| author | haftmann |
| Thu, 02 Jul 2015 10:06:47 +0200 | |
| changeset 60634 | e3b6e516608b |
| parent 60600 | 87fbfea0bd0a |
| child 60685 | cb21b7022b00 |
| permissions | -rw-r--r-- |
| 58023 | 1 |
(* Author: Manuel Eberl *) |
2 |
||
| 60526 | 3 |
section \<open>Abstract euclidean algorithm\<close> |
| 58023 | 4 |
|
5 |
theory Euclidean_Algorithm |
|
| 60634 | 6 |
imports Complex_Main "~~/src/HOL/Library/Polynomial" "~~/src/HOL/Number_Theory/Normalization_Semidom" |
7 |
begin |
|
8 |
||
9 |
lemma is_unit_polyE: |
|
10 |
assumes "is_unit p" |
|
11 |
obtains a where "p = monom a 0" and "a \<noteq> 0" |
|
12 |
proof - |
|
13 |
obtain a q where "p = pCons a q" by (cases p) |
|
14 |
with assms have "p = [:a:]" and "a \<noteq> 0" |
|
15 |
by (simp_all add: is_unit_pCons_iff) |
|
16 |
with that show thesis by (simp add: monom_0) |
|
17 |
qed |
|
18 |
||
19 |
instantiation poly :: (field) normalization_semidom |
|
| 58023 | 20 |
begin |
| 60634 | 21 |
|
22 |
definition normalize_poly :: "'a poly \<Rightarrow> 'a poly" |
|
23 |
where "normalize_poly p = smult (1 / coeff p (degree p)) p" |
|
24 |
||
25 |
definition unit_factor_poly :: "'a poly \<Rightarrow> 'a poly" |
|
26 |
where "unit_factor_poly p = monom (coeff p (degree p)) 0" |
|
27 |
||
28 |
instance |
|
29 |
proof |
|
30 |
fix p :: "'a poly" |
|
31 |
show "unit_factor p * normalize p = p" |
|
32 |
by (simp add: normalize_poly_def unit_factor_poly_def) |
|
33 |
(simp only: mult_smult_left [symmetric] smult_monom, simp) |
|
34 |
next |
|
35 |
show "normalize 0 = (0::'a poly)" |
|
36 |
by (simp add: normalize_poly_def) |
|
37 |
next |
|
38 |
show "unit_factor 0 = (0::'a poly)" |
|
39 |
by (simp add: unit_factor_poly_def) |
|
40 |
next |
|
41 |
fix p :: "'a poly" |
|
42 |
assume "is_unit p" |
|
43 |
then obtain a where "p = monom a 0" and "a \<noteq> 0" |
|
44 |
by (rule is_unit_polyE) |
|
45 |
then show "normalize p = 1" |
|
46 |
by (auto simp add: normalize_poly_def smult_monom degree_monom_eq) |
|
47 |
next |
|
48 |
fix p q :: "'a poly" |
|
49 |
assume "q \<noteq> 0" |
|
50 |
from \<open>q \<noteq> 0\<close> have "is_unit (monom (coeff q (degree q)) 0)" |
|
51 |
by (auto intro: is_unit_monom_0) |
|
52 |
then show "is_unit (unit_factor q)" |
|
53 |
by (simp add: unit_factor_poly_def) |
|
54 |
next |
|
55 |
fix p q :: "'a poly" |
|
56 |
have "monom (coeff (p * q) (degree (p * q))) 0 = |
|
57 |
monom (coeff p (degree p)) 0 * monom (coeff q (degree q)) 0" |
|
58 |
by (simp add: monom_0 coeff_degree_mult) |
|
59 |
then show "unit_factor (p * q) = |
|
60 |
unit_factor p * unit_factor q" |
|
61 |
by (simp add: unit_factor_poly_def) |
|
62 |
qed |
|
63 |
||
64 |
end |
|
65 |
||
| 60526 | 66 |
text \<open> |
| 58023 | 67 |
A Euclidean semiring is a semiring upon which the Euclidean algorithm can be |
68 |
implemented. It must provide: |
|
69 |
\begin{itemize}
|
|
70 |
\item division with remainder |
|
71 |
\item a size function such that @{term "size (a mod b) < size b"}
|
|
72 |
for any @{term "b \<noteq> 0"}
|
|
73 |
\end{itemize}
|
|
74 |
The existence of these functions makes it possible to derive gcd and lcm functions |
|
75 |
for any Euclidean semiring. |
|
| 60526 | 76 |
\<close> |
| 60634 | 77 |
class euclidean_semiring = semiring_div + normalization_semidom + |
| 58023 | 78 |
fixes euclidean_size :: "'a \<Rightarrow> nat" |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
79 |
assumes mod_size_less: |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
80 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (a mod b) < euclidean_size b" |
| 58023 | 81 |
assumes size_mult_mono: |
| 60634 | 82 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size a \<le> euclidean_size (a * b)" |
| 58023 | 83 |
begin |
84 |
||
85 |
lemma euclidean_division: |
|
86 |
fixes a :: 'a and b :: 'a |
|
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
87 |
assumes "b \<noteq> 0" |
| 58023 | 88 |
obtains s and t where "a = s * b + t" |
89 |
and "euclidean_size t < euclidean_size b" |
|
90 |
proof - |
|
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
91 |
from div_mod_equality [of a b 0] |
| 58023 | 92 |
have "a = a div b * b + a mod b" by simp |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
93 |
with that and assms show ?thesis by (auto simp add: mod_size_less) |
| 58023 | 94 |
qed |
95 |
||
96 |
lemma dvd_euclidean_size_eq_imp_dvd: |
|
97 |
assumes "a \<noteq> 0" and b_dvd_a: "b dvd a" and size_eq: "euclidean_size a = euclidean_size b" |
|
98 |
shows "a dvd b" |
|
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
99 |
proof (rule ccontr) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
100 |
assume "\<not> a dvd b" |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
101 |
then have "b mod a \<noteq> 0" by (simp add: mod_eq_0_iff_dvd) |
| 58023 | 102 |
from b_dvd_a have b_dvd_mod: "b dvd b mod a" by (simp add: dvd_mod_iff) |
103 |
from b_dvd_mod obtain c where "b mod a = b * c" unfolding dvd_def by blast |
|
| 60526 | 104 |
with \<open>b mod a \<noteq> 0\<close> have "c \<noteq> 0" by auto |
105 |
with \<open>b mod a = b * c\<close> have "euclidean_size (b mod a) \<ge> euclidean_size b" |
|
| 58023 | 106 |
using size_mult_mono by force |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
107 |
moreover from \<open>\<not> a dvd b\<close> and \<open>a \<noteq> 0\<close> |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
108 |
have "euclidean_size (b mod a) < euclidean_size a" |
| 58023 | 109 |
using mod_size_less by blast |
110 |
ultimately show False using size_eq by simp |
|
111 |
qed |
|
112 |
||
113 |
function gcd_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
114 |
where |
|
| 60634 | 115 |
"gcd_eucl a b = (if b = 0 then normalize a else gcd_eucl b (a mod b))" |
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
116 |
by pat_completeness simp |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
117 |
termination |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
118 |
by (relation "measure (euclidean_size \<circ> snd)") (simp_all add: mod_size_less) |
| 58023 | 119 |
|
120 |
declare gcd_eucl.simps [simp del] |
|
121 |
||
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
122 |
lemma gcd_eucl_induct [case_names zero mod]: |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
123 |
assumes H1: "\<And>b. P b 0" |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
124 |
and H2: "\<And>a b. b \<noteq> 0 \<Longrightarrow> P b (a mod b) \<Longrightarrow> P a b" |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
125 |
shows "P a b" |
| 58023 | 126 |
proof (induct a b rule: gcd_eucl.induct) |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
127 |
case ("1" a b)
|
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
128 |
show ?case |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
129 |
proof (cases "b = 0") |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
130 |
case True then show "P a b" by simp (rule H1) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
131 |
next |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
132 |
case False |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
133 |
then have "P b (a mod b)" |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
134 |
by (rule "1.hyps") |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
135 |
with \<open>b \<noteq> 0\<close> show "P a b" |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
136 |
by (blast intro: H2) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
137 |
qed |
| 58023 | 138 |
qed |
139 |
||
140 |
definition lcm_eucl :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" |
|
141 |
where |
|
| 60634 | 142 |
"lcm_eucl a b = normalize (a * b) div gcd_eucl a b" |
| 58023 | 143 |
|
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
144 |
definition Lcm_eucl :: "'a set \<Rightarrow> 'a" -- \<open> |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
145 |
Somewhat complicated definition of Lcm that has the advantage of working |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
146 |
for infinite sets as well\<close> |
| 58023 | 147 |
where |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
148 |
"Lcm_eucl A = (if \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) then |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
149 |
let l = SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
150 |
(LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n) |
| 60634 | 151 |
in normalize l |
| 58023 | 152 |
else 0)" |
153 |
||
154 |
definition Gcd_eucl :: "'a set \<Rightarrow> 'a" |
|
155 |
where |
|
156 |
"Gcd_eucl A = Lcm_eucl {d. \<forall>a\<in>A. d dvd a}"
|
|
157 |
||
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
158 |
lemma gcd_eucl_0: |
| 60634 | 159 |
"gcd_eucl a 0 = normalize a" |
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
160 |
by (simp add: gcd_eucl.simps [of a 0]) |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
161 |
|
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
162 |
lemma gcd_eucl_0_left: |
| 60634 | 163 |
"gcd_eucl 0 a = normalize a" |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
164 |
by (simp_all add: gcd_eucl_0 gcd_eucl.simps [of 0 a]) |
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
165 |
|
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
166 |
lemma gcd_eucl_non_0: |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
167 |
"b \<noteq> 0 \<Longrightarrow> gcd_eucl a b = gcd_eucl b (a mod b)" |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
168 |
by (simp add: gcd_eucl.simps [of a b] gcd_eucl.simps [of b 0]) |
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
169 |
|
| 58023 | 170 |
end |
171 |
||
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
172 |
class euclidean_ring = euclidean_semiring + idom |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
173 |
begin |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
174 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
175 |
function euclid_ext :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a \<times> 'a" where |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
176 |
"euclid_ext a b = |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
177 |
(if b = 0 then |
| 60634 | 178 |
(1 div unit_factor a, 0, normalize a) |
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
179 |
else |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
180 |
case euclid_ext b (a mod b) of |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
181 |
(s, t, c) \<Rightarrow> (t, s - t * (a div b), c))" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
182 |
by pat_completeness simp |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
183 |
termination |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
184 |
by (relation "measure (euclidean_size \<circ> snd)") (simp_all add: mod_size_less) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
185 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
186 |
declare euclid_ext.simps [simp del] |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
187 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
188 |
lemma euclid_ext_0: |
| 60634 | 189 |
"euclid_ext a 0 = (1 div unit_factor a, 0, normalize a)" |
