| author | wenzelm | 
| Fri, 12 Jun 1998 17:05:04 +0200 | |
| changeset 5031 | e2280a1eadb2 | 
| parent 70 | 8a29f8b4aca1 | 
| permissions | -rw-r--r-- | 
| 0 | 1  | 
(* Title: ZF/intr-elim.ML  | 
2  | 
ID: $Id$  | 
|
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1993 University of Cambridge  | 
|
5  | 
||
6  | 
Introduction/elimination rule module -- for Inductive/Coinductive Definitions  | 
|
7  | 
||
8  | 
Features:  | 
|
9  | 
* least or greatest fixedpoints  | 
|
10  | 
* user-specified product and sum constructions  | 
|
11  | 
* mutually recursive definitions  | 
|
12  | 
* definitions involving arbitrary monotone operators  | 
|
13  | 
* automatically proves introduction and elimination rules  | 
|
14  | 
||
15  | 
The recursive sets must *already* be declared as constants in parent theory!  | 
|
16  | 
||
17  | 
Introduction rules have the form  | 
|
18  | 
[| ti:M(Sj), ..., P(x), ... |] ==> t: Sk |]  | 
|
19  | 
where M is some monotone operator (usually the identity)  | 
|
20  | 
P(x) is any (non-conjunctive) side condition on the free variables  | 
|
21  | 
ti, t are any terms  | 
|
| 
25
 
3ac1c0c0016e
ordinal: DEFINITION of < and le to replace : and <= on ordinals!  Many
 
