| 23273 |      1 | (*  Title:      HOL/ex/Groebner_Examples.thy
 | 
|  |      2 |     ID:         $Id$
 | 
|  |      3 |     Author:     Amine Chaieb, TU Muenchen
 | 
|  |      4 | *)
 | 
|  |      5 | 
 | 
|  |      6 | header {* Groebner Basis Examples *}
 | 
|  |      7 | 
 | 
|  |      8 | theory Groebner_Examples
 | 
|  |      9 | imports Main
 | 
|  |     10 | begin
 | 
|  |     11 | 
 | 
|  |     12 | subsection {* Basic examples *}
 | 
|  |     13 | 
 | 
|  |     14 | lemma "3 ^ 3 == (?X::'a::{number_ring,recpower})"
 | 
|  |     15 |   by sring_norm
 | 
|  |     16 | 
 | 
|  |     17 | lemma "(x - (-2))^5 == ?X::int"
 | 
|  |     18 |   by sring_norm
 | 
|  |     19 | 
 | 
|  |     20 | lemma "(x - (-2))^5  * (y - 78) ^ 8 == ?X::int"
 | 
|  |     21 |   by sring_norm
 | 
|  |     22 | 
 | 
|  |     23 | lemma "((-3) ^ (Suc (Suc (Suc 0)))) == (X::'a::{number_ring,recpower})"
 | 
|  |     24 |   apply (simp only: power_Suc power_0)
 | 
|  |     25 |   apply (simp only: comp_arith)
 | 
|  |     26 |   oops
 | 
|  |     27 | 
 | 
|  |     28 | lemma "((x::int) + y)^3 - 1 = (x - z)^2 - 10 \<Longrightarrow> x = z + 3 \<Longrightarrow> x = - y"
 | 
|  |     29 |   by algebra
 | 
|  |     30 | 
 | 
|  |     31 | lemma "(4::nat) + 4 = 3 + 5"
 | 
|  |     32 |   by algebra
 | 
|  |     33 | 
 | 
|  |     34 | lemma "(4::int) + 0 = 4"
 | 
|  |     35 |   apply algebra?
 | 
|  |     36 |   by simp
 | 
|  |     37 | 
 | 
|  |     38 | lemma
 | 
|  |     39 |   assumes "a * x^2 + b * x + c = (0::int)" and "d * x^2 + e * x + f = 0"
 | 
|  |     40 |   shows "d^2*c^2 - 2*d*c*a*f + a^2*f^2 - e*d*b*c - e*b*a*f + a*e^2*c + f*d*b^2 = 0"
 | 
|  |     41 |   using assms by algebra
 | 
|  |     42 | 
 | 
|  |     43 | lemma "(x::int)^3  - x^2  - 5*x - 3 = 0 \<longleftrightarrow> (x = 3 \<or> x = -1)"
 | 
|  |     44 |   by algebra
 | 
|  |     45 | 
 | 
|  |     46 | theorem "x* (x\<twosuperior> - x  - 5) - 3 = (0::int) \<longleftrightarrow> (x = 3 \<or> x = -1)"
 | 
|  |     47 |   by algebra
 | 
|  |     48 | 
 | 
| 23331 |     49 | lemma fixes x::"'a::{idom,recpower,number_ring}"
 | 
|  |     50 | shows "x^2*y = x^2 & x*y^2 = y^2 \<longleftrightarrow>  x=1 & y=1 | x=0 & y=0"
 | 
|  |     51 | by algebra
 | 
| 23273 |     52 | 
 | 
|  |     53 | subsection {* Lemmas for Lagrange's theorem *}
 | 
|  |     54 | 
 | 
|  |     55 | definition
 | 
|  |     56 |   sq :: "'a::times => 'a" where
 | 
|  |     57 |   "sq x == x*x"
 | 
|  |     58 | 
 | 
|  |     59 | lemma
 | 