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
190 |
by (simp add: euclid_ext.simps [of a 0]) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
191 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
192 |
lemma euclid_ext_left_0: |
| 60634 | 193 |
"euclid_ext 0 a = (0, 1 div unit_factor a, normalize a)" |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
194 |
by (simp add: euclid_ext_0 euclid_ext.simps [of 0 a]) |
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
195 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
196 |
lemma euclid_ext_non_0: |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
197 |
"b \<noteq> 0 \<Longrightarrow> euclid_ext a b = (case euclid_ext b (a mod b) of |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
198 |
(s, t, c) \<Rightarrow> (t, s - t * (a div b), c))" |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
199 |
by (simp add: euclid_ext.simps [of a b] euclid_ext.simps [of b 0]) |
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
200 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
201 |
lemma euclid_ext_code [code]: |
| 60634 | 202 |
"euclid_ext a b = (if b = 0 then (1 div unit_factor a, 0, normalize a) |
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
203 |
else let (s, t, c) = euclid_ext b (a mod b) in (t, s - t * (a div b), c))" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
204 |
by (simp add: euclid_ext.simps [of a b] euclid_ext.simps [of b 0]) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
205 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
206 |
lemma euclid_ext_correct: |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
207 |
"case euclid_ext a b of (s, t, c) \<Rightarrow> s * a + t * b = c" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
208 |
proof (induct a b rule: gcd_eucl_induct) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
209 |
case (zero a) then show ?case |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
210 |
by (simp add: euclid_ext_0 ac_simps) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
211 |
next |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
212 |
case (mod a b) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
213 |
obtain s t c where stc: "euclid_ext b (a mod b) = (s,t,c)" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
214 |
by (cases "euclid_ext b (a mod b)") blast |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
215 |
with mod have "c = s * b + t * (a mod b)" by simp |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
216 |
also have "... = t * ((a div b) * b + a mod b) + (s - t * (a div b)) * b" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
217 |
by (simp add: algebra_simps) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
218 |
also have "(a div b) * b + a mod b = a" using mod_div_equality . |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
219 |
finally show ?case |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
220 |
by (subst euclid_ext.simps) (simp add: stc mod ac_simps) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
221 |
qed |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
222 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
223 |
definition euclid_ext' :: "'a \<Rightarrow> 'a \<Rightarrow> 'a \<times> 'a" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
224 |
where |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
225 |
"euclid_ext' a b = (case euclid_ext a b of (s, t, _) \<Rightarrow> (s, t))" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
226 |
|
| 60634 | 227 |
lemma euclid_ext'_0: "euclid_ext' a 0 = (1 div unit_factor a, 0)" |
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
228 |
by (simp add: euclid_ext'_def euclid_ext_0) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
229 |
|
| 60634 | 230 |
lemma euclid_ext'_left_0: "euclid_ext' 0 a = (0, 1 div unit_factor a)" |
|
60598
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
231 |
by (simp add: euclid_ext'_def euclid_ext_left_0) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
232 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
233 |
lemma euclid_ext'_non_0: "b \<noteq> 0 \<Longrightarrow> euclid_ext' a b = (snd (euclid_ext' b (a mod b)), |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
234 |
fst (euclid_ext' b (a mod b)) - snd (euclid_ext' b (a mod b)) * (a div b))" |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
235 |
by (simp add: euclid_ext'_def euclid_ext_non_0 split_def) |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
236 |
|
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
237 |
end |
|
78ca5674c66a
rings follow immediately their corresponding semirings
haftmann
parents:
60582
diff
changeset
|
238 |
|
| 58023 | 239 |
class euclidean_semiring_gcd = euclidean_semiring + gcd + Gcd + |
240 |
assumes gcd_gcd_eucl: "gcd = gcd_eucl" and lcm_lcm_eucl: "lcm = lcm_eucl" |
|
241 |
assumes Gcd_Gcd_eucl: "Gcd = Gcd_eucl" and Lcm_Lcm_eucl: "Lcm = Lcm_eucl" |
|
242 |
begin |
|
243 |
||
244 |
lemma gcd_0_left: |
|
| 60634 | 245 |
"gcd 0 a = normalize a" |
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
246 |
unfolding gcd_gcd_eucl by (fact gcd_eucl_0_left) |
| 58023 | 247 |
|
248 |
lemma gcd_0: |
|
| 60634 | 249 |
"gcd a 0 = normalize a" |
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
250 |
unfolding gcd_gcd_eucl by (fact gcd_eucl_0) |
| 58023 | 251 |
|
252 |
lemma gcd_non_0: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
253 |
"b \<noteq> 0 \<Longrightarrow> gcd a b = gcd b (a mod b)" |
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
254 |
unfolding gcd_gcd_eucl by (fact gcd_eucl_non_0) |
| 58023 | 255 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
256 |
lemma gcd_dvd1 [iff]: "gcd a b dvd a" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
257 |
and gcd_dvd2 [iff]: "gcd a b dvd b" |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
258 |
by (induct a b rule: gcd_eucl_induct) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
259 |
(simp_all add: gcd_0 gcd_non_0 dvd_mod_iff) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
260 |
|
| 58023 | 261 |
lemma dvd_gcd_D1: "k dvd gcd m n \<Longrightarrow> k dvd m" |
262 |
by (rule dvd_trans, assumption, rule gcd_dvd1) |
|
263 |
||
264 |
lemma dvd_gcd_D2: "k dvd gcd m n \<Longrightarrow> k dvd n" |
|
265 |
by (rule dvd_trans, assumption, rule gcd_dvd2) |
|
266 |
||
267 |
lemma gcd_greatest: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
268 |
fixes k a b :: 'a |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
269 |
shows "k dvd a \<Longrightarrow> k dvd b \<Longrightarrow> k dvd gcd a b" |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
270 |
proof (induct a b rule: gcd_eucl_induct) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
271 |
case (zero a) from zero(1) show ?case by (rule dvd_trans) (simp add: gcd_0) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
272 |
next |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
273 |
case (mod a b) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
274 |
then show ?case |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
275 |
by (simp add: gcd_non_0 dvd_mod_iff) |
| 58023 | 276 |
qed |
277 |
||
278 |
lemma dvd_gcd_iff: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
279 |
"k dvd gcd a b \<longleftrightarrow> k dvd a \<and> k dvd b" |
| 58023 | 280 |
by (blast intro!: gcd_greatest intro: dvd_trans) |
281 |
||
282 |
lemmas gcd_greatest_iff = dvd_gcd_iff |
|
283 |
||
284 |
lemma gcd_zero [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
285 |
"gcd a b = 0 \<longleftrightarrow> a = 0 \<and> b = 0" |
| 58023 | 286 |
by (metis dvd_0_left dvd_refl gcd_dvd1 gcd_dvd2 gcd_greatest)+ |
287 |
||
| 60634 | 288 |
lemma unit_factor_gcd [simp]: |
289 |
"unit_factor (gcd a b) = (if a = 0 \<and> b = 0 then 0 else 1)" (is "?f a b = ?g a b") |
|
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
290 |
by (induct a b rule: gcd_eucl_induct) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
291 |
(auto simp add: gcd_0 gcd_non_0) |
| 58023 | 292 |
|
293 |
lemma gcdI: |
|
| 60634 | 294 |
assumes "c dvd a" and "c dvd b" and greatest: "\<And>d. d dvd a \<Longrightarrow> d dvd b \<Longrightarrow> d dvd c" |
295 |
and "unit_factor c = (if c = 0 then 0 else 1)" |
|
296 |
shows "c = gcd a b" |
|
297 |
by (rule associated_eqI) (auto simp: assms associated_def intro: gcd_greatest) |
|
| 58023 | 298 |
|
299 |
sublocale gcd!: abel_semigroup gcd |
|
300 |
proof |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
301 |
fix a b c |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
302 |
show "gcd (gcd a b) c = gcd a (gcd b c)" |
| 58023 | 303 |
proof (rule gcdI) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
304 |
have "gcd (gcd a b) c dvd gcd a b" "gcd a b dvd a" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
305 |
then show "gcd (gcd a b) c dvd a" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
306 |
have "gcd (gcd a b) c dvd gcd a b" "gcd a b dvd b" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
307 |
hence "gcd (gcd a b) c dvd b" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
308 |
moreover have "gcd (gcd a b) c dvd c" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
309 |
ultimately show "gcd (gcd a b) c dvd gcd b c" |
| 58023 | 310 |
by (rule gcd_greatest) |
| 60634 | 311 |
show "unit_factor (gcd (gcd a b) c) = (if gcd (gcd a b) c = 0 then 0 else 1)" |
| 58023 | 312 |
by auto |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
313 |
fix l assume "l dvd a" and "l dvd gcd b c" |
| 58023 | 314 |
with dvd_trans[OF _ gcd_dvd1] and dvd_trans[OF _ gcd_dvd2] |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
315 |
have "l dvd b" and "l dvd c" by blast+ |
| 60526 | 316 |
with \<open>l dvd a\<close> show "l dvd gcd (gcd a b) c" |
| 58023 | 317 |
by (intro gcd_greatest) |
318 |
qed |
|
319 |
next |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
320 |
fix a b |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
321 |
show "gcd a b = gcd b a" |
| 58023 | 322 |
by (rule gcdI) (simp_all add: gcd_greatest) |
323 |
qed |
|
324 |
||
325 |
lemma gcd_unique: "d dvd a \<and> d dvd b \<and> |
|
| 60634 | 326 |
unit_factor d = (if d = 0 then 0 else 1) \<and> |
| 58023 | 327 |
(\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b" |
328 |
by (rule, auto intro: gcdI simp: gcd_greatest) |
|
329 |
||
330 |
lemma gcd_dvd_prod: "gcd a b dvd k * b" |
|
331 |
using mult_dvd_mono [of 1] by auto |
|
332 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
333 |
lemma gcd_1_left [simp]: "gcd 1 a = 1" |
| 58023 | 334 |
by (rule sym, rule gcdI, simp_all) |
335 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
336 |
lemma gcd_1 [simp]: "gcd a 1 = 1" |
| 58023 | 337 |
by (rule sym, rule gcdI, simp_all) |
338 |
||
339 |
lemma gcd_proj2_if_dvd: |
|
| 60634 | 340 |
"b dvd a \<Longrightarrow> gcd a b = normalize b" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
341 |
by (cases "b = 0", simp_all add: dvd_eq_mod_eq_0 gcd_non_0 gcd_0) |
| 58023 | 342 |
|
343 |
lemma gcd_proj1_if_dvd: |
|
| 60634 | 344 |
"a dvd b \<Longrightarrow> gcd a b = normalize a" |
| 58023 | 345 |