lcp 
parents: 
14 
diff
changeset
 | 
22  | 
Sj, Sk are two of the sets being defined in mutual recursion  | 
| 0 | 23  | 
|
24  | 
Sums are used only for mutual recursion;  | 
|
25  | 
Products are used only to derive "streamlined" induction rules for relations  | 
|
26  | 
*)  | 
|
27  | 
||
28  | 
signature FP = (** Description of a fixed point operator **)  | 
|
29  | 
sig  | 
|
30  | 
val oper : term (*fixed point operator*)  | 
|
31  | 
val bnd_mono : term (*monotonicity predicate*)  | 
|
32  | 
val bnd_monoI : thm (*intro rule for bnd_mono*)  | 
|
33  | 
val subs : thm (*subset theorem for fp*)  | 
|
34  | 
val Tarski : thm (*Tarski's fixed point theorem*)  | 
|
35  | 
val induct : thm (*induction/coinduction rule*)  | 
|
36  | 
end;  | 
|
37  | 
||
38  | 
signature PR = (** Description of a Cartesian product **)  | 
|
39  | 
sig  | 
|
40  | 
val sigma : term (*Cartesian product operator*)  | 
|
41  | 
val pair : term (*pairing operator*)  | 
|
42  | 
val split_const : term (*splitting operator*)  | 
|
43  | 
val fsplit_const : term (*splitting operator for formulae*)  | 
|
44  | 
val pair_iff : thm (*injectivity of pairing, using <->*)  | 
|
45  | 
val split_eq : thm (*equality rule for split*)  | 
|
46  | 
val fsplitI : thm (*intro rule for fsplit*)  | 
|
47  | 
val fsplitD : thm (*destruct rule for fsplit*)  | 
|
48  | 
val fsplitE : thm (*elim rule for fsplit*)  | 
|
49  | 
end;  | 
|
50  | 
||
51  | 
signature SU = (** Description of a disjoint sum **)  | 
|
52  | 
sig  | 
|
53  | 
val sum : term (*disjoint sum operator*)  | 
|
54  | 
val inl : term (*left injection*)  | 
|
55  | 
val inr : term (*right injection*)  | 
|
56  | 
val elim : term (*case operator*)  | 
|
57  | 
val case_inl : thm (*inl equality rule for case*)  | 
|
58  | 
val case_inr : thm (*inr equality rule for case*)  | 
|
59  | 
val inl_iff : thm (*injectivity of inl, using <->*)  | 
|
60  | 
val inr_iff : thm (*injectivity of inr, using <->*)  | 
|
61  | 
val distinct : thm (*distinctness of inl, inr using <->*)  | 
|
62  | 
val distinct' : thm (*distinctness of inr, inl using <->*)  | 
|
63  | 
end;  | 
|
64  | 
||
65  | 
signature INDUCTIVE = (** Description of a (co)inductive defn **)  | 
|
66  | 
sig  | 
|
67  | 
val thy : theory (*parent theory*)  | 
|
68  | 
val rec_doms : (string*string) list (*recursion ops and their domains*)  | 
|
69  | 
val sintrs : string list (*desired introduction rules*)  | 
|
70  | 
val monos : thm list (*monotonicity of each M operator*)  | 
|
71  | 
val con_defs : thm list (*definitions of the constructors*)  | 
|
72  | 
val type_intrs : thm list (*type-checking intro rules*)  | 
|
73  | 
val type_elims : thm list (*type-checking elim rules*)  | 
|
74  | 
end;  | 
|
75  | 
||
76  | 
signature INTR_ELIM =  | 
|
77  | 
sig  | 
|
78  | 
val thy : theory (*new theory*)  | 
|
79  | 
val defs : thm list (*definitions made in thy*)  | 
|
80  | 
val bnd_mono : thm (*monotonicity for the lfp definition*)  | 
|
81  | 
val unfold : thm (*fixed-point equation*)  | 
|
82  | 
val dom_subset : thm (*inclusion of recursive set in dom*)  | 
|
83  | 
val intrs : thm list (*introduction rules*)  | 
|
84  | 
val elim : thm (*case analysis theorem*)  | 
|
85  | 
val raw_induct : thm (*raw induction rule from Fp.induct*)  | 
|
86  | 
val mk_cases : thm list -> string -> thm (*generates case theorems*)  | 
|
87  | 
(*internal items...*)  | 
|
88  | 
val big_rec_tm : term (*the lhs of the fixedpoint defn*)  | 
|
89  | 
val rec_tms : term list (*the mutually recursive sets*)  | 
|
90  | 
val domts : term list (*domains of the recursive sets*)  | 
|
91  | 
val intr_tms : term list (*terms for the introduction rules*)  | 
|
92  | 
val rec_params : term list (*parameters of the recursion*)  | 
|
93  | 
val sumprod_free_SEs : thm list (*destruct rules for Su and Pr*)  | 
|
94  | 
end;  | 
|
95  | 
||
96  | 
||
97  | 
functor Intr_elim_Fun (structure Ind: INDUCTIVE and  | 
|
98  | 
Fp: FP and Pr : PR and Su : SU) : INTR_ELIM =  | 
|
99  | 
struct  | 
|
100  | 
open Logic Ind;  | 
|
101  | 
||
102  | 