|  |     60 |   fixes x1 :: "'a::{idom,recpower,number_ring}"
 | 
|  |     61 |   shows
 | 
|  |     62 |   "(sq x1 + sq x2 + sq x3 + sq x4) * (sq y1 + sq y2 + sq y3 + sq y4) =
 | 
|  |     63 |     sq (x1*y1 - x2*y2 - x3*y3 - x4*y4)  +
 | 
|  |     64 |     sq (x1*y2 + x2*y1 + x3*y4 - x4*y3)  +
 | 
|  |     65 |     sq (x1*y3 - x2*y4 + x3*y1 + x4*y2)  +
 | 
|  |     66 |     sq (x1*y4 + x2*y3 - x3*y2 + x4*y1)"
 | 
| 23338 |     67 |   by (algebra add: sq_def)
 | 
| 23273 |     68 | 
 | 
|  |     69 | lemma
 | 
|  |     70 |   fixes p1 :: "'a::{idom,recpower,number_ring}"
 | 
|  |     71 |   shows
 | 
|  |     72 |   "(sq p1 + sq q1 + sq r1 + sq s1 + sq t1 + sq u1 + sq v1 + sq w1) *
 | 
|  |     73 |    (sq p2 + sq q2 + sq r2 + sq s2 + sq t2 + sq u2 + sq v2 + sq w2)
 | 
|  |     74 |     = sq (p1*p2 - q1*q2 - r1*r2 - s1*s2 - t1*t2 - u1*u2 - v1*v2 - w1*w2) +
 | 
|  |     75 |       sq (p1*q2 + q1*p2 + r1*s2 - s1*r2 + t1*u2 - u1*t2 - v1*w2 + w1*v2) +
 | 
|  |     76 |       sq (p1*r2 - q1*s2 + r1*p2 + s1*q2 + t1*v2 + u1*w2 - v1*t2 - w1*u2) +
 | 
|  |     77 |       sq (p1*s2 + q1*r2 - r1*q2 + s1*p2 + t1*w2 - u1*v2 + v1*u2 - w1*t2) +
 | 
|  |     78 |       sq (p1*t2 - q1*u2 - r1*v2 - s1*w2 + t1*p2 + u1*q2 + v1*r2 + w1*s2) +
 | 
|  |     79 |       sq (p1*u2 + q1*t2 - r1*w2 + s1*v2 - t1*q2 + u1*p2 - v1*s2 + w1*r2) +
 | 
|  |     80 |       sq (p1*v2 + q1*w2 + r1*t2 - s1*u2 - t1*r2 + u1*s2 + v1*p2 - w1*q2) +
 | 
|  |     81 |       sq (p1*w2 - q1*v2 + r1*u2 + s1*t2 - t1*s2 - u1*r2 + v1*q2 + w1*p2)"
 | 
| 23338 |     82 |   by (algebra add: sq_def)
 | 
| 23273 |     83 | 
 | 
|  |     84 | 
 | 
|  |     85 | subsection {* Colinearity is invariant by rotation *}
 | 
|  |     86 | 
 | 
|  |     87 | types point = "int \<times> int"
 | 
|  |     88 | 
 | 
|  |     89 | definition collinear ::"point \<Rightarrow> point \<Rightarrow> point \<Rightarrow> bool" where
 | 
|  |     90 |   "collinear \<equiv> \<lambda>(Ax,Ay) (Bx,By) (Cx,Cy).
 | 
|  |     91 |     ((Ax - Bx) * (By - Cy) = (Ay - By) * (Bx - Cx))"
 | 
|  |     92 | 
 | 
|  |     93 | lemma collinear_inv_rotation:
 | 
|  |     94 |   assumes "collinear (Ax, Ay) (Bx, By) (Cx, Cy)" and "c\<twosuperior> + s\<twosuperior> = 1"
 | 
|  |     95 |   shows "collinear (Ax * c - Ay * s, Ay * c + Ax * s)
 | 
|  |     96 |     (Bx * c - By * s, By * c + Bx * s) (Cx * c - Cy * s, Cy * c + Cx * s)"
 | 
| 23338 |     97 |   using assms 
 | 
|  |     98 |   by (algebra add: collinear_def split_def fst_conv snd_conv)
 | 
| 23273 |     99 | 
 | 
|  |    100 | end
 |