by (subst gcd.commute, simp add: gcd_proj2_if_dvd) |
346 |
||
| 60634 | 347 |
lemma gcd_proj1_iff: "gcd m n = normalize m \<longleftrightarrow> m dvd n" |
| 58023 | 348 |
proof |
| 60634 | 349 |
assume A: "gcd m n = normalize m" |
| 58023 | 350 |
show "m dvd n" |
351 |
proof (cases "m = 0") |
|
352 |
assume [simp]: "m \<noteq> 0" |
|
| 60634 | 353 |
from A have B: "m = gcd m n * unit_factor m" |
| 58023 | 354 |
by (simp add: unit_eq_div2) |
355 |
show ?thesis by (subst B, simp add: mult_unit_dvd_iff) |
|
356 |
qed (insert A, simp) |
|
357 |
next |
|
358 |
assume "m dvd n" |
|
| 60634 | 359 |
then show "gcd m n = normalize m" by (rule gcd_proj1_if_dvd) |
| 58023 | 360 |
qed |
361 |
||
| 60634 | 362 |
lemma gcd_proj2_iff: "gcd m n = normalize n \<longleftrightarrow> n dvd m" |
363 |
using gcd_proj1_iff [of n m] by (simp add: ac_simps) |
|
| 58023 | 364 |
|
365 |
lemma gcd_mod1 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
366 |
"gcd (a mod b) b = gcd a b" |
| 58023 | 367 |
by (rule gcdI, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff) |
368 |
||
369 |
lemma gcd_mod2 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
370 |
"gcd a (b mod a) = gcd a b" |
| 58023 | 371 |
by (rule gcdI, simp, metis dvd_mod_iff gcd_dvd1 gcd_dvd2, simp_all add: gcd_greatest dvd_mod_iff) |
372 |
||
373 |
lemma gcd_mult_distrib': |
|
| 60634 | 374 |
"normalize c * gcd a b = gcd (c * a) (c * b)" |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
375 |
proof (cases "c = 0") |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
376 |
case True then show ?thesis by (simp_all add: gcd_0) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
377 |
next |
| 60634 | 378 |
case False then have [simp]: "is_unit (unit_factor c)" by simp |
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
379 |
show ?thesis |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
380 |
proof (induct a b rule: gcd_eucl_induct) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
381 |
case (zero a) show ?case |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
382 |
proof (cases "a = 0") |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
383 |
case True then show ?thesis by (simp add: gcd_0) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
384 |
next |
| 60634 | 385 |
case False |
386 |
then show ?thesis by (simp add: gcd_0 normalize_mult) |
|
|
60569
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
387 |
qed |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
388 |
case (mod a b) |
|
f2f1f6860959
generalized to definition from literature, which covers also polynomials
haftmann
parents:
60526
diff
changeset
|
389 |
then show ?case by (simp add: mult_mod_right gcd.commute) |
| 58023 | 390 |
qed |
391 |
qed |
|
392 |
||
393 |
lemma gcd_mult_distrib: |
|
| 60634 | 394 |
"k * gcd a b = gcd (k * a) (k * b) * unit_factor k" |
| 58023 | 395 |
proof- |
| 60634 | 396 |
have "normalize k * gcd a b = gcd (k * a) (k * b)" |
397 |
by (simp add: gcd_mult_distrib') |
|
398 |
then have "normalize k * gcd a b * unit_factor k = gcd (k * a) (k * b) * unit_factor k" |
|
399 |
by simp |
|
400 |
then have "normalize k * unit_factor k * gcd a b = gcd (k * a) (k * b) * unit_factor k" |
|
401 |
by (simp only: ac_simps) |
|
402 |
then show ?thesis |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
403 |
by simp |
| 58023 | 404 |
qed |
405 |
||
406 |
lemma euclidean_size_gcd_le1 [simp]: |
|
407 |
assumes "a \<noteq> 0" |
|
408 |
shows "euclidean_size (gcd a b) \<le> euclidean_size a" |
|
409 |
proof - |
|
410 |
have "gcd a b dvd a" by (rule gcd_dvd1) |
|
411 |
then obtain c where A: "a = gcd a b * c" unfolding dvd_def by blast |
|
| 60526 | 412 |
with \<open>a \<noteq> 0\<close> show ?thesis by (subst (2) A, intro size_mult_mono) auto |
| 58023 | 413 |
qed |
414 |
||
415 |
lemma euclidean_size_gcd_le2 [simp]: |
|
416 |
"b \<noteq> 0 \<Longrightarrow> euclidean_size (gcd a b) \<le> euclidean_size b" |
|
417 |
by (subst gcd.commute, rule euclidean_size_gcd_le1) |
|
418 |
||
419 |
lemma euclidean_size_gcd_less1: |
|
420 |
assumes "a \<noteq> 0" and "\<not>a dvd b" |
|
421 |
shows "euclidean_size (gcd a b) < euclidean_size a" |
|
422 |
proof (rule ccontr) |
|
423 |
assume "\<not>euclidean_size (gcd a b) < euclidean_size a" |
|
| 60526 | 424 |
with \<open>a \<noteq> 0\<close> have "euclidean_size (gcd a b) = euclidean_size a" |
| 58023 | 425 |
by (intro le_antisym, simp_all) |
426 |
with assms have "a dvd gcd a b" by (auto intro: dvd_euclidean_size_eq_imp_dvd) |
|
427 |
hence "a dvd b" using dvd_gcd_D2 by blast |
|
| 60526 | 428 |
with \<open>\<not>a dvd b\<close> show False by contradiction |
| 58023 | 429 |
qed |
430 |
||
431 |
lemma euclidean_size_gcd_less2: |
|
432 |
assumes "b \<noteq> 0" and "\<not>b dvd a" |
|
433 |
shows "euclidean_size (gcd a b) < euclidean_size b" |
|
434 |
using assms by (subst gcd.commute, rule euclidean_size_gcd_less1) |
|
435 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
436 |
lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c" |
| 58023 | 437 |
apply (rule gcdI) |
438 |
apply (rule dvd_trans, rule gcd_dvd1, simp add: unit_simps) |
|
439 |
apply (rule gcd_dvd2) |
|
440 |
apply (rule gcd_greatest, simp add: unit_simps, assumption) |
|
| 60634 | 441 |
apply (subst unit_factor_gcd, simp add: gcd_0) |
| 58023 | 442 |
done |
443 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
444 |
lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c" |
| 58023 | 445 |
by (subst gcd.commute, subst gcd_mult_unit1, assumption, rule gcd.commute) |
446 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
447 |
lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c" |
| 60433 | 448 |
by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1) |
| 58023 | 449 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
450 |
lemma gcd_div_unit2: "is_unit a \<Longrightarrow> gcd b (c div a) = gcd b c" |
| 60433 | 451 |
by (erule is_unitE [of _ c]) (simp add: gcd_mult_unit2) |
| 58023 | 452 |
|
| 60634 | 453 |
lemma normalize_gcd_left [simp]: |
454 |
"gcd (normalize a) b = gcd a b" |
|
455 |
proof (cases "a = 0") |
|
456 |
case True then show ?thesis |
|
457 |
by simp |
|
458 |
next |
|
459 |
case False then have "is_unit (unit_factor a)" |
|
460 |
by simp |
|
461 |
moreover have "normalize a = a div unit_factor a" |
|
462 |
by simp |
|
463 |
ultimately show ?thesis |
|
464 |
by (simp only: gcd_div_unit1) |
|
465 |
qed |
|
466 |
||
467 |
lemma normalize_gcd_right [simp]: |
|
468 |
"gcd a (normalize b) = gcd a b" |
|
469 |
using normalize_gcd_left [of b a] by (simp add: ac_simps) |
|
470 |
||
471 |
lemma gcd_idem: "gcd a a = normalize a" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
472 |
by (cases "a = 0") (simp add: gcd_0_left, rule sym, rule gcdI, simp_all) |
| 58023 | 473 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
474 |
lemma gcd_right_idem: "gcd (gcd a b) b = gcd a b" |
| 58023 | 475 |
apply (rule gcdI) |
476 |
apply (simp add: ac_simps) |
|
477 |
apply (rule gcd_dvd2) |
|
478 |
apply (rule gcd_greatest, erule (1) gcd_greatest, assumption) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
479 |
apply simp |
| 58023 | 480 |
done |
481 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
482 |
lemma gcd_left_idem: "gcd a (gcd a b) = gcd a b" |
| 58023 | 483 |
apply (rule gcdI) |
484 |
apply simp |
|
485 |
apply (rule dvd_trans, rule gcd_dvd2, rule gcd_dvd2) |
|
486 |
apply (rule gcd_greatest, assumption, erule gcd_greatest, assumption) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
487 |
apply simp |
| 58023 | 488 |
done |
489 |
||
490 |
lemma comp_fun_idem_gcd: "comp_fun_idem gcd" |
|
491 |
proof |
|
492 |
fix a b show "gcd a \<circ> gcd b = gcd b \<circ> gcd a" |
|
493 |
by (simp add: fun_eq_iff ac_simps) |
|
494 |
next |
|
495 |
fix a show "gcd a \<circ> gcd a = gcd a" |
|
496 |
by (simp add: fun_eq_iff gcd_left_idem) |
|
497 |
qed |
|
498 |
||
499 |
lemma coprime_dvd_mult: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
500 |
assumes "gcd c b = 1" and "c dvd a * b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
501 |
shows "c dvd a" |
| 58023 | 502 |
proof - |
| 60634 | 503 |
let ?nf = "unit_factor" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
504 |
from assms gcd_mult_distrib [of a c b] |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
505 |
have A: "a = gcd (a * c) (a * b) * ?nf a" by simp |
| 60526 | 506 |
from \<open>c dvd a * b\<close> show ?thesis by (subst A, simp_all add: gcd_greatest) |
| 58023 | 507 |
qed |
508 |
||
509 |
lemma coprime_dvd_mult_iff: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
510 |
"gcd c b = 1 \<Longrightarrow> (c dvd a * b) = (c dvd a)" |
| 58023 | 511 |
by (rule, rule coprime_dvd_mult, simp_all) |
512 |
||
513 |
lemma gcd_dvd_antisym: |
|
514 |
"gcd a b dvd gcd c d \<Longrightarrow> gcd c d dvd gcd a b \<Longrightarrow> gcd a b = gcd c d" |
|
515 |
proof (rule gcdI) |
|
516 |
assume A: "gcd a b dvd gcd c d" and B: "gcd c d dvd gcd a b" |
|
517 |
have "gcd c d dvd c" by simp |
|
518 |
with A show "gcd a b dvd c" by (rule dvd_trans) |
|
519 |
have "gcd c d dvd d" by simp |
|
520 |
with A show "gcd a b dvd d" by (rule dvd_trans) |
|
| 60634 | 521 |
show "unit_factor (gcd a b) = (if gcd a b = 0 then 0 else 1)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
522 |
by simp |
| 58023 | 523 |
fix l assume "l dvd c" and "l dvd d" |
524 |
hence "l dvd gcd c d" by (rule gcd_greatest) |
|
525 |
from this and B show "l dvd gcd a b" by (rule dvd_trans) |
|
526 |
qed |
|
527 |
||
528 |
lemma gcd_mult_cancel: |
|
529 |
assumes "gcd k n = 1" |
|
530 |
shows "gcd (k * m) n = gcd m n" |
|
531 |
proof (rule gcd_dvd_antisym) |
|
532 |
have "gcd (gcd (k * m) n) k = gcd (gcd k n) (k * m)" by (simp add: ac_simps) |
|
| 60526 | 533 |
also note \<open>gcd k n = 1\<close> |
| 58023 | 534 |
finally have "gcd (gcd (k * m) n) k = 1" by simp |
535 |
hence "gcd (k * m) n dvd m" by (rule coprime_dvd_mult, simp add: ac_simps) |
|
536 |
moreover have "gcd (k * m) n dvd n" by simp |
|
537 |
ultimately show "gcd (k * m) n dvd gcd m n" by (rule gcd_greatest) |
|
538 |
have "gcd m n dvd (k * m)" and "gcd m n dvd n" by simp_all |
|
539 |
then show "gcd m n dvd gcd (k * m) n" by (rule gcd_greatest) |
|
540 |
qed |
|
541 |
||
542 |
lemma coprime_crossproduct: |
|
543 |
assumes [simp]: "gcd a d = 1" "gcd b c = 1" |
|
544 |
shows "associated (a * c) (b * d) \<longleftrightarrow> associated a b \<and> associated c d" (is "?lhs \<longleftrightarrow> ?rhs") |
|
545 |
proof |
|
546 |
assume ?rhs then show ?lhs unfolding associated_def by (fast intro: mult_dvd_mono) |
|
547 |
next |
|
548 |
assume ?lhs |
|
| 60526 | 549 |
from \<open>?lhs\<close> have "a dvd b * d" unfolding associated_def by (metis dvd_mult_left) |
| 58023 | 550 |
hence "a dvd b" by (simp add: coprime_dvd_mult_iff) |
| 60526 | 551 |
moreover from \<open>?lhs\<close> have "b dvd a * c" unfolding associated_def by (metis dvd_mult_left) |
| 58023 | 552 |
hence "b dvd a" by (simp add: coprime_dvd_mult_iff) |
| 60526 | 553 |
moreover from \<open>?lhs\<close> have "c dvd d * b" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
554 |
unfolding associated_def by (auto dest: dvd_mult_right simp add: ac_simps) |
| 58023 | 555 |