(*** Extract basic information from arguments ***)  | 
|
103  | 
||
104  | 
val sign = sign_of Ind.thy;  | 
|
105  | 
||
106  | 
fun rd T a =  | 
|
107  | 
Sign.read_cterm sign (a,T)  | 
|
108  | 
    handle ERROR => error ("The error above occurred for " ^ a);
 | 
|
109  | 
||
110  | 
val rec_names = map #1 rec_doms  | 
|
111  | 
and domts = map (Sign.term_of o rd iT o #2) rec_doms;  | 
|
112  | 
||
113  | 
val dummy = assert_all Syntax.is_identifier rec_names  | 
|
114  | 
(fn a => "Name of recursive set not an identifier: " ^ a);  | 
|
115  | 
||
116  | 
val dummy = assert_all (is_some o lookup_const sign) rec_names  | 
|
117  | 
(fn a => "Name of recursive set not declared as constant: " ^ a);  | 
|
118  | 
||
119  | 
val intr_tms = map (Sign.term_of o rd propT) sintrs;  | 
|
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
120  | 
|
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
121  | 
local (*Checking the introduction rules*)  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
122  | 
val intr_sets = map (#2 o rule_concl) intr_tms;  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
123  | 
|
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
124  | 
fun intr_ok set =  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
125  | 
case head_of set of Const(a,recT) => a mem rec_names | _ => false;  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
126  | 
|
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
127  | 
val dummy = assert_all intr_ok intr_sets  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
128  | 
(fn t => "Conclusion of rule does not name a recursive set: " ^  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
129  | 
Sign.string_of_term sign t);  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
130  | 
in  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
131  | 
val (Const(_,recT),rec_params) = strip_comb (hd intr_sets)  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
132  | 
end;  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
133  | 
|
| 0 | 134  | 
val rec_hds = map (fn a=> Const(a,recT)) rec_names;  | 
135  | 
val rec_tms = map (fn rec_hd=> list_comb(rec_hd,rec_params)) rec_hds;  | 
|
136  | 
||
137  | 
val dummy = assert_all is_Free rec_params  | 
|
138  | 
(fn t => "Param in recursion term not a free variable: " ^  | 
|
139  | 
Sign.string_of_term sign t);  | 
|
140  | 
||
141  | 
(*** Construct the lfp definition ***)  | 
|
142  | 
||
143  | 
val mk_variant = variant (foldr add_term_names (intr_tms,[]));  | 
|
144  | 
||
145  | 
val z' = mk_variant"z"  | 
|
146  | 
and X' = mk_variant"X"  | 
|
147  | 
and w' = mk_variant"w";  | 
|
148  | 
||
149  | 
(*simple error-checking in the premises*)  | 
|
150  | 
fun chk_prem rec_hd (Const("op &",_) $ _ $ _) =
 | 
|
151  | 
error"Premises may not be conjuctive"  | 
|
152  | 
  | chk_prem rec_hd (Const("op :",_) $ t $ X) = 
 | 
|
153  | 
deny (rec_hd occs t) "Recursion term on left of member symbol"  | 
|
154  | 
| chk_prem rec_hd t =  | 
|
155  | 
deny (rec_hd occs t) "Recursion term in side formula";  | 
|
156  | 
||
157  | 
(*Makes a disjunct from an introduction rule*)  | 
|
158  | 
fun lfp_part intr = (*quantify over rule's free vars except parameters*)  | 
|
159  | 
let val prems = map dest_tprop (strip_imp_prems intr)  | 
|
160  | 
val dummy = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds  | 
|
161  | 
val exfrees = term_frees intr \\ rec_params  | 
|
162  | 
val zeq = eq_const $ (Free(z',iT)) $ (#1 (rule_concl intr))  | 
|
163  | 
in foldr mk_exists (exfrees, fold_bal (app conj) (zeq::prems)) end;  | 
|
164  | 
||
165  | 
val dom_sum = fold_bal (app Su.sum) domts;  | 
|
166  | 
||
167  | 
(*The Part(A,h) terms -- compose injections to make h*)  | 
|
168  | 
fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)  | 
|
169  | 
| mk_Part h = Part_const $ Free(X',iT) $ Abs(w',iT,h);  | 
|
170  | 
||
171  | 
(*Access to balanced disjoint sums via injections*)  | 
|
172  | 
val parts =  | 
|
173  | 
map mk_Part (accesses_bal (ap Su.inl, ap Su.inr, Bound 0)  | 
|
174  | 
(length rec_doms));  | 
|
