
lemma zero_le_even_power: "even n \<Longrightarrow> 0 \<le> a ^ n" |
58690 | 251 |
by (auto elim: evenE) |
58689 | 252 |
|
63654 | 253 |
lemma zero_le_odd_power: "odd n \<Longrightarrow> 0 \<le> a ^ n \<longleftrightarrow> 0 \<le> a" |
58689 | 254 |
by (auto simp add: power_even_eq zero_le_mult_iff elim: oddE) |
255 |
||
63654 | 256 |
lemma zero_le_power_eq: "0 \<le> a ^ n \<longleftrightarrow> even n \<or> odd n \<and> 0 \<le> a" |
58787 | 257 |
by (auto simp add: zero_le_even_power zero_le_odd_power) |
63654 | 258 |
|
259 |
lemma zero_less_power_eq: "0 < a ^ n \<longleftrightarrow> n = 0 \<or> even n \<and> a \<noteq> 0 \<or> odd n \<and> 0 < a" |
|
58689 | 260 |
proof - |
261 |
have [simp]: "0 = a ^ n \<longleftrightarrow> a = 0 \<and> n > 0" |
|
58787 | 262 |
unfolding power_eq_0_iff [of a n, symmetric] by blast |
58689 | 263 |
show ?thesis |
63654 | 264 |
unfolding less_le zero_le_power_eq by auto |
58689 | 265 |
qed |
266 |
||
63654 | 267 |
lemma power_less_zero_eq [simp]: "a ^ n < 0 \<longleftrightarrow> odd n \<and> a < 0" |
58689 | 268 |
unfolding not_le [symmetric] zero_le_power_eq by auto |
269 |
||
63654 | 270 |
lemma power_le_zero_eq: "a ^ n \<le> 0 \<longleftrightarrow> n > 0 \<and> (odd n \<and> a \<le> 0 \<or> even n \<and> a = 0)" |
271 |
unfolding not_less [symmetric] zero_less_power_eq by auto |
|
272 |
||
273 |
lemma power_even_abs: "even n \<Longrightarrow> \<bar>a\<bar> ^ n = a ^ n" |
|
58689 | 274 |
using power_abs [of a n] by (simp add: zero_le_even_power) |
275 |
||
276 |
lemma power_mono_even: |
|
277 |
assumes "even n" and "\<bar>a\<bar> \<le> \<bar>b\<bar>" |
|
278 |
shows "a ^ n \<le> b ^ n" |
|
279 |
proof - |
|
280 |
have "0 \<le> \<bar>a\<bar>" by auto |
|
63654 | 281 |
with \<open>\<bar>a\<bar> \<le> \<bar>b\<bar>\<close> have "\<bar>a\<bar> ^ n \<le> \<bar>b\<bar> ^ n" |
282 |
by (rule power_mono) |
|
283 |
with \<open>even n\<close> show ?thesis |
|
284 |
by (simp add: power_even_abs) |
|
58689 | 285 |
qed |
286 |
||
287 |
lemma power_mono_odd: |
|
288 |
assumes "odd n" and "a \<le> b" |
|
289 |
shows "a ^ n \<le> b ^ n" |
|
290 |
proof (cases "b < 0") |
|
63654 | 291 |
case True |
292 |
with \<open>a \<le> b\<close> have "- b \<le> - a" and "0 \<le> - b" by auto |
|
293 |
then have "(- b) ^ n \<le> (- a) ^ n" by (rule power_mono) |
|
60758 | 294 |
with \<open>odd n\<close> show ?thesis by simp |
58689 | 295 |
next |
63654 | 296 |
case False |
297 |
then have "0 \<le> b" by auto |
|
58689 | 298 |
show ?thesis |
299 |
proof (cases "a < 0") |
|
63654 | 300 |
case True |
301 |
then have "n \<noteq> 0" and "a \<le> 0" using \<open>odd n\<close> [THEN odd_pos] by auto |
|
60758 | 302 |
then have "a ^ n \<le> 0" unfolding power_le_zero_eq using \<open>odd n\<close> by auto |
63654 | 303 |
moreover from \<open>0 \<le> b\<close> have "0 \<le> b ^ n" by auto |
58689 | 304 |
ultimately show ?thesis by auto |
305 |
next |
|
63654 | 306 |
case False |
307 |
then have "0 \<le> a" by auto |
|
308 |
with \<open>a \<le> b\<close> show ?thesis |
|
309 |
using power_mono by auto |
|
58689 | 310 |
qed |
311 |
qed |
|
62083 | 312 |
|
313 |
lemma (in comm_ring_1) uminus_power_if: "(- x) ^ n = (if even n then x^n else - (x ^ n))" |
|
314 |
by auto |
|
315 |
||
60758 | 316 |
text \<open>Simplify, when the exponent is a numeral\<close> |
58689 | 317 |
|
318 |
lemma zero_le_power_eq_numeral [simp]: |
|
319 |
"0 \<le> a ^ numeral w \<longleftrightarrow> even (numeral w :: nat) \<or> odd (numeral w :: nat) \<and> 0 \<le> a" |
|
320 |
by (fact zero_le_power_eq) |
|
321 |
||
322 |
lemma zero_less_power_eq_numeral [simp]: |
|
63654 | 323 |
"0 < a ^ numeral w \<longleftrightarrow> |
324 |
numeral w = (0 :: nat) \<or> |
|
325 |
even (numeral w :: nat) \<and> a \<noteq> 0 \<or> |
|
326 |
odd (numeral w :: nat) \<and> 0 < a" |
|
58689 | 327 |
by (fact zero_less_power_eq) |
328 |
||
329 |
lemma power_le_zero_eq_numeral [simp]: |
|
63654 | 330 |
"a ^ numeral w \<le> 0 \<longleftrightarrow> |
331 |
(0 :: nat) < numeral w \<and> |
|
332 |
(odd (numeral w :: nat) \<and> a \<le> 0 \<or> even (numeral w :: nat) \<and> a = 0)" |
|
58689 | 333 |
by (fact power_le_zero_eq) |
334 |
||
335 |
lemma power_less_zero_eq_numeral [simp]: |
|
336 |
"a ^ numeral w < 0 \<longleftrightarrow> odd (numeral w :: nat) \<and> a < 0" |
|
337 |
by (fact power_less_zero_eq) |
|
338 |
||
339 |
lemma power_even_abs_numeral [simp]: |
|
340 |
"even (numeral w :: nat) \<Longrightarrow> \<bar>a\<bar> ^ numeral w = a ^ numeral w" |
|
341 |
by (fact power_even_abs) |
|
342 |
||
343 |
end |
|
344 |
||
345 |
||
63654 | 346 |
subsubsection \<open>Tool setup\<close> |
58687 | 347 |
|
63654 | 348 |
declare transfer_morphism_int_nat [transfer add return: even_int_iff] |
21256 | 349 |
|
58770 | 350 |
end |