hence "c dvd d" by (simp add: coprime_dvd_mult_iff gcd.commute) |
| 60526 | 556 |
moreover from \<open>?lhs\<close> have "d dvd c * a" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
557 |
unfolding associated_def by (auto dest: dvd_mult_right simp add: ac_simps) |
| 58023 | 558 |
hence "d dvd c" by (simp add: coprime_dvd_mult_iff gcd.commute) |
559 |
ultimately show ?rhs unfolding associated_def by simp |
|
560 |
qed |
|
561 |
||
562 |
lemma gcd_add1 [simp]: |
|
563 |
"gcd (m + n) n = gcd m n" |
|
564 |
by (cases "n = 0", simp_all add: gcd_non_0) |
|
565 |
||
566 |
lemma gcd_add2 [simp]: |
|
567 |
"gcd m (m + n) = gcd m n" |
|
568 |
using gcd_add1 [of n m] by (simp add: ac_simps) |
|
569 |
||
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
570 |
lemma gcd_add_mult: |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
571 |
"gcd m (k * m + n) = gcd m n" |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
572 |
proof - |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
573 |
have "gcd m ((k * m + n) mod m) = gcd m (k * m + n)" |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
574 |
by (fact gcd_mod2) |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
575 |
then show ?thesis by simp |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
576 |
qed |
| 58023 | 577 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
578 |
lemma coprimeI: "(\<And>l. \<lbrakk>l dvd a; l dvd b\<rbrakk> \<Longrightarrow> l dvd 1) \<Longrightarrow> gcd a b = 1" |
| 58023 | 579 |
by (rule sym, rule gcdI, simp_all) |
580 |
||
581 |
lemma coprime: "gcd a b = 1 \<longleftrightarrow> (\<forall>d. d dvd a \<and> d dvd b \<longleftrightarrow> is_unit d)" |
|
| 59061 | 582 |
by (auto intro: coprimeI gcd_greatest dvd_gcd_D1 dvd_gcd_D2) |
| 58023 | 583 |
|
584 |
lemma div_gcd_coprime: |
|
585 |
assumes nz: "a \<noteq> 0 \<or> b \<noteq> 0" |
|
586 |
defines [simp]: "d \<equiv> gcd a b" |
|
587 |
defines [simp]: "a' \<equiv> a div d" and [simp]: "b' \<equiv> b div d" |
|
588 |
shows "gcd a' b' = 1" |
|
589 |
proof (rule coprimeI) |
|
590 |
fix l assume "l dvd a'" "l dvd b'" |
|
591 |
then obtain s t where "a' = l * s" "b' = l * t" unfolding dvd_def by blast |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
592 |
moreover have "a = a' * d" "b = b' * d" by simp_all |
| 58023 | 593 |
ultimately have "a = (l * d) * s" "b = (l * d) * t" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
594 |
by (simp_all only: ac_simps) |
| 58023 | 595 |
hence "l*d dvd a" and "l*d dvd b" by (simp_all only: dvd_triv_left) |
596 |
hence "l*d dvd d" by (simp add: gcd_greatest) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
597 |
then obtain u where "d = l * d * u" .. |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
598 |
then have "d * (l * u) = d" by (simp add: ac_simps) |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
599 |
moreover from nz have "d \<noteq> 0" by simp |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
600 |
with div_mult_self1_is_id have "d * (l * u) div d = l * u" . |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
601 |
ultimately have "1 = l * u" |
| 60526 | 602 |
using \<open>d \<noteq> 0\<close> by simp |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
603 |
then show "l dvd 1" .. |
| 58023 | 604 |
qed |
605 |
||
606 |
lemma coprime_mult: |
|
607 |
assumes da: "gcd d a = 1" and db: "gcd d b = 1" |
|
608 |
shows "gcd d (a * b) = 1" |
|
609 |
apply (subst gcd.commute) |
|
610 |
using da apply (subst gcd_mult_cancel) |
|
611 |
apply (subst gcd.commute, assumption) |
|
612 |
apply (subst gcd.commute, rule db) |
|
613 |
done |
|
614 |
||
615 |
lemma coprime_lmult: |
|
616 |
assumes dab: "gcd d (a * b) = 1" |
|
617 |
shows "gcd d a = 1" |
|
618 |
proof (rule coprimeI) |
|
619 |
fix l assume "l dvd d" and "l dvd a" |
|
620 |
hence "l dvd a * b" by simp |
|
| 60526 | 621 |
with \<open>l dvd d\<close> and dab show "l dvd 1" by (auto intro: gcd_greatest) |
| 58023 | 622 |
qed |
623 |
||
624 |
lemma coprime_rmult: |
|
625 |
assumes dab: "gcd d (a * b) = 1" |
|
626 |
shows "gcd d b = 1" |
|
627 |
proof (rule coprimeI) |
|
628 |
fix l assume "l dvd d" and "l dvd b" |
|
629 |
hence "l dvd a * b" by simp |
|
| 60526 | 630 |
with \<open>l dvd d\<close> and dab show "l dvd 1" by (auto intro: gcd_greatest) |
| 58023 | 631 |
qed |
632 |
||
633 |
lemma coprime_mul_eq: "gcd d (a * b) = 1 \<longleftrightarrow> gcd d a = 1 \<and> gcd d b = 1" |
|
634 |
using coprime_rmult[of d a b] coprime_lmult[of d a b] coprime_mult[of d a b] by blast |
|
635 |
||
636 |
lemma gcd_coprime: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
637 |
assumes c: "gcd a b \<noteq> 0" and a: "a = a' * gcd a b" and b: "b = b' * gcd a b" |
| 58023 | 638 |
shows "gcd a' b' = 1" |
639 |
proof - |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
640 |
from c have "a \<noteq> 0 \<or> b \<noteq> 0" by simp |
| 58023 | 641 |
with div_gcd_coprime have "gcd (a div gcd a b) (b div gcd a b) = 1" . |
642 |
also from assms have "a div gcd a b = a'" by (metis div_mult_self2_is_id)+ |
|
643 |
also from assms have "b div gcd a b = b'" by (metis div_mult_self2_is_id)+ |
|
644 |
finally show ?thesis . |
|
645 |
qed |
|
646 |
||
647 |
lemma coprime_power: |
|
648 |
assumes "0 < n" |
|
649 |
shows "gcd a (b ^ n) = 1 \<longleftrightarrow> gcd a b = 1" |
|
650 |
using assms proof (induct n) |
|
651 |
case (Suc n) then show ?case |
|
652 |
by (cases n) (simp_all add: coprime_mul_eq) |
|
653 |
qed simp |
|
654 |
||
655 |
lemma gcd_coprime_exists: |
|
656 |
assumes nz: "gcd a b \<noteq> 0" |
|
657 |
shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> gcd a' b' = 1" |
|
658 |
apply (rule_tac x = "a div gcd a b" in exI) |
|
659 |
apply (rule_tac x = "b div gcd a b" in exI) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
660 |
apply (insert nz, auto intro: div_gcd_coprime) |
| 58023 | 661 |
done |
662 |
||
663 |
lemma coprime_exp: |
|
664 |
"gcd d a = 1 \<Longrightarrow> gcd d (a^n) = 1" |
|
665 |
by (induct n, simp_all add: coprime_mult) |
|
666 |
||
667 |
lemma coprime_exp2 [intro]: |
|
668 |
"gcd a b = 1 \<Longrightarrow> gcd (a^n) (b^m) = 1" |
|
669 |
apply (rule coprime_exp) |
|
670 |
apply (subst gcd.commute) |
|
671 |
apply (rule coprime_exp) |
|
672 |
apply (subst gcd.commute) |
|
673 |
apply assumption |
|
674 |
done |
|
675 |
||
676 |
lemma gcd_exp: |
|
677 |
"gcd (a^n) (b^n) = (gcd a b) ^ n" |
|
678 |
proof (cases "a = 0 \<and> b = 0") |
|
679 |
assume "a = 0 \<and> b = 0" |
|
680 |
then show ?thesis by (cases n, simp_all add: gcd_0_left) |
|
681 |
next |
|
682 |
assume A: "\<not>(a = 0 \<and> b = 0)" |
|
683 |
hence "1 = gcd ((a div gcd a b)^n) ((b div gcd a b)^n)" |
|
684 |
using div_gcd_coprime by (subst sym, auto simp: div_gcd_coprime) |
|
685 |
hence "(gcd a b) ^ n = (gcd a b) ^ n * ..." by simp |
|
686 |
also note gcd_mult_distrib |
|
| 60634 | 687 |
also have "unit_factor ((gcd a b)^n) = 1" |
688 |
by (simp add: unit_factor_power A) |
|
| 58023 | 689 |
also have "(gcd a b)^n * (a div gcd a b)^n = a^n" |
690 |
by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp) |
|
691 |
also have "(gcd a b)^n * (b div gcd a b)^n = b^n" |
|
692 |
by (subst ac_simps, subst div_power, simp, rule dvd_div_mult_self, rule dvd_power_same, simp) |
|
693 |
finally show ?thesis by simp |
|
694 |
qed |
|
695 |
||
696 |
lemma coprime_common_divisor: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
697 |
"gcd a b = 1 \<Longrightarrow> a dvd a \<Longrightarrow> a dvd b \<Longrightarrow> is_unit a" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
698 |
apply (subgoal_tac "a dvd gcd a b") |
| 59061 | 699 |
apply simp |
| 58023 | 700 |
apply (erule (1) gcd_greatest) |
701 |
done |
|
702 |
||
703 |
lemma division_decomp: |
|
704 |
assumes dc: "a dvd b * c" |
|
705 |
shows "\<exists>b' c'. a = b' * c' \<and> b' dvd b \<and> c' dvd c" |
|
706 |
proof (cases "gcd a b = 0") |
|
707 |
assume "gcd a b = 0" |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
708 |
hence "a = 0 \<and> b = 0" by simp |
| 58023 | 709 |
hence "a = 0 * c \<and> 0 dvd b \<and> c dvd c" by simp |
710 |
then show ?thesis by blast |
|
711 |
next |
|
712 |
let ?d = "gcd a b" |
|
713 |
assume "?d \<noteq> 0" |
|
714 |
from gcd_coprime_exists[OF this] |
|
715 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" |
|
716 |
by blast |
|
717 |
from ab'(1) have "a' dvd a" unfolding dvd_def by blast |
|
718 |
with dc have "a' dvd b*c" using dvd_trans[of a' a "b*c"] by simp |
|
719 |
from dc ab'(1,2) have "a'*?d dvd (b'*?d) * c" by simp |
|
720 |
hence "?d * a' dvd ?d * (b' * c)" by (simp add: mult_ac) |
|
| 60526 | 721 |
with \<open>?d \<noteq> 0\<close> have "a' dvd b' * c" by simp |
| 58023 | 722 |
with coprime_dvd_mult[OF ab'(3)] |
723 |
have "a' dvd c" by (subst (asm) ac_simps, blast) |
|
724 |
with ab'(1) have "a = ?d * a' \<and> ?d dvd b \<and> a' dvd c" by (simp add: mult_ac) |
|
725 |
then show ?thesis by blast |
|
726 |
qed |
|
727 |
||
| 60433 | 728 |
lemma pow_divs_pow: |
| 58023 | 729 |
assumes ab: "a ^ n dvd b ^ n" and n: "n \<noteq> 0" |
730 |
shows "a dvd b" |
|
731 |
proof (cases "gcd a b = 0") |
|
732 |
assume "gcd a b = 0" |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
733 |
then show ?thesis by simp |
| 58023 | 734 |
next |
735 |
let ?d = "gcd a b" |
|
736 |
assume "?d \<noteq> 0" |
|
737 |
from n obtain m where m: "n = Suc m" by (cases n, simp_all) |
|
| 60526 | 738 |
from \<open>?d \<noteq> 0\<close> have zn: "?d ^ n \<noteq> 0" by (rule power_not_zero) |
739 |
from gcd_coprime_exists[OF \<open>?d \<noteq> 0\<close>] |
|
| 58023 | 740 |
obtain a' b' where ab': "a = a' * ?d" "b = b' * ?d" "gcd a' b' = 1" |
741 |
by blast |
|
742 |
from ab have "(a' * ?d) ^ n dvd (b' * ?d) ^ n" |
|
743 |
by (simp add: ab'(1,2)[symmetric]) |
|
744 |
hence "?d^n * a'^n dvd ?d^n * b'^n" |
|
745 |
by (simp only: power_mult_distrib ac_simps) |
|
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
746 |
with zn have "a'^n dvd b'^n" by simp |
| 58023 | 747 |
hence "a' dvd b'^n" using dvd_trans[of a' "a'^n" "b'^n"] by (simp add: m) |
748 |
hence "a' dvd b'^m * b'" by (simp add: m ac_simps) |
|
749 |
with coprime_dvd_mult[OF coprime_exp[OF ab'(3), of m]] |
|
750 |
have "a' dvd b'" by (subst (asm) ac_simps, blast) |
|
751 |
hence "a'*?d dvd b'*?d" by (rule mult_dvd_mono, simp) |
|
752 |
with ab'(1,2) show ?thesis by simp |
|
753 |
qed |
|
754 |
||
| 60433 | 755 |
lemma pow_divs_eq [simp]: |
| 58023 | 756 |
"n \<noteq> 0 \<Longrightarrow> a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" |
| 60433 | 757 |
by (auto intro: pow_divs_pow dvd_power_same) |
| 58023 | 758 |
|
| 60433 | 759 |
lemma divs_mult: |
| 58023 | 760 |
assumes mr: "m dvd r" and nr: "n dvd r" and mn: "gcd m n = 1" |
761 |
shows "m * n dvd r" |
|
762 |
proof - |
|
763 |
from mr nr obtain m' n' where m': "r = m*m'" and n': "r = n*n'" |
|
764 |
unfolding dvd_def by blast |
|
765 |
from mr n' have "m dvd n'*n" by (simp add: ac_simps) |
|
766 |
hence "m dvd n'" using coprime_dvd_mult_iff[OF mn] by simp |
|
767 |
then obtain k where k: "n' = m*k" unfolding dvd_def by blast |
|
768 |
with n' have "r = m * n * k" by (simp add: mult_ac) |
|
769 |
then show ?thesis unfolding dvd_def by blast |