175  | 
||
176  | 
(*replace each set by the corresponding Part(A,h)*)  | 
|
177  | 
val part_intrs = map (subst_free (rec_tms ~~ parts) o lfp_part) intr_tms;  | 
|
178  | 
||
179  | 
val lfp_abs = absfree(X', iT,  | 
|
180  | 
mk_Collect(z', dom_sum, fold_bal (app disj) part_intrs));  | 
|
181  | 
||
182  | 
val lfp_rhs = Fp.oper $ dom_sum $ lfp_abs  | 
|
183  | 
||
184  | 
val dummy = seq (fn rec_hd => deny (rec_hd occs lfp_rhs)  | 
|
185  | 
"Illegal occurrence of recursion operator")  | 
|
186  | 
rec_hds;  | 
|
187  | 
||
188  | 
(*** Make the new theory ***)  | 
|
189  | 
||
190  | 
(*A key definition:  | 
|
191  | 
If no mutual recursion then it equals the one recursive set.  | 
|
192  | 
If mutual recursion then it differs from all the recursive sets. *)  | 
|
193  | 
val big_rec_name = space_implode "_" rec_names;  | 
|
194  | 
||
195  | 
(*Big_rec... is the union of the mutually recursive sets*)  | 
|
196  | 
val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);  | 
|
197  | 
||
198  | 
(*The individual sets must already be declared*)  | 
|
199  | 
val axpairs = map (mk_defpair sign)  | 
|
200  | 
((big_rec_tm, lfp_rhs) ::  | 
|
201  | 
(case parts of  | 
|
202  | 
[_] => [] (*no mutual recursion*)  | 
|
203  | 
| _ => rec_tms ~~ (*define the sets as Parts*)  | 
|
204  | 
map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));  | 
|
205  | 
||
206  | 
val thy = extend_theory Ind.thy (big_rec_name ^ "_Inductive")  | 
|
207  | 
([], [], [], [], [], None) axpairs;  | 
|
208  | 
||
209  | 
val defs = map (get_axiom thy o #1) axpairs;  | 
|
210  | 
||
211  | 
val big_rec_def::part_rec_defs = defs;  | 
|
212  | 
||
213  | 
val prove = prove_term (sign_of thy);  | 
|
214  | 
||
215  | 
(********)  | 
|
216  | 
val dummy = writeln "Proving monotonocity...";  | 
|
217  | 
||
218  | 
val bnd_mono =  | 
|
219  | 
prove [] (mk_tprop (Fp.bnd_mono $ dom_sum $ lfp_abs),  | 
|
220  | 
fn _ =>  | 
|
221  | 
[rtac (Collect_subset RS bnd_monoI) 1,  | 
|
222  | 
REPEAT (ares_tac (basic_monos @ monos) 1)]);  | 
|
223  | 
||
224  | 
val dom_subset = standard (big_rec_def RS Fp.subs);  | 
|
225  | 
||
226  | 
val unfold = standard (bnd_mono RS (big_rec_def RS Fp.Tarski));  | 
|
227  | 
||
228  | 
(********)  | 
|
229  | 
val dummy = writeln "Proving the introduction rules...";  | 
|
230  | 
||
231  | 
(*Mutual recursion: Needs subset rules for the individual sets???*)  | 
|
232  | 
val rec_typechecks = [dom_subset] RL (asm_rl::monos) RL [subsetD];  | 
|
233  | 
||
234  | 
(*Type-checking is hardest aspect of proof;  | 
|
235  | 
disjIn selects the correct disjunct after unfolding*)  | 
|
236  | 
fun intro_tacsf disjIn prems =  | 
|
237  | 
[(*insert prems and underlying sets*)  | 
|
| 55 | 238  | 
cut_facts_tac prems 1,  | 
| 0 | 239  | 
rtac (unfold RS ssubst) 1,  | 
240  | 
REPEAT (resolve_tac [Part_eqI,CollectI] 1),  | 
|
241  | 
(*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*)  | 
|
242  | 
rtac disjIn 2,  | 
|
243  | 
REPEAT (ares_tac [refl,exI,conjI] 2),  | 
|
244  | 
rewrite_goals_tac con_defs,  | 
|
245  | 
(*Now can solve the trivial equation*)  | 
|
246  | 
REPEAT (rtac refl 2),  | 
|
| 55 | 247  | 
REPEAT (FIRSTGOAL (eresolve_tac (asm_rl::PartE::type_elims)  | 
248  | 
ORELSE' hyp_subst_tac  | 
|
| 0 | 249  | 
ORELSE' dresolve_tac rec_typechecks)),  | 
| 55 | 250  | 
DEPTH_SOLVE (swap_res_tac type_intrs 1)];  | 
| 0 | 251  | 
|
252  | 
(*combines disjI1 and disjI2 to access the corresponding nested disjunct...*)  | 
|
253  | 
val mk_disj_rls =  | 
|
254  | 
let fun f rl = rl RS disjI1  | 
|
255  | 
and g rl = rl RS disjI2  | 
|
256  | 
in accesses_bal(f, g, asm_rl) end;  | 
|
257  | 
||
258  | 
val intrs = map (prove part_rec_defs)  | 
|
259  | 
(intr_tms ~~ map intro_tacsf (mk_disj_rls(length intr_tms)));  | 
|
260  | 
||
261  | 
(********)  | 
|
262  | 
val dummy = writeln "Proving the elimination rule...";  | 
|
263  | 
||
| 55 | 264  | 
(*Includes rules for succ and Pair since they are common constructions*)  | 
265  | 
val elim_rls = [asm_rl, FalseE, succ_neq_0, sym RS succ_neq_0,  | 
|
| 
70
 