|
770 |
qed |
|
771 |
||
772 |
lemma coprime_plus_one [simp]: "gcd (n + 1) n = 1" |
|
773 |
by (subst add_commute, simp) |
|
774 |
||
775 |
lemma setprod_coprime [rule_format]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
776 |
"(\<forall>i\<in>A. gcd (f i) a = 1) \<longrightarrow> gcd (\<Prod>i\<in>A. f i) a = 1" |
| 58023 | 777 |
apply (cases "finite A") |
778 |
apply (induct set: finite) |
|
779 |
apply (auto simp add: gcd_mult_cancel) |
|
780 |
done |
|
781 |
||
782 |
lemma coprime_divisors: |
|
783 |
assumes "d dvd a" "e dvd b" "gcd a b = 1" |
|
784 |
shows "gcd d e = 1" |
|
785 |
proof - |
|
786 |
from assms obtain k l where "a = d * k" "b = e * l" |
|
787 |
unfolding dvd_def by blast |
|
788 |
with assms have "gcd (d * k) (e * l) = 1" by simp |
|
789 |
hence "gcd (d * k) e = 1" by (rule coprime_lmult) |
|
790 |
also have "gcd (d * k) e = gcd e (d * k)" by (simp add: ac_simps) |
|
791 |
finally have "gcd e d = 1" by (rule coprime_lmult) |
|
792 |
then show ?thesis by (simp add: ac_simps) |
|
793 |
qed |
|
794 |
||
795 |
lemma invertible_coprime: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
796 |
assumes "a * b mod m = 1" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
797 |
shows "coprime a m" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
798 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
799 |
from assms have "coprime m (a * b mod m)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
800 |
by simp |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
801 |
then have "coprime m (a * b)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
802 |
by simp |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
803 |
then have "coprime m a" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
804 |
by (rule coprime_lmult) |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
805 |
then show ?thesis |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
806 |
by (simp add: ac_simps) |
|
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
807 |
qed |
| 58023 | 808 |
|
809 |
lemma lcm_gcd: |
|
| 60634 | 810 |
"lcm a b = normalize (a * b) div gcd a b" |
811 |
by (simp add: lcm_lcm_eucl gcd_gcd_eucl lcm_eucl_def) |
|
| 58023 | 812 |
|
813 |
lemma lcm_gcd_prod: |
|
| 60634 | 814 |
"lcm a b * gcd a b = normalize (a * b)" |
815 |
by (simp add: lcm_gcd) |
|
| 58023 | 816 |
|
817 |
lemma lcm_dvd1 [iff]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
818 |
"a dvd lcm a b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
819 |
proof (cases "a*b = 0") |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
820 |
assume "a * b \<noteq> 0" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
821 |
hence "gcd a b \<noteq> 0" by simp |
| 60634 | 822 |
let ?c = "1 div unit_factor (a * b)" |
823 |
from \<open>a * b \<noteq> 0\<close> have [simp]: "is_unit (unit_factor (a * b))" by simp |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
824 |
from lcm_gcd_prod[of a b] have "lcm a b * gcd a b = a * ?c * b" |
| 60432 | 825 |
by (simp add: div_mult_swap unit_div_commute) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
826 |
hence "lcm a b * gcd a b div gcd a b = a * ?c * b div gcd a b" by simp |
| 60526 | 827 |
with \<open>gcd a b \<noteq> 0\<close> have "lcm a b = a * ?c * b div gcd a b" |
| 58023 | 828 |
by (subst (asm) div_mult_self2_is_id, simp_all) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
829 |
also have "... = a * (?c * b div gcd a b)" |
| 58023 | 830 |
by (metis div_mult_swap gcd_dvd2 mult_assoc) |
831 |
finally show ?thesis by (rule dvdI) |
|
| 58953 | 832 |
qed (auto simp add: lcm_gcd) |
| 58023 | 833 |
|
834 |
lemma lcm_least: |
|
835 |
"\<lbrakk>a dvd k; b dvd k\<rbrakk> \<Longrightarrow> lcm a b dvd k" |
|
836 |
proof (cases "k = 0") |
|
| 60634 | 837 |
let ?nf = unit_factor |
| 58023 | 838 |
assume "k \<noteq> 0" |
839 |
hence "is_unit (?nf k)" by simp |
|
840 |
hence "?nf k \<noteq> 0" by (metis not_is_unit_0) |
|
841 |
assume A: "a dvd k" "b dvd k" |
|
| 60526 | 842 |
hence "gcd a b \<noteq> 0" using \<open>k \<noteq> 0\<close> by auto |
| 58023 | 843 |
from A obtain r s where ar: "k = a * r" and bs: "k = b * s" |
844 |
unfolding dvd_def by blast |
|
| 60526 | 845 |
with \<open>k \<noteq> 0\<close> have "r * s \<noteq> 0" |
| 58953 | 846 |
by auto (drule sym [of 0], simp) |
| 58023 | 847 |
hence "is_unit (?nf (r * s))" by simp |
848 |
let ?c = "?nf k div ?nf (r*s)" |
|
| 60526 | 849 |
from \<open>is_unit (?nf k)\<close> and \<open>is_unit (?nf (r * s))\<close> have "is_unit ?c" by (rule unit_div) |
| 58023 | 850 |
hence "?c \<noteq> 0" using not_is_unit_0 by fast |
851 |
from ar bs have "k * k * gcd s r = ?nf k * k * gcd (k * s) (k * r)" |
|
| 58953 | 852 |
by (subst mult_assoc, subst gcd_mult_distrib[of k s r], simp only: ac_simps) |
| 58023 | 853 |
also have "... = ?nf k * k * gcd ((r*s) * a) ((r*s) * b)" |
| 60526 | 854 |
by (subst (3) \<open>k = a * r\<close>, subst (3) \<open>k = b * s\<close>, simp add: algebra_simps) |
855 |
also have "... = ?c * r*s * k * gcd a b" using \<open>r * s \<noteq> 0\<close> |
|
| 58023 | 856 |
by (subst gcd_mult_distrib'[symmetric], simp add: algebra_simps unit_simps) |
857 |
finally have "(a*r) * (b*s) * gcd s r = ?c * k * r * s * gcd a b" |
|
858 |
by (subst ar[symmetric], subst bs[symmetric], simp add: mult_ac) |
|
859 |
hence "a * b * gcd s r * (r * s) = ?c * k * gcd a b * (r * s)" |
|
860 |
by (simp add: algebra_simps) |
|
| 60526 | 861 |
hence "?c * k * gcd a b = a * b * gcd s r" using \<open>r * s \<noteq> 0\<close> |
| 58023 | 862 |
by (metis div_mult_self2_is_id) |
863 |
also have "... = lcm a b * gcd a b * gcd s r * ?nf (a*b)" |
|
864 |
by (subst lcm_gcd_prod[of a b], metis gcd_mult_distrib gcd_mult_distrib') |
|
865 |
also have "... = lcm a b * gcd s r * ?nf (a*b) * gcd a b" |
|
866 |
by (simp add: algebra_simps) |
|
| 60526 | 867 |
finally have "k * ?c = lcm a b * gcd s r * ?nf (a*b)" using \<open>gcd a b \<noteq> 0\<close> |
| 58023 | 868 |
by (metis mult.commute div_mult_self2_is_id) |
| 60526 | 869 |
hence "k = lcm a b * (gcd s r * ?nf (a*b)) div ?c" using \<open>?c \<noteq> 0\<close> |
| 58023 | 870 |
by (metis div_mult_self2_is_id mult_assoc) |
| 60526 | 871 |
also have "... = lcm a b * (gcd s r * ?nf (a*b) div ?c)" using \<open>is_unit ?c\<close> |
| 58023 | 872 |
by (simp add: unit_simps) |
873 |
finally show ?thesis by (rule dvdI) |
|
874 |
qed simp |
|
875 |
||
876 |
lemma lcm_zero: |
|
877 |
"lcm a b = 0 \<longleftrightarrow> a = 0 \<or> b = 0" |
|
878 |
proof - |
|
| 60634 | 879 |
let ?nf = unit_factor |
| 58023 | 880 |
{
|
881 |
assume "a \<noteq> 0" "b \<noteq> 0" |
|
882 |
hence "a * b div ?nf (a * b) \<noteq> 0" by (simp add: no_zero_divisors) |
|
| 60526 | 883 |
moreover from \<open>a \<noteq> 0\<close> and \<open>b \<noteq> 0\<close> have "gcd a b \<noteq> 0" by simp |
| 58023 | 884 |
ultimately have "lcm a b \<noteq> 0" using lcm_gcd_prod[of a b] by (intro notI, simp) |
885 |
} moreover {
|
|
886 |
assume "a = 0 \<or> b = 0" |
|
887 |
hence "lcm a b = 0" by (elim disjE, simp_all add: lcm_gcd) |
|
888 |
} |
|
889 |
ultimately show ?thesis by blast |
|
890 |
qed |
|
891 |
||
892 |
lemmas lcm_0_iff = lcm_zero |
|
893 |
||
894 |
lemma gcd_lcm: |
|
895 |
assumes "lcm a b \<noteq> 0" |
|
| 60634 | 896 |
shows "gcd a b = normalize (a * b) div lcm a b" |
897 |
proof - |
|
898 |
have "lcm a b * gcd a b = normalize (a * b)" |
|
899 |
by (fact lcm_gcd_prod) |
|
900 |
with assms show ?thesis |
|
901 |
by (metis nonzero_mult_divide_cancel_left) |
|
| 58023 | 902 |
qed |
903 |
||
| 60634 | 904 |
lemma unit_factor_lcm [simp]: |
905 |
"unit_factor (lcm a b) = (if a = 0 \<or> b = 0 then 0 else 1)" |
|
906 |
by (simp add: dvd_unit_factor_div lcm_gcd) |
|
| 58023 | 907 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
908 |
lemma lcm_dvd2 [iff]: "b dvd lcm a b" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
909 |
using lcm_dvd1 [of b a] by (simp add: lcm_gcd ac_simps) |
| 58023 | 910 |
|
911 |
lemma lcmI: |
|
| 60634 | 912 |
assumes "a dvd c" and "b dvd c" and "\<And>d. a dvd d \<Longrightarrow> b dvd d \<Longrightarrow> c dvd d" |
913 |
and "unit_factor c = (if c = 0 then 0 else 1)" |
|
914 |
shows "c = lcm a b" |
|
915 |
by (rule associated_eqI) (auto simp: assms associated_def intro: lcm_least) |
|
| 58023 | 916 |
|
917 |
sublocale lcm!: abel_semigroup lcm |
|
918 |
proof |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
919 |
fix a b c |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
920 |
show "lcm (lcm a b) c = lcm a (lcm b c)" |
| 58023 | 921 |
proof (rule lcmI) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
922 |
have "a dvd lcm a b" and "lcm a b dvd lcm (lcm a b) c" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
923 |
then show "a dvd lcm (lcm a b) c" by (rule dvd_trans) |
| 58023 | 924 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
925 |
have "b dvd lcm a b" and "lcm a b dvd lcm (lcm a b) c" by simp_all |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
926 |
hence "b dvd lcm (lcm a b) c" by (rule dvd_trans) |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
927 |
moreover have "c dvd lcm (lcm a b) c" by simp |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
928 |
ultimately show "lcm b c dvd lcm (lcm a b) c" by (rule lcm_least) |
| 58023 | 929 |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
930 |
fix l assume "a dvd l" and "lcm b c dvd l" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
931 |
have "b dvd lcm b c" by simp |
| 60526 | 932 |
from this and \<open>lcm b c dvd l\<close> have "b dvd l" by (rule dvd_trans) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
933 |
have "c dvd lcm b c" by simp |
| 60526 | 934 |
from this and \<open>lcm b c dvd l\<close> have "c dvd l" by (rule dvd_trans) |
935 |
from \<open>a dvd l\<close> and \<open>b dvd l\<close> have "lcm a b dvd l" by (rule lcm_least) |
|
936 |
from this and \<open>c dvd l\<close> show "lcm (lcm a b) c dvd l" by (rule lcm_least) |
|
| 58023 | 937 |
qed (simp add: lcm_zero) |
938 |
next |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
939 |
fix a b |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
940 |
show "lcm a b = lcm b a" |
| 58023 | 941 |
by (simp add: lcm_gcd ac_simps) |
942 |
qed |
|
943 |
||
944 |
lemma dvd_lcm_D1: |
|
945 |
"lcm m n dvd k \<Longrightarrow> m dvd k" |
|
946 |
by (rule dvd_trans, rule lcm_dvd1, assumption) |
|
947 |
||
948 |
lemma dvd_lcm_D2: |
|
949 |
"lcm m n dvd k \<Longrightarrow> n dvd k" |
|
950 |
by (rule dvd_trans, rule lcm_dvd2, assumption) |
|
951 |
||
952 |
lemma gcd_dvd_lcm [simp]: |
|
953 |
"gcd a b dvd lcm a b" |
|
954 |
by (metis dvd_trans gcd_dvd2 lcm_dvd2) |
|
955 |
||
956 |
lemma lcm_1_iff: |
|
957 |
"lcm a b = 1 \<longleftrightarrow> is_unit a \<and> is_unit b" |
|
958 |
proof |
|
959 |
assume "lcm a b = 1" |
|
| 59061 | 960 |
then show "is_unit a \<and> is_unit b" by auto |
| 58023 | 961 |
next |
962 |
assume "is_unit a \<and> is_unit b" |
|
| 59061 | 963 |
hence "a dvd 1" and "b dvd 1" by simp_all |
964 |
hence "is_unit (lcm a b)" by (rule lcm_least) |
|
| 60634 | 965 |
hence "lcm a b = unit_factor (lcm a b)" |
966 |
by (blast intro: sym is_unit_unit_factor) |
|
| 60526 | 967 |
also have "\<dots> = 1" using \<open>is_unit a \<and> is_unit b\<close> |
| 59061 | 968 |
by auto |
| 58023 | 969 |
finally show "lcm a b = 1" . |
970 |
qed |
|
971 |
||
972 |
lemma lcm_0_left [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
973 |
"lcm 0 a = 0" |
| 58023 | 974 |
by (rule sym, rule lcmI, simp_all) |
975 |
||
976 |
lemma lcm_0 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
977 |
"lcm a 0 = 0" |
| 58023 | 978 |
by (rule sym, rule lcmI, simp_all) |
979 |
||
980 |
lemma lcm_unique: |
|
981 |
"a dvd d \<and> b dvd d \<and> |
|
| 60634 | 982 |
unit_factor d = (if d = 0 then 0 else 1) \<and> |
| 58023 | 983 |
(\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b" |
984 |
by (rule, auto intro: lcmI simp: lcm_least lcm_zero) |
|
985 |
||
986 |
lemma dvd_lcm_I1 [simp]: |
|
987 |
"k dvd m \<Longrightarrow> k dvd lcm m n" |
|
988 |
by (metis lcm_dvd1 dvd_trans) |
|
989 |
||
990 |
lemma dvd_lcm_I2 [simp]: |
|
991 |
"k dvd n \<Longrightarrow> k dvd lcm m n" |
|
992 |
by (metis lcm_dvd2 dvd_trans) |
|
993 |
||
994 |
lemma lcm_1_left [simp]: |
|
| 60634 | 995 |
"lcm 1 a = normalize a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
996 |
by (cases "a = 0") (simp, rule sym, rule lcmI, simp_all) |
| 58023 | 997 |
|
998 |
lemma lcm_1_right [simp]: |
|
| 60634 | 999 |
"lcm a 1 = normalize a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1000 |
using lcm_1_left [of a] by (simp add: ac_simps) |
| 58023 | 1001 |
|
1002 |
lemma lcm_coprime: |
|
| 60634 | 1003 |
"gcd a b = 1 \<Longrightarrow> lcm a b = normalize (a * b)" |
| 58023 | 1004 |
by (subst lcm_gcd) simp |
1005 |
||
1006 |
lemma lcm_proj1_if_dvd: |
|
| 60634 | 1007 |
"b dvd a \<Longrightarrow> lcm a b = normalize a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1008 |
by (cases "a = 0") (simp, rule sym, rule lcmI, simp_all) |
| 58023 | 1009 |
|
1010 |
lemma lcm_proj2_if_dvd: |
|
| 60634 | 1011 |
"a dvd b \<Longrightarrow> lcm a b = normalize b" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1012 |
using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps) |
| 58023 | 1013 |
|
1014 |
lemma lcm_proj1_iff: |
|
| 60634 | 1015 |
"lcm m n = normalize m \<longleftrightarrow> n dvd m" |
| 58023 | 1016 |
proof |
| 60634 | 1017 |
assume A: "lcm m n = normalize m" |
| 58023 | 1018 |
show "n dvd m" |
1019 |
proof (cases "m = 0") |
|
1020 |
assume [simp]: "m \<noteq> 0" |
|
| 60634 | 1021 |
from A have B: "m = lcm m n * unit_factor m" |
| 58023 | 1022 |
by (simp add: unit_eq_div2) |
1023 |
show ?thesis by (subst B, simp) |
|
1024 |
qed simp |
|
1025 |
next |
|
1026 |
assume "n dvd m" |
|
| 60634 | 1027 |
then show "lcm m n = normalize m" by (rule lcm_proj1_if_dvd) |
| 58023 | 1028 |
qed |
1029 |
||
1030 |
lemma lcm_proj2_iff: |
|
| 60634 | 1031 |
"lcm m n = normalize n \<longleftrightarrow> m dvd n" |
| 58023 | 1032 |
using lcm_proj1_iff [of n m] by (simp add: ac_simps) |
1033 |
||
1034 |
lemma euclidean_size_lcm_le1: |
|
1035 |
assumes "a \<noteq> 0" and "b \<noteq> 0" |
|
1036 |
shows "euclidean_size a \<le> euclidean_size (lcm a b)" |
|
1037 |
proof - |
|
1038 |
have "a dvd lcm a b" by (rule lcm_dvd1) |
|
1039 |
then obtain c where A: "lcm a b = a * c" unfolding dvd_def by blast |
|
| 60526 | 1040 |
with \<open>a \<noteq> 0\<close> and \<open>b \<noteq> 0\<close> have "c \<noteq> 0" by (auto simp: lcm_zero) |
| 58023 | 1041 |
then show ?thesis by (subst A, intro size_mult_mono) |
1042 |
qed |
|
1043 |
||
1044 |
lemma euclidean_size_lcm_le2: |
|
1045 |
"a \<noteq> 0 \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> euclidean_size b \<le> euclidean_size (lcm a b)" |
|
1046 |
using euclidean_size_lcm_le1 [of b a] by (simp add: ac_simps) |
|
1047 |
||
1048 |
lemma euclidean_size_lcm_less1: |
|
1049 |
assumes "b \<noteq> 0" and "\<not>b dvd a" |
|
1050 |
shows "euclidean_size a < euclidean_size (lcm a b)" |
|
1051 |
proof (rule ccontr) |
|
1052 |
from assms have "a \<noteq> 0" by auto |
|
1053 |
assume "\<not>euclidean_size a < euclidean_size (lcm a b)" |
|
| 60526 | 1054 |
with \<open>a \<noteq> 0\<close> and \<open>b \<noteq> 0\<close> have "euclidean_size (lcm a b) = euclidean_size a" |
| 58023 | 1055 |
by (intro le_antisym, simp, intro euclidean_size_lcm_le1) |
1056 |
with assms have "lcm a b dvd a" |
|
1057 |
by (rule_tac dvd_euclidean_size_eq_imp_dvd) (auto simp: lcm_zero) |
|
1058 |
hence "b dvd a" by (rule dvd_lcm_D2) |
|
| 60526 | 1059 |
with \<open>\<not>b dvd a\<close> show False by contradiction |
| 58023 | 1060 |
qed |
1061 |
||
1062 |
lemma euclidean_size_lcm_less2: |
|
1063 |
assumes "a \<noteq> 0" and "\<not>a dvd b" |
|
1064 |
shows "euclidean_size b < euclidean_size (lcm a b)" |
|
1065 |
using assms euclidean_size_lcm_less1 [of a b] by (simp add: ac_simps) |
|
1066 |
||
1067 |
lemma lcm_mult_unit1: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1068 |
"is_unit a \<Longrightarrow> lcm (b * a) c = lcm b c" |
| 58023 | 1069 |
apply (rule lcmI) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1070 |
apply (rule dvd_trans[of _ "b * a"], simp, rule lcm_dvd1) |
| 58023 | 1071 |
apply (rule lcm_dvd2) |
1072 |
apply (rule lcm_least, simp add: unit_simps, assumption) |
|
| 60634 | 1073 |
apply (subst unit_factor_lcm, simp add: lcm_zero) |
| 58023 | 1074 |
done |
1075 |
||
1076 |
lemma lcm_mult_unit2: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1077 |
"is_unit a \<Longrightarrow> lcm b (c * a) = lcm b c" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1078 |
using lcm_mult_unit1 [of a c b] by (simp add: ac_simps) |
| 58023 | 1079 |
|
1080 |
lemma lcm_div_unit1: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1081 |
"is_unit a \<Longrightarrow> lcm (b div a) c = lcm b c" |
| 60433 | 1082 |
by (erule is_unitE [of _ b]) (simp add: lcm_mult_unit1) |
| 58023 | 1083 |
|
1084 |
lemma lcm_div_unit2: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1085 |
"is_unit a \<Longrightarrow> lcm b (c div a) = lcm b c" |
| 60433 | 1086 |
by (erule is_unitE [of _ c]) (simp add: lcm_mult_unit2) |
| 58023 | 1087 |
|
| 60634 | 1088 |
lemma normalize_lcm_left [simp]: |
1089 |
"lcm (normalize a) b = lcm a b" |
|
1090 |
proof (cases "a = 0") |
|
1091 |
case True then show ?thesis |
|
1092 |
by simp |
|
1093 |
next |
|
1094 |
case False then have "is_unit (unit_factor a)" |
|
1095 |
by simp |
|
1096 |
moreover have "normalize a = a div unit_factor a" |
|
1097 |
by simp |
|
1098 |
ultimately show ?thesis |
|
1099 |
by (simp only: lcm_div_unit1) |
|
1100 |
qed |
|
1101 |
||
1102 |
lemma normalize_lcm_right [simp]: |
|
1103 |
"lcm a (normalize b) = lcm a b" |
|
1104 |
using normalize_lcm_left [of b a] by (simp add: ac_simps) |
|
1105 |
||
| 58023 | 1106 |
lemma lcm_left_idem: |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1107 |
"lcm a (lcm a b) = lcm a b" |
| 58023 | 1108 |
apply (rule lcmI) |
1109 |
apply simp |
|
1110 |
apply (subst lcm.assoc [symmetric], rule lcm_dvd2) |
|
1111 |
apply (rule lcm_least, assumption) |
|
1112 |
apply (erule (1) lcm_least) |
|
1113 |
apply (auto simp: lcm_zero) |
|
1114 |
done |
|
1115 |
||
1116 |
lemma lcm_right_idem: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1117 |
"lcm (lcm a b) b = lcm a b" |
| 58023 | 1118 |
apply (rule lcmI) |
1119 |
apply (subst lcm.assoc, rule lcm_dvd1) |
|
1120 |
apply (rule lcm_dvd2) |
|
1121 |
apply (rule lcm_least, erule (1) lcm_least, assumption) |
|
1122 |
apply (auto simp: lcm_zero) |
|
1123 |
done |
|
1124 |
||
1125 |
lemma comp_fun_idem_lcm: "comp_fun_idem lcm" |
|
1126 |
proof |
|
1127 |
fix a b show "lcm a \<circ> lcm b = lcm b \<circ> lcm a" |
|
1128 |
by (simp add: fun_eq_iff ac_simps) |
|
1129 |
next |
|
1130 |
fix a show "lcm a \<circ> lcm a = lcm a" unfolding o_def |
|
1131 |
by (intro ext, simp add: lcm_left_idem) |
|
1132 |
qed |
|
1133 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1134 |
lemma dvd_Lcm [simp]: "a \<in> A \<Longrightarrow> a dvd Lcm A" |
| 60634 | 1135 |
and Lcm_least: "(\<And>a. a \<in> A \<Longrightarrow> a dvd b) \<Longrightarrow> Lcm A dvd b" |
1136 |
and unit_factor_Lcm [simp]: |
|
1137 |
"unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" |
|
| 58023 | 1138 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1139 |
have "(\<forall>a\<in>A. a dvd Lcm A) \<and> (\<forall>l'. (\<forall>a\<in>A. a dvd l') \<longrightarrow> Lcm A dvd l') \<and> |
| 60634 | 1140 |
unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" (is ?thesis) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1141 |
proof (cases "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)") |
| 58023 | 1142 |
case False |
1143 |
hence "Lcm A = 0" by (auto simp: Lcm_Lcm_eucl Lcm_eucl_def) |
|
1144 |
with False show ?thesis by auto |
|
1145 |
next |
|
1146 |
case True |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1147 |
then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l\<^sub>0)" by blast |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1148 |
def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1149 |
def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1150 |
have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
| 58023 | 1151 |
apply (subst n_def) |
1152 |
apply (rule LeastI[of _ "euclidean_size l\<^sub>0"]) |
|
1153 |
apply (rule exI[of _ l\<^sub>0]) |
|
1154 |
apply (simp add: l\<^sub>0_props) |
|
1155 |
done |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1156 |
from someI_ex[OF this] have "l \<noteq> 0" and "\<forall>a\<in>A. a dvd l" and "euclidean_size l = n" |
| 58023 | 1157 |
unfolding l_def by simp_all |
1158 |
{
|
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1159 |
fix l' assume "\<forall>a\<in>A. a dvd l'" |
| 60526 | 1160 |
with \<open>\<forall>a\<in>A. a dvd l\<close> have "\<forall>a\<in>A. a dvd gcd l l'" by (auto intro: gcd_greatest) |
1161 |
moreover from \<open>l \<noteq> 0\<close> have "gcd l l' \<noteq> 0" by simp |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1162 |
ultimately have "\<exists>b. b \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd b) \<and> euclidean_size b = euclidean_size (gcd l l')" |
| 58023 | 1163 |
by (intro exI[of _ "gcd l l'"], auto) |
1164 |
hence "euclidean_size (gcd l l') \<ge> n" by (subst n_def) (rule Least_le) |
|
1165 |
moreover have "euclidean_size (gcd l l') \<le> n" |
|
1166 |
proof - |
|
1167 |
have "gcd l l' dvd l" by simp |
|
1168 |
then obtain a where "l = gcd l l' * a" unfolding dvd_def by blast |
|
| 60526 | 1169 |
with \<open>l \<noteq> 0\<close> have "a \<noteq> 0" by auto |
| 58023 | 1170 |
hence "euclidean_size (gcd l l') \<le> euclidean_size (gcd l l' * a)" |
1171 |
by (rule size_mult_mono) |
|
| 60526 | 1172 |
also have "gcd l l' * a = l" using \<open>l = gcd l l' * a\<close> .. |
1173 |
also note \<open>euclidean_size l = n\<close> |
|
| 58023 | 1174 |
finally show "euclidean_size (gcd l l') \<le> n" . |
1175 |
qed |
|
1176 |
ultimately have "euclidean_size l = euclidean_size (gcd l l')" |
|
| 60526 | 1177 |
by (intro le_antisym, simp_all add: \<open>euclidean_size l = n\<close>) |
1178 |
with \<open>l \<noteq> 0\<close> have "l dvd gcd l l'" by (blast intro: dvd_euclidean_size_eq_imp_dvd) |
|
| 58023 | 1179 |
hence "l dvd l'" by (blast dest: dvd_gcd_D2) |
1180 |
} |
|
1181 |
||
| 60634 | 1182 |