8a29f8b4aca1
ZF/ind-syntax/fold_con_tac: deleted, since fold_tac now works
 
lcp 
parents: 
55 
diff
changeset
 | 
266  | 
Pair_neq_0, sym RS Pair_neq_0, make_elim succ_inject,  | 
| 
 
8a29f8b4aca1
ZF/ind-syntax/fold_con_tac: deleted, since fold_tac now works
 
lcp 
parents: 
55 
diff
changeset
 | 
267  | 
refl_thin, conjE, exE, disjE];  | 
| 0 | 268  | 
|
269  | 
val sumprod_free_SEs =  | 
|
270  | 
map (gen_make_elim [conjE,FalseE])  | 
|
271  | 
([Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff, Pr.pair_iff]  | 
|
272  | 
RL [iffD1]);  | 
|
273  | 
||
274  | 
(*Breaks down logical connectives in the monotonic function*)  | 
|
275  | 
val basic_elim_tac =  | 
|
276  | 
REPEAT (SOMEGOAL (eresolve_tac (elim_rls@sumprod_free_SEs)  | 
|
277  | 
ORELSE' bound_hyp_subst_tac))  | 
|
278  | 
THEN prune_params_tac;  | 
|
279  | 
||
280  | 
val elim = rule_by_tactic basic_elim_tac (unfold RS equals_CollectD);  | 
|
281  | 
||
| 
14
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
282  | 
(*Applies freeness of the given constructors, which *must* be unfolded by  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
283  | 
the given defs. Cannot simply use the local con_defs because con_defs=[]  | 
| 
 
1c0926788772
ex/{bin.ML,comb.ML,prop.ML}: replaced NewSext by Syntax.simple_sext
 
lcp 
parents: 
0 
diff
changeset
 | 
284  | 
for inference systems. *)  | 
| 0 | 285  | 
fun con_elim_tac defs =  | 
| 
70
 
8a29f8b4aca1
ZF/ind-syntax/fold_con_tac: deleted, since fold_tac now works
 
lcp 
parents: 
55 
diff
changeset
 | 
286  | 
rewrite_goals_tac defs THEN basic_elim_tac THEN fold_tac defs;  | 
| 0 | 287  | 
|
288  | 
(*String s should have the form t:Si where Si is an inductive set*)  | 
|
289  | 
fun mk_cases defs s =  | 
|
290  | 
rule_by_tactic (con_elim_tac defs)  | 
|
291  | 
(assume_read thy s RS elim);  | 
|
292  | 
||
293  | 
val defs = big_rec_def::part_rec_defs;  | 
|
294  | 
||
295  | 
val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct);  | 
|
296  | 
||
297  | 
end;  |