with \<open>(\<forall>a\<in>A. a dvd l)\<close> and unit_factor_is_unit[OF \<open>l \<noteq> 0\<close>] and \<open>l \<noteq> 0\<close> |
1183 |
have "(\<forall>a\<in>A. a dvd normalize l) \<and> |
|
1184 |
(\<forall>l'. (\<forall>a\<in>A. a dvd l') \<longrightarrow> normalize l dvd l') \<and> |
|
1185 |
unit_factor (normalize l) = |
|
1186 |
(if normalize l = 0 then 0 else 1)" |
|
| 58023 | 1187 |
by (auto simp: unit_simps) |
| 60634 | 1188 |
also from True have "normalize l = Lcm A" |
| 58023 | 1189 |
by (simp add: Lcm_Lcm_eucl Lcm_eucl_def Let_def n_def l_def) |
1190 |
finally show ?thesis . |
|
1191 |
qed |
|
1192 |
note A = this |
|
1193 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1194 |
{fix a assume "a \<in> A" then show "a dvd Lcm A" using A by blast}
|
| 60634 | 1195 |
{fix b assume "\<And>a. a \<in> A \<Longrightarrow> a dvd b" then show "Lcm A dvd b" using A by blast}
|
1196 |
from A show "unit_factor (Lcm A) = (if Lcm A = 0 then 0 else 1)" by blast |
|
| 58023 | 1197 |
qed |
| 60634 | 1198 |
|
1199 |
lemma normalize_Lcm [simp]: |
|
1200 |
"normalize (Lcm A) = Lcm A" |
|
1201 |
by (cases "Lcm A = 0") (auto intro: associated_eqI) |
|
1202 |
||
| 58023 | 1203 |
lemma LcmI: |
| 60634 | 1204 |
assumes "\<And>a. a \<in> A \<Longrightarrow> a dvd b" and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> a dvd c) \<Longrightarrow> b dvd c" |
1205 |
and "unit_factor b = (if b = 0 then 0 else 1)" shows "b = Lcm A" |
|
1206 |
by (rule associated_eqI) (auto simp: assms associated_def intro: Lcm_least) |
|
| 58023 | 1207 |
|
1208 |
lemma Lcm_subset: |
|
1209 |
"A \<subseteq> B \<Longrightarrow> Lcm A dvd Lcm B" |
|
| 60634 | 1210 |
by (blast intro: Lcm_least dvd_Lcm) |
| 58023 | 1211 |
|
1212 |
lemma Lcm_Un: |
|
1213 |
"Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)" |
|
1214 |
apply (rule lcmI) |
|
1215 |
apply (blast intro: Lcm_subset) |
|
1216 |
apply (blast intro: Lcm_subset) |
|
| 60634 | 1217 |
apply (intro Lcm_least ballI, elim UnE) |
| 58023 | 1218 |
apply (rule dvd_trans, erule dvd_Lcm, assumption) |
1219 |
apply (rule dvd_trans, erule dvd_Lcm, assumption) |
|
1220 |
apply simp |
|
1221 |
done |
|
1222 |
||
1223 |
lemma Lcm_1_iff: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1224 |
"Lcm A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a)" |
| 58023 | 1225 |
proof |
1226 |
assume "Lcm A = 1" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1227 |
then show "\<forall>a\<in>A. is_unit a" by auto |
| 58023 | 1228 |
qed (rule LcmI [symmetric], auto) |
1229 |
||
1230 |
lemma Lcm_no_units: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1231 |
"Lcm A = Lcm (A - {a. is_unit a})"
|
| 58023 | 1232 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1233 |
have "(A - {a. is_unit a}) \<union> {a\<in>A. is_unit a} = A" by blast
|
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1234 |
hence "Lcm A = lcm (Lcm (A - {a. is_unit a})) (Lcm {a\<in>A. is_unit a})"
|
| 60634 | 1235 |
by (simp add: Lcm_Un [symmetric]) |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1236 |
also have "Lcm {a\<in>A. is_unit a} = 1" by (simp add: Lcm_1_iff)
|
| 58023 | 1237 |
finally show ?thesis by simp |
1238 |
qed |
|
1239 |
||
1240 |
lemma Lcm_empty [simp]: |
|
1241 |
"Lcm {} = 1"
|
|
1242 |
by (simp add: Lcm_1_iff) |
|
1243 |
||
1244 |
lemma Lcm_eq_0 [simp]: |
|
1245 |
"0 \<in> A \<Longrightarrow> Lcm A = 0" |
|
1246 |
by (drule dvd_Lcm) simp |
|
1247 |
||
1248 |
lemma Lcm0_iff': |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1249 |
"Lcm A = 0 \<longleftrightarrow> \<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" |
| 58023 | 1250 |
proof |
1251 |
assume "Lcm A = 0" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1252 |
show "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" |
| 58023 | 1253 |
proof |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1254 |
assume ex: "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1255 |
then obtain l\<^sub>0 where l\<^sub>0_props: "l\<^sub>0 \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l\<^sub>0)" by blast |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1256 |
def n \<equiv> "LEAST n. \<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1257 |
def l \<equiv> "SOME l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1258 |
have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l) \<and> euclidean_size l = n" |
| 58023 | 1259 |
apply (subst n_def) |
1260 |
apply (rule LeastI[of _ "euclidean_size l\<^sub>0"]) |
|
1261 |
apply (rule exI[of _ l\<^sub>0]) |
|
1262 |
apply (simp add: l\<^sub>0_props) |
|
1263 |
done |
|
1264 |
from someI_ex[OF this] have "l \<noteq> 0" unfolding l_def by simp_all |
|
| 60634 | 1265 |
hence "normalize l \<noteq> 0" by simp |
1266 |
also from ex have "normalize l = Lcm A" |
|
| 58023 | 1267 |
by (simp only: Lcm_Lcm_eucl Lcm_eucl_def n_def l_def if_True Let_def) |
| 60526 | 1268 |
finally show False using \<open>Lcm A = 0\<close> by contradiction |
| 58023 | 1269 |
qed |
1270 |
qed (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False) |
|
1271 |
||
1272 |
lemma Lcm0_iff [simp]: |
|
1273 |
"finite A \<Longrightarrow> Lcm A = 0 \<longleftrightarrow> 0 \<in> A" |
|
1274 |
proof - |
|
1275 |
assume "finite A" |
|
1276 |
have "0 \<in> A \<Longrightarrow> Lcm A = 0" by (intro dvd_0_left dvd_Lcm) |
|
1277 |
moreover {
|
|
1278 |
assume "0 \<notin> A" |
|
1279 |
hence "\<Prod>A \<noteq> 0" |
|
| 60526 | 1280 |
apply (induct rule: finite_induct[OF \<open>finite A\<close>]) |
| 58023 | 1281 |
apply simp |
1282 |
apply (subst setprod.insert, assumption, assumption) |
|
1283 |
apply (rule no_zero_divisors) |
|
1284 |
apply blast+ |
|
1285 |
done |
|
| 60526 | 1286 |
moreover from \<open>finite A\<close> have "\<forall>a\<in>A. a dvd \<Prod>A" by blast |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1287 |
ultimately have "\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l)" by blast |
| 58023 | 1288 |
with Lcm0_iff' have "Lcm A \<noteq> 0" by simp |
1289 |
} |
|
1290 |
ultimately show "Lcm A = 0 \<longleftrightarrow> 0 \<in> A" by blast |
|
1291 |
qed |
|
1292 |
||
1293 |
lemma Lcm_no_multiple: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1294 |
"(\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not>a dvd m)) \<Longrightarrow> Lcm A = 0" |
| 58023 | 1295 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1296 |
assume "\<forall>m. m \<noteq> 0 \<longrightarrow> (\<exists>a\<in>A. \<not>a dvd m)" |
|
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1297 |
hence "\<not>(\<exists>l. l \<noteq> 0 \<and> (\<forall>a\<in>A. a dvd l))" by blast |
| 58023 | 1298 |
then show "Lcm A = 0" by (simp only: Lcm_Lcm_eucl Lcm_eucl_def if_False) |
1299 |
qed |
|
1300 |
||
1301 |
lemma Lcm_insert [simp]: |
|
1302 |
"Lcm (insert a A) = lcm a (Lcm A)" |
|
1303 |
proof (rule lcmI) |
|
1304 |
fix l assume "a dvd l" and "Lcm A dvd l" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1305 |
hence "\<forall>a\<in>A. a dvd l" by (blast intro: dvd_trans dvd_Lcm) |
| 60634 | 1306 |
with \<open>a dvd l\<close> show "Lcm (insert a A) dvd l" by (force intro: Lcm_least) |
1307 |
qed (auto intro: Lcm_least dvd_Lcm) |
|
| 58023 | 1308 |
|
1309 |
lemma Lcm_finite: |
|
1310 |
assumes "finite A" |
|
1311 |
shows "Lcm A = Finite_Set.fold lcm 1 A" |
|
| 60526 | 1312 |
by (induct rule: finite.induct[OF \<open>finite A\<close>]) |
| 58023 | 1313 |
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_lcm]) |
1314 |
||
|
60431
db9c67b760f1
dropped warnings by dropping ineffective code declarations
haftmann
parents:
60430
diff
changeset
|
1315 |
lemma Lcm_set [code_unfold]: |
| 58023 | 1316 |
"Lcm (set xs) = fold lcm xs 1" |
1317 |
using comp_fun_idem.fold_set_fold[OF comp_fun_idem_lcm] Lcm_finite by (simp add: ac_simps) |
|
1318 |
||
1319 |
lemma Lcm_singleton [simp]: |
|
| 60634 | 1320 |
"Lcm {a} = normalize a"
|
| 58023 | 1321 |
by simp |
1322 |
||
1323 |
lemma Lcm_2 [simp]: |
|
1324 |
"Lcm {a,b} = lcm a b"
|
|
| 60634 | 1325 |
by simp |
| 58023 | 1326 |
|
1327 |
lemma Lcm_coprime: |
|
1328 |
assumes "finite A" and "A \<noteq> {}"
|
|
1329 |
assumes "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1" |
|
| 60634 | 1330 |
shows "Lcm A = normalize (\<Prod>A)" |
| 58023 | 1331 |
using assms proof (induct rule: finite_ne_induct) |
1332 |
case (insert a A) |
|
1333 |
have "Lcm (insert a A) = lcm a (Lcm A)" by simp |
|
| 60634 | 1334 |
also from insert have "Lcm A = normalize (\<Prod>A)" by blast |
| 58023 | 1335 |
also have "lcm a \<dots> = lcm a (\<Prod>A)" by (cases "\<Prod>A = 0") (simp_all add: lcm_div_unit2) |
1336 |
also from insert have "gcd a (\<Prod>A) = 1" by (subst gcd.commute, intro setprod_coprime) auto |
|
| 60634 | 1337 |
with insert have "lcm a (\<Prod>A) = normalize (\<Prod>(insert a A))" |
| 58023 | 1338 |
by (simp add: lcm_coprime) |
1339 |
finally show ?case . |
|
1340 |
qed simp |
|
1341 |
||
1342 |
lemma Lcm_coprime': |
|
1343 |
"card A \<noteq> 0 \<Longrightarrow> (\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<noteq> b \<Longrightarrow> gcd a b = 1) |
|
| 60634 | 1344 |
\<Longrightarrow> Lcm A = normalize (\<Prod>A)" |
| 58023 | 1345 |
by (rule Lcm_coprime) (simp_all add: card_eq_0_iff) |
1346 |
||
1347 |
lemma Gcd_Lcm: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1348 |
"Gcd A = Lcm {d. \<forall>a\<in>A. d dvd a}"
|
| 58023 | 1349 |
by (simp add: Gcd_Gcd_eucl Lcm_Lcm_eucl Gcd_eucl_def) |
1350 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1351 |
lemma Gcd_dvd [simp]: "a \<in> A \<Longrightarrow> Gcd A dvd a" |
| 60634 | 1352 |
and Gcd_greatest: "(\<And>a. a \<in> A \<Longrightarrow> b dvd a) \<Longrightarrow> b dvd Gcd A" |
1353 |
and unit_factor_Gcd [simp]: |
|
1354 |
"unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" |
|
| 58023 | 1355 |
proof - |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1356 |
fix a assume "a \<in> A" |
| 60634 | 1357 |
hence "Lcm {d. \<forall>a\<in>A. d dvd a} dvd a" by (intro Lcm_least) blast
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1358 |
then show "Gcd A dvd a" by (simp add: Gcd_Lcm) |
| 58023 | 1359 |
next |
| 60634 | 1360 |
fix g' assume "\<And>a. a \<in> A \<Longrightarrow> g' dvd a" |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1361 |
hence "g' dvd Lcm {d. \<forall>a\<in>A. d dvd a}" by (intro dvd_Lcm) blast
|
| 58023 | 1362 |
then show "g' dvd Gcd A" by (simp add: Gcd_Lcm) |
1363 |
next |
|
| 60634 | 1364 |
show "unit_factor (Gcd A) = (if Gcd A = 0 then 0 else 1)" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1365 |
by (simp add: Gcd_Lcm) |
| 58023 | 1366 |
qed |
1367 |
||
| 60634 | 1368 |
lemma normalize_Gcd [simp]: |
1369 |
"normalize (Gcd A) = Gcd A" |
|
1370 |
by (cases "Gcd A = 0") (auto intro: associated_eqI) |
|
1371 |
||
| 58023 | 1372 |
lemma GcdI: |
| 60634 | 1373 |
assumes "\<And>a. a \<in> A \<Longrightarrow> b dvd a" and "\<And>c. (\<And>a. a \<in> A \<Longrightarrow> c dvd a) \<Longrightarrow> c dvd b" |
1374 |
and "unit_factor b = (if b = 0 then 0 else 1)" |
|
1375 |
shows "b = Gcd A" |
|
1376 |
by (rule associated_eqI) (auto simp: assms associated_def intro: Gcd_greatest) |
|
| 58023 | 1377 |
|
1378 |
lemma Lcm_Gcd: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1379 |
"Lcm A = Gcd {m. \<forall>a\<in>A. a dvd m}"
|
| 60634 | 1380 |
by (rule LcmI[symmetric]) (auto intro: dvd_Gcd Gcd_greatest) |
| 58023 | 1381 |
|
1382 |
lemma Gcd_0_iff: |
|
1383 |
"Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
|
|
1384 |
apply (rule iffI) |
|
1385 |
apply (rule subsetI, drule Gcd_dvd, simp) |
|
1386 |
apply (auto intro: GcdI[symmetric]) |
|
1387 |
done |
|
1388 |
||
1389 |
lemma Gcd_empty [simp]: |
|
1390 |
"Gcd {} = 0"
|
|
1391 |
by (simp add: Gcd_0_iff) |
|
1392 |
||
1393 |
lemma Gcd_1: |
|
1394 |
"1 \<in> A \<Longrightarrow> Gcd A = 1" |
|
1395 |
by (intro GcdI[symmetric]) (auto intro: Gcd_dvd dvd_Gcd) |
|
1396 |
||
1397 |
lemma Gcd_insert [simp]: |
|
1398 |
"Gcd (insert a A) = gcd a (Gcd A)" |
|
1399 |
proof (rule gcdI) |
|
1400 |
fix l assume "l dvd a" and "l dvd Gcd A" |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1401 |
hence "\<forall>a\<in>A. l dvd a" by (blast intro: dvd_trans Gcd_dvd) |
| 60634 | 1402 |
with \<open>l dvd a\<close> show "l dvd Gcd (insert a A)" by (force intro: Gcd_dvd Gcd_greatest) |
1403 |
qed (auto intro: Gcd_greatest) |
|
| 58023 | 1404 |
|
1405 |
lemma Gcd_finite: |
|
1406 |
assumes "finite A" |
|
1407 |
shows "Gcd A = Finite_Set.fold gcd 0 A" |
|
| 60526 | 1408 |
by (induct rule: finite.induct[OF \<open>finite A\<close>]) |
| 58023 | 1409 |
(simp_all add: comp_fun_idem.fold_insert_idem[OF comp_fun_idem_gcd]) |
1410 |
||
|
60431
db9c67b760f1
dropped warnings by dropping ineffective code declarations
haftmann
parents:
60430
diff
changeset
|
1411 |
lemma Gcd_set [code_unfold]: |
| 58023 | 1412 |
"Gcd (set xs) = fold gcd xs 0" |
1413 |
using comp_fun_idem.fold_set_fold[OF comp_fun_idem_gcd] Gcd_finite by (simp add: ac_simps) |
|
1414 |
||
| 60634 | 1415 |
lemma Gcd_singleton [simp]: "Gcd {a} = normalize a"
|
| 58023 | 1416 |
by (simp add: gcd_0) |
1417 |
||
1418 |
lemma Gcd_2 [simp]: "Gcd {a,b} = gcd a b"
|
|
| 60634 | 1419 |
by (simp add: gcd_0) |
| 58023 | 1420 |
|
|
60439
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1421 |
subclass semiring_gcd |
|
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1422 |
by unfold_locales (simp_all add: gcd_greatest_iff) |
|
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1423 |
|
| 58023 | 1424 |
end |
1425 |
||
| 60526 | 1426 |
text \<open> |
| 58023 | 1427 |
A Euclidean ring is a Euclidean semiring with additive inverses. It provides a |
1428 |
few more lemmas; in particular, Bezout's lemma holds for any Euclidean ring. |
|
| 60526 | 1429 |
\<close> |
| 58023 | 1430 |
|
1431 |
class euclidean_ring_gcd = euclidean_semiring_gcd + idom |
|
1432 |
begin |
|
1433 |
||
1434 |
subclass euclidean_ring .. |
|
1435 |
||
|
60439
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1436 |
subclass ring_gcd .. |
|
b765e08f8bc0
proper subclass instances for existing gcd (semi)rings
haftmann
parents:
60438
diff
changeset
|
1437 |
|
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1438 |
lemma euclid_ext_gcd [simp]: |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1439 |
"(case euclid_ext a b of (_, _ , t) \<Rightarrow> t) = gcd a b" |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1440 |
by (induct a b rule: gcd_eucl_induct) |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1441 |
(simp_all add: euclid_ext_0 gcd_0 euclid_ext_non_0 ac_simps split: prod.split prod.split_asm) |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1442 |
|
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1443 |
lemma euclid_ext_gcd' [simp]: |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1444 |
"euclid_ext a b = (r, s, t) \<Longrightarrow> t = gcd a b" |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1445 |
by (insert euclid_ext_gcd[of a b], drule (1) subst, simp) |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1446 |
|
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1447 |
lemma euclid_ext'_correct: |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1448 |
"fst (euclid_ext' a b) * a + snd (euclid_ext' a b) * b = gcd a b" |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1449 |
proof- |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1450 |
obtain s t c where "euclid_ext a b = (s,t,c)" |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1451 |
by (cases "euclid_ext a b", blast) |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1452 |
with euclid_ext_correct[of a b] euclid_ext_gcd[of a b] |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1453 |
show ?thesis unfolding euclid_ext'_def by simp |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1454 |
qed |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1455 |
|
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1456 |
lemma bezout: "\<exists>s t. s * a + t * b = gcd a b" |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1457 |
using euclid_ext'_correct by blast |
|
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1458 |
|
| 58023 | 1459 |
lemma gcd_neg1 [simp]: |
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1460 |
"gcd (-a) b = gcd a b" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1461 |
by (rule sym, rule gcdI, simp_all add: gcd_greatest) |
| 58023 | 1462 |
|
1463 |
lemma gcd_neg2 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1464 |
"gcd a (-b) = gcd a b" |
|
59009
348561aa3869
generalized lemmas (particularly concerning dvd) as far as appropriate
haftmann
parents:
58953
diff
changeset
|
1465 |
by (rule sym, rule gcdI, simp_all add: gcd_greatest) |
| 58023 | 1466 |
|
1467 |
lemma gcd_neg_numeral_1 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1468 |
"gcd (- numeral n) a = gcd (numeral n) a" |
| 58023 | 1469 |
by (fact gcd_neg1) |
1470 |
||
1471 |
lemma gcd_neg_numeral_2 [simp]: |
|
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1472 |
"gcd a (- numeral n) = gcd a (numeral n)" |
| 58023 | 1473 |
by (fact gcd_neg2) |
1474 |
||
1475 |
lemma gcd_diff1: "gcd (m - n) n = gcd m n" |
|
1476 |
by (subst diff_conv_add_uminus, subst gcd_neg2[symmetric], subst gcd_add1, simp) |
|
1477 |
||
1478 |
lemma gcd_diff2: "gcd (n - m) n = gcd m n" |
|
1479 |
by (subst gcd_neg1[symmetric], simp only: minus_diff_eq gcd_diff1) |
|
1480 |
||
1481 |
lemma coprime_minus_one [simp]: "gcd (n - 1) n = 1" |
|
1482 |
proof - |
|
1483 |
have "gcd (n - 1) n = gcd n (n - 1)" by (fact gcd.commute) |
|
1484 |
also have "\<dots> = gcd ((n - 1) + 1) (n - 1)" by simp |
|
1485 |
also have "\<dots> = 1" by (rule coprime_plus_one) |
|
1486 |
finally show ?thesis . |
|
1487 |
qed |
|
1488 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1489 |
lemma lcm_neg1 [simp]: "lcm (-a) b = lcm a b" |
| 58023 | 1490 |
by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero) |
1491 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1492 |
lemma lcm_neg2 [simp]: "lcm a (-b) = lcm a b" |
| 58023 | 1493 |
by (rule sym, rule lcmI, simp_all add: lcm_least lcm_zero) |
1494 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1495 |
lemma lcm_neg_numeral_1 [simp]: "lcm (- numeral n) a = lcm (numeral n) a" |
| 58023 | 1496 |
by (fact lcm_neg1) |
1497 |
||
|
60430
ce559c850a27
standardized algebraic conventions: prefer a, b, c over x, y, z
haftmann
parents:
59061
diff
changeset
|
1498 |
lemma lcm_neg_numeral_2 [simp]: "lcm a (- numeral n) = lcm a (numeral n)" |
| 58023 | 1499 |
by (fact lcm_neg2) |
1500 |
||
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1501 |
end |
| 58023 | 1502 |
|
1503 |
||
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1504 |
subsection \<open>Typical instances\<close> |
| 58023 | 1505 |
|
1506 |
instantiation nat :: euclidean_semiring |
|
1507 |
begin |
|
1508 |
||
1509 |
definition [simp]: |
|
1510 |
"euclidean_size_nat = (id :: nat \<Rightarrow> nat)" |
|
1511 |
||
1512 |
definition [simp]: |
|
| 60634 | 1513 |
"unit_factor_nat (n::nat) = (if n = 0 then 0 else 1 :: nat)" |
| 58023 | 1514 |
|
1515 |
instance proof |
|
| 59061 | 1516 |
qed simp_all |
| 58023 | 1517 |
|
1518 |
end |
|
1519 |
||
1520 |
instantiation int :: euclidean_ring |
|
1521 |
begin |
|
1522 |
||
1523 |
definition [simp]: |
|
1524 |
"euclidean_size_int = (nat \<circ> abs :: int \<Rightarrow> nat)" |
|
1525 |
||
1526 |
definition [simp]: |
|
| 60634 | 1527 |
"unit_factor_int = (sgn :: int \<Rightarrow> int)" |
| 58023 | 1528 |
|
| 60580 | 1529 |
instance |
| 60634 | 1530 |
by standard (auto simp add: abs_mult nat_mult_distrib sgn_times split: abs_split) |
| 58023 | 1531 |
|
1532 |
end |
|
1533 |
||
|
60572
718b1ba06429
streamlined definitions and primitive lemma of euclidean algorithm, including code generation
haftmann
parents:
60571
diff
changeset
|
1534 |
instantiation poly :: (field) euclidean_ring |
| 60571 | 1535 |
begin |
1536 |
||
1537 |
definition euclidean_size_poly :: "'a poly \<Rightarrow> nat" |
|
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1538 |
where "euclidean_size p = (if p = 0 then 0 else Suc (degree p))" |
| 60571 | 1539 |
|
| 60634 | 1540 |
lemma euclidenan_size_poly_minus_one_degree [simp]: |
1541 |
"euclidean_size p - 1 = degree p" |
|
1542 |
by (simp add: euclidean_size_poly_def) |
|
| 60571 | 1543 |
|
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1544 |
lemma euclidean_size_poly_0 [simp]: |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1545 |
"euclidean_size (0::'a poly) = 0" |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1546 |
by (simp add: euclidean_size_poly_def) |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1547 |
|
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1548 |
lemma euclidean_size_poly_not_0 [simp]: |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1549 |
"p \<noteq> 0 \<Longrightarrow> euclidean_size p = Suc (degree p)" |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1550 |
by (simp add: euclidean_size_poly_def) |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1551 |
|
| 60571 | 1552 |
instance |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1553 |
proof |
| 60571 | 1554 |
fix p q :: "'a poly" |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1555 |
assume "q \<noteq> 0" |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1556 |
then have "p mod q = 0 \<or> degree (p mod q) < degree q" |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1557 |
by (rule degree_mod_less [of q p]) |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1558 |
with \<open>q \<noteq> 0\<close> show "euclidean_size (p mod q) < euclidean_size q" |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1559 |
by (cases "p mod q = 0") simp_all |
| 60571 | 1560 |
next |
1561 |
fix p q :: "'a poly" |
|
1562 |
assume "q \<noteq> 0" |
|
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1563 |
from \<open>q \<noteq> 0\<close> have "degree p \<le> degree (p * q)" |
| 60571 | 1564 |
by (rule degree_mult_right_le) |
|
60600
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1565 |
with \<open>q \<noteq> 0\<close> show "euclidean_size p \<le> euclidean_size (p * q)" |
|
87fbfea0bd0a
simplified termination criterion for euclidean algorithm (again)
haftmann
parents:
60599
diff
changeset
|
1566 |
by (cases "p = 0") simp_all |
| 60571 | 1567 |
qed |
1568 |
||
| 58023 | 1569 |
end |
| 60571 | 1570 |
|
1571 |
end |